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Chapter 1

Introduction

1.1 Background and Motivation
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Figure 1.1: Spontaneous emission in a layered system with a dipole source

The local density of modes plays a dominant role in spontaneous emission
of excited atoms and molecules. Over the years, various papers have been
published on spontaneous emission in planar structures presenting results in-
cluding radiation modes [8] only, or approximate expressions [2, 6]. To best of
our knowledge no full treatment including the emission to the guided modes
has been presented so far. In principle exact analytical expressions could be
obtained by using Greens functions techniques, but these are normally quite
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6 CHAPTER 1. INTRODUCTION

cumbersome to evaluate and usually not very transparent. Therefore, it is
interesting to look for simple, complete and exact expressions.
According to the correspondence principle [8], expressions for the local den-
sity of modes can obtained by considering the energy flow into radiation and
guided modes from a classical dipole positioned in one of the layers:

ρ

ρ0

=
P

P0

,

where ρ is the local density of modes/states of a specific structure and P the
outgoing power for the same structure. ρ0 and P0 are the local density of
modes/states and the outgoing power for a uniform structure, respectively.
The problem corresponds to a inhomogeneous Helmholtz equation with a
localized source term.

In this MSc thesis the spontaneous emission of a single source embedded
in a layered (planar) structure is treated (see figure (1.1)). As mostly the
electric dipole moments are much stronger than the magnetic dipole moments
we assume radiating electric dipoles only. The approaches for the electric
dipoles and the magnetic dipoles are essentially similar.

1.2 Decay of Energy of an Excited Electronic

State
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Figure 1.2: An energy level diagram illustrating the process of spontaneous
emission
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There are two means in which an atom in the excited state can decay
[5]. In the first one, an atom in an excited state makes a transition to a
lower state, with the emission of a photon. The photon energy is equal to
the energy difference of the two atomic states. This is spontaneous emission
or radiative transition (see figure (1.2)).

In second kind of decay, an atom in an excited state reaches the ground
state without radiative emission, e.g. by giving off all the energy to the
phonon system or by radiationless transfer to another centre. This is a non-
radiatve transition.

The decay of an excited state can be summarized symbolically as

1

τ
=

(
1

τ

)
radiative

+

(
1

τ

)
nonradiative

,

where τ is the lifetime of the atom.
In this study we are only interested in the radiative transition of light (spon-
taneous emission). The radiative transition probability

(
1
τ

)
radiative is pro-

portional to the local density of modes(
1

τ

)
radiative

∝ ρ(ω,�r, structure, ...),

where ρ is the local density of modes/states, ω is the optical frequency and
�r is the position of the source.

1.3 Objectives

We shall now define the objectives of this MSc thesis work in more detail

• Deriving analytical expressions for the amplitudes of the radiation and
guided fields of the twodimensional problem. Both TE and TM polar-
ization will be considered. This way we treat most of the difficulties
that we might face when solving the full vectorial problem.

• Extending the analytical expressions of the twodimensional problem to
the threedimensional problem.
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• Deriving analytical expressions for the radiated and the guided power
in the case of the threedimensional problem.

• Verifying and investigating the validity of the obtained expressions.
Moreover providing some examples.

All our attention will be paid to obtain expressions for the radiated and for
the guided power. That means we are not treating the evanescent waves, as
they do not contribute to the outgoing power.
According to the proportionately between the transferred power P and the
density of modes ρ, in this way we can directly predict the relative decay
probability of atoms in a layered system.

1.4 Outline of the thesis

The structure of this MS.c thesis is as follows:
Following the introduction, in the second chapter, we will solve twodimen-
sional inhomogeneous Helmholtz equation with a localized source term in the
Fourier domain in order to find exact analytical expressions for the ampli-
tudes of the radiation and the guided modes.
In the third chapter we will extend the expressions that have been obtained
in the previous chapter to full vectorial equations by following a similar rea-
soning. Moreover, analytical expressions for the radiated and the guided
power will be obtained.
In the fourth chapter, we investigate the validity of the obtained expressions.
In the remaining part of chapter four applications to some interesting struc-
tures are given.
In the final chapter the main conclusions are presented.



Chapter 2

2D Problem

In this chapter we derive analytical expressions for the amplitudes of the
radiation and the guided fields due to a radiating dipole in the core of a
2D dielectric layered structure. One of these layers may contains distributed
sources. Here we consider only one dipole source as shown in figure (2.1).
Both TE and TM polarizations are considered. It is assumed that the refrac-
tive index varies only along x. It should be noted that the time dependence
eiwt is implicit through the analysis, where ω is the frequency of the point
source.

2.1 The Problem

In this section we formulate the wave equations for the layered slab media as
shown in figure (2.1). Taking into account the fact that we treat a dielectric
optical waveguide, we assume a permittivity and permeability of the form ε =
ε0n

2(x) and µ = µ0, where n(x) represent the spatially dependent refractive
index, ε0 and µ0 are the free-space permittivity and free-space permeability,
respectively.
From Maxwell’s curl equations we obtain

∇× �E = −iωµ0
�H (2.1)

∇× �H = iωε0n
2 �E + iω �P (2.2)

where �E is the electric field, �H is the magnetic field and �P is the polarization
of the source (radiating dipole).

9
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Figure 2.1: Layered system with a dipole source.

Now if we take the curl of Eqs (2.1) and (2.2) we find

∇×∇× �E = k2
0n

2(x) �E + ω2µ0
�P , (2.3)

n2(x)∇× 1

n2(x)
∇× �H = k2

0n
2(x) �H + iωn2(x)∇×

�P

n2(x)
. (2.4)

Since we will treat the Eq. (2.3) and (2.4) locally (for each layer) the second
term in the right hand side of (2.4) can be written as

iω∇× �P .

We consider a dipole source, therefore, the polarization can be written as

�P = �pδ(�r − �r0) (2.5)

where �p is so-called electric dipole moment.
It should be noted that the polarization is different in 2D formulation (∂y =
0) from the 3D formulation. In the following we denote the polarization

regarding the 2D problem by �P2D, where �P2D = �pδ(x− x0)δ(z − z0), and the

one regarding the 3D problem by �P (see chapter 3).
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2.2 TE Polarization

For the TE polarization only the polarization along y contributes. From
Eqs. (2.3) and (2.4), using ∂y = 0, the considered 2D wave equation for TE
polarization reads

[∂xx + ∂zz + k2
0n

2(x)]Ey(x, z) = −ω2µ0p2D,yδ(�r − �r0) (2.6)

where �p2D,y is the electric dipole along y and �r0 is the position of the source,

�r =

(
x
z

)
.

We can write
δ(�r − �r0) = δ(x − x0)δ(z − z0). (2.7)

Below we will derive expressions for the outgoing fields which may be in the
form of the radiation and guided fields.

2.2.1 Radiation fields

First we determine the amplitudes of the radiation fields. Physically we
expect waves to propagate a way from the source generating them and not
towards it. As we are interested in the outgoing radiation we solve Eq.(2.6)
considering the radiation running to the cover (layer 1) and the substrate
(layer p).

We assume that there is a horizontal (artificial) layer, say layer m, within
the source layer containing the source as shown in figure (2.2). This layer
has a very thin width dm. We choose a local coordinate within each layer
(except for the top layer), x = 0 − dm, where dm is the width of layer m.
Considering the thin layer within the source layer, layer m, the x-dependent
of delta function, δ(x − x0), can be written as

δ(x − x0) = lim
dm→0

1

dm
h(x − x0), (2.8)

where

h(x) =

{
1 if 0 < x < dm

0 otherwise
(2.9)



12 CHAPTER 2. 2D PROBLEM

mdsource

player

1layer

x

z

mlayer

mn

mn

mn

mdsource

player

1layer

x

z

x

z

mlayer

mn

mn

mn

Figure 2.2: Layered system with a horizontal layer m containing the source.

By taking the Fourier transform of Eq.(2.6) with respect to z and by using
δ(x − x0) = 1

dm
h(x − x0) (before taking the limit: limdm→0) we obtain for

each frequency kz

[∂xx − k2
z + k2

0n
2(x)]Gr(kz, x) =

ω2µ0

dm

G0h(x − x0), (2.10)

where

Gr(kz, x) =
1√
2π

∞∫
−∞

Ey(x, z)eikzzdz,

G0 =
1√
2π

p2D,ye
ikzz0.

Eq. (2.10) can be solved for all kz corresponding to plane waves running into
the substrate and the cover.
Ansatz (1): The field solution in the source layer, layer m, is written as the
sum of the homogeneous and inhomogeneous solutions as

Gr,m(kz, x) = am,+eαmx + am,−e−αmx + b, (2.11)

where b is a constant and αm =
√

k2
z − k2

0n
2
m, with Re(αm) > 0 if Re(αm) �= 0,

and Im(αm) > 0 otherwise for real or imaginary values, respectively.
In this subsection we are only interested in the radiation fields. Thus we
will only determine the field solutions for the imaginary values of αm in the
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outermost layer ( for m = 1 and p).
By substituting Eq. (2.11) into Eq.(2.10) we obtain the inhomogeneous so-
lution

b =
ω2µ0

dm

G0

α2
m

.

To determine the homogeneous solutions we solve Eq.(2.10) with ansatz
(2.11) for outgoing waves in the substrate and cladding with the require-
ment that Gr and ∂xGr are continuous along x. Using this fact expressions
for the amplitudes of the outgoing plane waves in the cladding and substrate
can be found for all relevant kz values. The regions of the relevant propaga-
tion constant kz of the cladding and the substrate is given by |kz| < K1 and
|kz| < Kp, respectively, where Kq = k0nq, q = 1, p and k0 is the wave number
in the free space.

The field solution (for given kz) in layers 1 to m − 1 should be identical
to that corresponding to an incoming plane wave in layer m, leading also to
an outgoing wave in layer 1. A similar reasoning holds for layers m + 1 to
p. Based on that, the ratio of the field and its derivative (with respect to x)
should be equal to that of the corresponding (same kz) field solution with
outgoing fields in the outermost layers. Then we obtain [3]

∂xGr,l

Gr,l
|x=0 =

αm(1 − rm,1)

1 + rm,1
, (2.12)

∂xGr,m

Gr,m
|x=dm =

αm(−1 + rm,p)

1 + rm,p
. (2.13)

In the above r denote the Fresnel reflection coefficients, which correspond to
the outgoing or evanescent waves in layer 1 and layer p, respectively.
The subscripts indicate the considered layer system, for example: rm,p is am-
plitude reflection for layers p − m.

Eqs.(2.12) and (2.13) can be solved for the two unknowns (am,±) (using
Eq. (2.11) and before taking the limit limdm→0):

am,+ =
b

D
[rm,pe

−αmdm(rm,1 − 1) − (1 − rm,p)], (2.14)

am,− =
b

D
[eαmdm(rm,1 − 1) − rm,1(1 − rm,p)], (2.15)
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where
D = 2(eαmdm − rm,1rm,pe

−αmdm).

The outgoing fields in layer 1 can be determined using the standard re-
flection and transmission laws to relate the field in layer m to the outgoing
field amplitude. Similar remark holds for the amplitudes of the outgoing field
in layer p.

a1,+ =
tm,1Gr,m|x=0

1 + rm,p
, (2.16)

ap,− =
tm,pGr,m|x=dm

1 + r1,p
, (2.17)

where t are the Fresnel transmission coefficients.
Substitute Eqs.(2.16) and (2.17) into Eqs. (2.14) and (2.15), and taking the
limit d → 0 we obtain

aTE
1,+ = ω2µ0

1

2αm

f1,+(kz)G0, (2.18)

aTE
p,− = ω2µ0

1

2αm
fp,−(kz)G0. (2.19)

where

f1,+(kz) =
tm,1(1 + rm,p)

(1 − rm,1rm,p)
, (2.20)

fp,−(kz) =
tm,p(1 + rm,1)

(1 − rm,1rm,p)
. (2.21)

The field solutions of the radiation are found to be

Ey(kz, x < x1) = aTE
1,+eα1(x−x1), (2.22)

Ey(kz, x > xp) = aTE
p,−e−αp(−x+xp). (2.23)

where the sign of α1 and αp is chosen similar to αm (see Eq. (2.11)).
In the above we solve Eq. (2.6)for all kz that lay in the regions |kz| < K1

and |kz| < Kp to determine the radiation fields. In the following we solve the
same equation, Eq.(2.6) to determine the guided fields. Thus, we consider
the field solutions corresponding to the real values of αm in the outer most
layer.
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Figure 2.3: Layered system with a vertical slide containing the source.

2.2.2 Guided Fields

In this section we solve Eq.(2.6) to determine the amplitudes of the guided
fields. Therefore, we only consider the fields solutions that are oscillating in
the core layers and exponentially decaying in the outermost layers.
As shown in figure (2.3), this time we assume that the source is contained
in a thin vertical slide of width d, so the z-dependent delta function can be
expressed as

δ(z − z0) = lim
d→0

1

d
l(z − z0), (2.24)

where

l(z) =

{
1 if 0 < z < d

0 otherwise

The x-dependent delta function term, δ(x − x0), can be written as

δ(x − x0) =
∑
m

amem(x) + f(x). (2.25)

where em(x) are the mode profiles. f(x) represents the remaining part of the
optical field and is orthogonal to em(x) [7].
Assuming for the moment that the waveguide structure support only a single
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guided mode, so we can find a0 as

a0 =
e0(x0)

∞∫
−∞

[e0(x)]2 dx

.

Higher order guided modes can be treated similarly.
We are looking for a solution with an x-dependence according to the zero-
order mode. Thus, the field solution in term of the guided Field in the thin
vertical slide z = [0, d] is of the form

Ey(x, z) = [a−e0(x)e−iβz + a+e0(x)eiβz + qe0(x)] + g(x, z), (2.26)

where β is the propagation constant of the guided modes and q is a constant.
And withg(x, z) ⊥ e0(x) for the all values of z, because of the zero overlap
between e0(x) and g(x)..
I In this subsection we are interested to determine the outgoing fields in
the term of the guided fields. That means we will pay all our attention to
determine the first part of the field.
The guided field for z < 0 is of the form a+e0(x)eiβz and for z > d is of the
form a−e0(x)e−iβz.
Substituting Eq. (2.26) into Eq.(2.6) and multiplying both sides by e0(x) it
follows after integrating through with respect to x (x runs from −∞ to −∞)

q =
ω2

dβ2
µ0p2D,ya0.

To determine the 4 other amplitudes, we apply the continuity conditions of
the guided fields ,Ey and ∂zEy, at the interfaces z = 0 and z = d. The
continuity conditions read [1]

Ey|z=0− = Ey|z=0+, (2.27)

∂zEy|z=0− = ∂zEy|z=0+, (2.28)

Ey|z=d− = Ey|z=d+, (2.29)

∂zEy|z=d− = ∂zEy|z=d+. (2.30)

We interested only in the amplitudes a±. By applying Eqs. (2.27)-(2.30) we
find

a+ = a− =
−i

2β
ω2µ0p2D,ya0.
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Now the guided field can be written as

Ey(x, z) =
−i

2β
ω2µ0a0p2D,ye0(x)e−iβ|z−z0|. (2.31)

Other guided modes (if they are present) can be treated similarly. Then
we will obtain similar expression as Eq. (2.31) with a superposition of the
amplitudes of all present guided modes.

2.3 TM polarization

From Eq. (2.4) and by choosing the y component of the magnetic field, Hy,
we can write the 2D wave equation for the TM polarization for the same
structure, see figure (2.1), as

[n2(x)∂x
1

n2(x)
∂x + ∂zz + k2

0n
2(x)]Hy(x, z) =

−iω∇× (�p2D,jδ(x − x0)δ(z − z0))|y (2.32)

where the subscript j = x, z. The polarization of the radiating dipole a long
y direction, p2D,y, doesn’t contribute to the TM polarization.
By taking into account the fact that

∇× δ(x − x0)δ(z − z0) = −∇0 × δ(x − x0)δ(z − z0),

Eq.(2.32) can be written as

[n2(x)∂x
1

n2(x)
∂x + ∂zz + k2

0n
2(x)]Hy(x, z) =

iω∇0 × (�p2D,jδ(x − x0)δ(z − z0))|y (2.33)

Now defining a potential �A such that Hy = ∇0× �A|y, then Eq. (2.33) becomes

[n2(x)∂x
1

n2(x)
∂x + ∂zz + k2

0n
2(x)] �Ax/z(x, z) =

iω�p2D,jδ(x − x0)δ(z − z0) (2.34)

where the subscript x/z indicate that the potential �A lays on the x−z plane.
We are interested to calculate also the radiation and the guided fields for the
TM polarization. To achieve this, we follow a similar reasoning as before for
the TE polarization.
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2.3.1 Radiation Fields

As before, first we consider the radiation fields. Considering to Eq. (2.34),
in the following we calculate the radiation that is caused by a source that
has a dipole along both x and z.
Similarly as in the previous section, the source term δ(x−x0) can be expressed
by Eq. (2.8). Applying this, and taking the Fourier transform of Eq. (2.34)
with respect to z it follows for each spatial frequency kz

[n2(x)∂x
1

n2(x)
∂x − k2

z + k2
0n

2(x)]G̃r(kz, x) =
iω

dm
G̃0(kz)h(x − x0), (2.35)

where

G̃r(kz, x) =
1√
2π

∞∫
−∞

Ax/z(x, z)eikzzdz,

G̃0 =
1√
2π

�p2D,je
ikzz0.

As we mentioned in the previous section (from ansatz(1)), the solution in
the source layer, layer m, can be written as the sum of the homogeneous and
inhomogeneous solution as:

G̃r,m(kz, x) = ãm,+eαmx + ãm,−e−αmx + b̃. (2.36)

The inhomogeneous solution can be determined directly by substituting Eq.
(2.36) into Eq. (2.6)

b̃ =
iω

dm

G̃0

α2
m

Since the Gr and ∂xGr are continuous within the source layer Eqs. (2.12)
and (2.13) are also hold in this case. Then applying the standard expressions
for reflection and transmission , Eq.(2.16) and (2.17), the amplitudes of the
outgoing fields in the outermost layers for Eq. (2.34) read

ã1,+ = iω
tm,1(1 + rm,p)

2α(1 − rm,1rm,p)
G̃0, (2.37)

ãp,− = iω
tm,p(1 + rm,1)

2α(1 − rm,1rm,p)
G̃0, (2.38)

(2.39)
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But

aTM
1,+ = ∇0 × ã1,+|y,

aTM
p,− = ∇0 × ãp,−|y.

Then the amplitudes for the radiation fields are given by

aTM
1,+ =

iω

2
√

πα
(ikzp2D,xf1,+(kz) + αp2D,zg1,+(kz)) eikzz0, (2.40)

aTM
p,− =

iω

2
√

πα
(ikzp2D,xfp,−(kz) − αp2D,zgp,−(kz)) eikzz0, (2.41)

where f1,+(kz) and fp,−(kz) are defined by Eqs. (2.20) and (2.21), respec-
tively, and

g1,+(kz) =
tm,1(−1 + rm,p)

(1 − rm,1rm,p)
, (2.42)

gp,−(kz) =
tm,p(−1 + rm,1)

(1 − rm,1rm,p)
. (2.43)

Now the field solutions of the radiation can be expressed as

Hy(kz, x < x1) = aTM
1,+ eα1(x−x1), (2.44)

Hy(kz, x < x1) = aTM
p,− eαp(−x+xp−1). (2.45)

2.3.2 Guided Fields

In this section we solve Eq.(2.34) to find the amplitudes of the guided fields
for the TM polarization. We follow a similar treatment as for the amplitudes
of the guided fields of the TE polarization but in this case we treat twodi-
mensional electric dipole source.
The z-dependent term of delta function, δ(z−z0), can be represented by Eq.
(2.24) and the x-dependence term can be written as

δ(x − x0) =
∑
m

bm
hm(x)

n(x)
+ f(x), (2.46)

(2.47)

where hm(x) are the guided mode profiles. f(x) represents the remaining
part of the optical field and is orthogonal to hm(x)/n(x) [7].
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Consider, for the moment, the zero-order guided mode. Using Eq. (2.46),
multiplying through by h0(x)/n2(x) and integrating with respect to x, we
determine b0 as

b0 =
h0(x0)/nm

∞∫
−∞

[h0(x)/n(x)]2 dx

, (2.48)

(2.49)

Following the same reasoning for the guided fields as in the previous section,
the field solution in the vertical slide z = [0, d] (see figure (2.3)) can be
written as

Ax/z(x, z) = [ã−h0(x)e−iβz + ã+h0(x)eiβz + q̃h0(x)] + g(x, z). (2.50)

where β is the propagation constant of the guided modes, q̃ is a constant
and the subscript x/z indicates that A lays in the x − z plane. And with
g(x, z) ⊥ h(x)/n(x) for all values of z.
As we mentioned before we are only interested to determine the guided field
solutions. So we only need to determine the first part of the field.
The field solution of the guided mode for z < 0 is of the form ã−h0(x)eiβz

and for z > d is of the form ã+h0(x)e−iβz.
We can find the constant q̃ by substituting Eqs. (2.50)and (2.24)(before
taking the limit) into Eq. (2.34), then multiplying through by h0(x)/n2(x)
it and integrating with respect to x (x runs from −∞ to ∞):

q̃ =
iω

dβ2

b0

nm

�p2D,j. (2.51)

We apply the continuity conditions of Hy along z to determine the other 4
amplitudes. The continuity conditions read [1]

Hy|z=0− = Hy|z=0+ , (2.52)

∂zHy|z=0− = ∂zHy|z=0+ , (2.53)

Hy|z=d− = Hy|z=d+ , (2.54)

∂zHy|z=d− = ∂zHy|z=d+ . (2.55)

We also aim to determine only a±. Applying the interface conditions (2.52)-
(2.55) we obtain after taking the limit limd→0

ã+ = ã− =
−ω

nm

b0

2β
�p2D,j.
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The potential field solution can be written as

Ax/z(x, z) =
−ω

2β

b0

nm

�p2D,jh0(x)e−iβ|z−z0|.

Now the magnetic field can be found by using Hy(x, y) = ∇0 × �A|y as

Hy(x, y) =
ω

2βnm

h0(x)
[
±iβp2D,xb0 + p2D,zb

′
0

]
e−iβ|z−z0|

where b
′
0 stands for

db0(x0)
dx0

. And with the + sign for z > 0 and the − sign

for z < 0
A similar expressions for the higher guided modes can be obtained.
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Chapter 3

3D Problem

In the present chapter we extend the analytical expressions that have been
derived for the radiation and the guided fields due to the radiating dipole in
the core of a 2D dielectric layered structure to the 3D structure. We derive
expressions for the radiated and the guided power. Here also both the TE
and the TM polarizations are considered.

3.1 TE Polarization

The 3D wave equation for TE polarization is given by

[�2 + k2
0n

2(x)] �E(�r) = −ω2µ0�pδ(�r − �r0), (3.1)

with electric field and dipole moment in the y − z plane.
In this section we derive expressions for the power transferred to the radiation
and the guided modes. First we solve Eq. (3.1) to determine the amplitudes
of the radiation and the guided fields. To simplify the problem we use a
rotation transform.

3.1.1 Rotation Transform

In order to cope with the complexity of the full vectorial equations (3D
equations) we use a rotation transformation to reduce the 3D equations to
the 2D form.
Then, by considering the analytical expressions of the radiation fields for
the 2D formulation (see figure (2.1)), we can directly write the analytical

23
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expression for the radiation fields for the 3D problem.
The polarization term for the 3D problem reads

�P = �pδ(r − r0) (3.2)

where �r0 is the position of the source,

�r =


 x

y
z




and

�p =


 px

py

pz




is the electric dipole momentum. Here the delta function is given by

δ(�r − �r0) = δ(x − x0)δ(y − y0)δ(z − z0). (3.3)

The source term, Eq. (3.2), can be written in the two dimensional Fourier
domain for given frequencies ky and kz as

�̃P (x, ky, kz) = �pδ(x − x0)
1

2π

∞∫
−∞

∞∫
−∞

e−i(kx(y−y0)+kz(z−z0))dkydkz (3.4)

In the uniform plane y−z, let the frequencies ky, kz be rotated anticlockwise
by an angle θ. The rotated frequencies, which are denoted by kȳ and kz̄, are
given by

k‖ =

(
kȳ

kz̄

)
=

(
cos θ − sin θ
sin θ cos θ

)
·
(

ky

kz

)
(3.5)

Similarly we can define r‖ and p‖ in the same plane.
In the rotated coordinates the polarization term can be written as

�P (x, y, z) =
1

2π

∞∫
−∞

∞∫
−∞

�̃P eikz̄ z̄dkydkz. (3.6)
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Figure 3.1: Rotation Transformation

The key point is that the polarization term �P (x, ky, kz) corresponds to a field
with x and y dependence according to

eiky(y−y0) + eikz(z−z0) = eikz̄(z̄−z̄0),

where z̄‖k‖ (≡ kz̄).
So, there is no ȳ dependence which means ∂ȳ = 0.
In this way the 3D equations for both the TE and TM polarizations can be
reduced to the same form as the 2D equations.

3.1.2 Radiation Fields and Radiated Power

In this section we will derive expressions for the radiation Fields and the
radiated power.
By applying the Fourier transform to Eq.(3.1) with respect to y and z we
obtain for each frequencies ky and kz

[∂xx − (k2
y + k2

z) + k2
0n

2(x)] �̃E(x, ky, kz) =
ω2µ0

dm
Ḡ0h(x), (3.7)
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where dm is the width of layer m as shown in figure (2.1), h is defined by Eq.
(2.9) and

�̃E(x, ky, kz) =
1

2π

∞∫
−∞

∞∫
−∞

�E(x, y, z)eiky(y−y0)+ikz(z−z0)dydz,

Ḡ0 =
1

2π
�pei(kyy0+kzz0).

In the y−z plane �E‖�P . Considering Eq. (3.6) and following similar reasoning
for Eq. (2.10) the radiation modes in the outermost layers (layer 1 and layer
p), respectively, read

Ẽȳ(x < x1, ky, kz) = ω2µ0

f1,+(k‖)
2αm

G0e
α1(x−x1), (3.8)

Ẽȳ(x > xp, ky, kz) = ω2µ0

fp,−(k‖)
2αm

G0e
αp(−x+xp−1). (3.9)

where

G0 =
1

2π
pȳe

ikz̄z0 ,

z̄ corresponds to k‖. f1,+(k‖) and fp,−(k‖) are defined by Eqs. (2.20) and

(2.21), respectively, αm =
√

(k2
y + k2

z) − k2
0n

2
m, with Re(αm) > 0 if Re(αm) �=

0, and Im(αm) > 0 otherwise for real or imaginary values, respectively. As
we mentioned in the previous chapter, for the radiation field we only consider
the field solutions in the outermost layers that correspond to the imaginary
values of α.
Using the Inverse Fourier transform the electric field in the outermost layer
1 and layer p, respectively, is given by

Ẽȳ(x < x1, y, z) =

K1∫
−K1

K1∫
−K1

Ẽȳ(ky, kz, x < x1)dkydkz, (3.10)

Ẽȳ(x > xp, y, z) =

Kp∫
−Kp

Kp∫
−Kp

Ẽȳ(ky, kz, x > xp)dkydkz, (3.11)

where the integration runs over the relevant ky and kz regions (Kq = k0nq, q =
1, p) which correspond to the fields radiated into layer1 and layer p.
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In order to find the transmitted power we use the Poynting vector which
reads

�S =
1

2
Re( �E × �H∗). (3.12)

where the subscript∗ indicates the complex conjugate.
From Eq. (3.12) the radiated power along x into the outermost layers is
given by

Px =
1

2
Re

∞∫
−∞

∞∫
−∞

(ẼyH̃
∗
z − ẼzH̃

∗
y )dydz. (3.13)

Thus, we further need to determine the corresponding magnetic fields. In
this case it is only required to find the corresponding magnetic fields along
z̄ which follow from Maxwell’s curl equations

H̃z̄(x < x1, y, z) =
α1

iωµ0

Ẽ(x < x1, y, z), (3.14)

H̃z̄(x > xp, y, z) =
−αp

iωµ0
Ẽȳ(x > xp, y, z). (3.15)

Then, the radiated power into layer 1 can be determined by substituting Eqs.
(3.10) and (3.14) into Eq. (3.13) as

Px,1 =
1

8π2

∞∫
−∞

∞∫
−∞

dydz

K1∫
−K1

K1∫
−K1

Ẽȳ(ky, kz, x < x1)e
−i(ky(y−y0)+kz(z−z0))dkydkz

K1∫
−K1

K1∫
−K1

H̃∗
z̄ (k

′
y, k

′
z, x < x1)e

i(k
′
y(y−y0)−k

′
z(z−z0))dk

′
ydk

′
z (3.16)

where the prime indicate that the involved parameter correspond to H̃∗.
Integrating over y, z and changing to the cylindrical coordinate system leads
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to

Px,1 = −ω3µ0

32π2

k1∫
0

|α1|
f 2

1,+

|αm|2kdk

2π∫
0

(p2
y cos θ + p2

z sin2 θ − 2py cos θ2pz sin θ)dθ, (3.17)

Px,1 = −ω3µ0

32π2
(p2

y + p2
z)

k1∫
0

|α1|
f 2

1,+

|αm|2kdk (3.18)

where

kz̄ = kz cos θ,

kȳ = ky sin θ,

θ = arc tan

(
ky

kz

)
,

k = |ky + kz|.
To simplify the integration, Eq. (3.17), we have used that

∞∫
−∞

e(−iky+ik
′
y)(z−z0)dky = 2πδ(k

′
y − ky),

∞∫
−∞

e(−ikz+ik
′
z)(z−z0)dkz = 2πδ(k

′
z − kz).

Similarly an expression for the power radiated into layer p can be obtained
as

Px,p = −ω3µ0

32π2
(p2

y + p2
z)

Kp∫
0

|αp|
f 2

p,−(k‖)

|αm|2 kdk (3.19)

3.1.3 Guided Fields and Guided Power

Now we solve Eq. (3.1) to determine the guided fields and to derive expression
for the transmitted power along the z direction. As in the previous chapter we
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will also assume that the waveguide structure supports only a single guided
mode which has an amplitude a0.
Since we are looking for a solution with an x-dependence according to the
zero-order mode, so we can define the electric field �E(x, y, z) as

�E(x, y, z) = e0(x) �Eh(y, z) + �g(x, y, z). (3.20)

with g(x, y, z) ⊥ e0(x) for all values of y and z, because of the zero overlap
between e0(x) and g(x). [7].
Here we aim to find outgoing fields in the term of the guided fields. Thus,
we will pay all our attention to determine the first part of the field.
By substituting Eqs.(3.20), (2.24) and (2.25) into Eq. (3.1) we remove the
x-dependence in both side of the equation after integrating through with
respect to x (x runs from −∞ to ∞) and obtain

(∂yy + ∂zz + β2) �Eh(y, z) = −ω2µ0a0�pδ(y − y0)δ(z − z0) (3.21)

where β is the propagation constant of the guided mode e0(x).

As �Eh(y, z) lies in the y − z plane (which is a uniform domain) the cor-
responding problem, Eq. (3.21) corresponds to a 2D problem in a system
with refractive index N0 = β/k0, so corresponding equation using Maxwell
equations may be written as

[∂yy + ∂zz + β2]Hx,h(y, z) = −ω2µ0a0∇× [�pδ(y − y0)δ(z − z0)]|x (3.22)

The solution of Eq. (3.22) according to Eqs. (2.40) and (2.41) is given by

H̃x,h(ky, z < z0) =
ω2µ0a0

2
√

2πikz

(ikykz + ikzpy) eikyy0+ikz(z−z0), (3.23)

H̃x,h(ky, z > z0) =
ω2µ0a0

2
√

2πikz

(kypz − ikzpy) eikyy0−ikz(z+z0). (3.24)

From Eqs. (3.23) and (3.20) and curl Maxwell equations we can now express
the corresponding electric field as

Ẽ(ky, x, z) =
e0(x)

iωε0N
2
0

∇× H̃x,h(ky, z), (3.25)
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It follows from Eq. (3.25)

Ẽy(ky, x, z) =
1

iωε0N2
0

e0(x)ikz
˜Hx,h(ky, z),

Ẽz(ky, x, z) =
1

iωε0N
2
0

e0(x)ikyH̃x,h(ky, z).

�domainsource

�

z

�

x

�domainsource

�

n
�

y

z

�

x

Figure 3.2: The integration domain of the transmitted power along z direction

The total power that transmitted along z direction is given by

Pz =

∫
∂Ω

�Sz(�r) · �n(�r)dA

=

∞∫
−∞

∞∫
−∞

�Sz(x, y, z0) ·

 0

0
1


 dxdy

+

∞∫
−∞

∞∫
−∞

�Sz(x, y, z0) ·

 0

0
−1


 dxdy (3.26)

where �S(�r) is the Poynting vector, �n(�r) is the normal vector and ∂Ω is the
boundary of the domain Ω as show in figure (3.2).
According to the Eq(3.26) the guided power along z is given by

Pz =
1

2

∞∫
−∞

∞∫
−∞

( �Ex
�H∗

y − �Ey
�H∗

x)dxdy|z (3.27)
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Therefore, for the power transmitted into, say the negative z direction, we
only need to calculate the x-component of the magnetic field. Using Maxwell
equations and Eq. (3.25) we readily find

H̃x(ky, x, z) =
1

ω2ε0µoN2
0

(k2
z +k2

y)e0(x) ˜Hx,h(ky, z) = e0(x)H̃x,h(ky, z). (3.28)

We have used the facts that

1

c2
= ε0µ0,

k2
0 =

ω2

c2
,

β2 = k2
0N

2
0 .

where c is the speed of light in the free space.

The guided power in the −z direction follows from Eq. (3.27)

P−z =
ωa2

0

8ε0N0
Re

∞∫
−∞

e2
0(x)dx

β∫
−β

1

kz
(kypz + kzpy)

2dky, (3.29)

=
ωa2

0k
2
0

16ε0
(πp2

y + πp2
z + 4pypz)

∞∫
−∞

e2
0(x)dx, (3.30)

where we have used

β∫
0

k2
y

kz
dky =

πβ2

4
,

β∫
0

kzkydky =
πβ2

4
,

β∫
0

2kydky = β2.
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A similar expression can be obtained for the guided power along positive z
direction as

P+z =
ωa2

0k
2
0

16ε0

(πp2
y + πp2

z − 4pypz)

∞∫
−∞

e2
0(x)dx, (3.31)

Now we can write the total power that is transmitted along z as

P TE
g,tot =

ωa2
0k

2
0π

16ε0
(p2

y + p2
z)

∞∫
−∞

e2
0(x)dx, (3.32)

where the subscript indicate the total guided power.

3.2 TM Polarization

In this section we follow a similar reasoning as for the TE polarization to
find analytical expressions for the radiated and the guided power.
The 3D wave equation for TM polarization is given by

[n2(x)∂x
1

n2(x)
∂x + ∂yy + ∂zz + k2

0n
2(x)] �H(�r) = −iω∇× [�pδ(�r − �r0)],(3.33)

Using the fact that ∇× δ(�r− �r0) = −∇0 × δ(�r− �r0) Eq.(3.33) can be written
as

[n2(x)∂x
1

n2(x)
∂x + ∂yy + ∂zz + k2

0n
2(x)] �H(�r) = −iω∇×0 [�pδ(�r − �r0)],(3.34)

where ∇0 indicates that the first order derivatives are taken with respect to
x0, y0 and z0.
It should be noted that for the TM polarization all components of the dipole
moment contribute.

3.2.1 Radiation Fields and Radiated Power

In this subsection we will derive expressions for the radiation Fields and the
radiated power in the case of the TM polarization.
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First we get rid of the curl that is present in the right hand side of Eq. (3.34)

by introducing a potential �A(�r) such that

H(�r) = ∇0 × �A(�r). (3.35)

By substituting Eq.(3.35) into Eq. (3.34) we obtain

[n2(x)∂x
1

n2(x)
∂x + ∂yy + ∂zz + k2

0n
2(x)] �A(�r) = iω�pδ(�r − �r0), (3.36)

Now taking the Fourier transform of Eq (3.36) with respect to y and z it
follows

[n2(x)∂x
1

n2(x)
∂x − (k2

y + k2
z) + k2

0n
2(x)] �̃A(x, ky, kz) =

iω

dm
Ḡ0h(x), (3.37)

where

�̃A(x, ky, kz) =
1

2π

∞∫
−∞

∞∫
−∞

�A(�r)eiky+ikzdydz,

Ḡ0 =
1

2π
�peikyy0+ikzz0.

By considering the rotation transform in the Fourier domain, Eq. (3.6), and
following the same steps as for Eq. (3.1) we obtain

�̃Ax/z̄(x < x1, ky, kz) =
−iω

2π
α1f1,+(k‖)G0e

αm(x−x1), (3.38)

�̃Ax/z̄(x > xp, ky, kz) =
−iω

2π
αpfp,−(k‖)G0e

αm(−x+xp−1) (3.39)

where

G0 =
1

2π
�pje

ikz̄ z̄0, j = x, z̄

From Eq. (3.35) the radiation fields in the outermost layers (layer 1 and
layer p) can be obtained as

�̃Hȳ(x < x1, ky, kz) =
iω

2πα1

(
ikz̄pxf1,+(k‖) + αmpz̄g1,+(k‖)

)
G0e

αm(x−x1), (3.40)

�̃Hȳ(x > xp, ky, kz) =
iω

2παp

(
ikz̄pxfp,−(k‖) − αmpz̄gp,−(k‖)

)
G0e

αm(−x+xp−1). (3.41)
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In order to express the power radiated into layer 1 we further need to find
the corresponding electric field which follows from Maxwell curl equations as

�̃Ez̄(x < x1, ky, kz) =
1

−iωε0n2
1

α1H̃ȳ(x < x1, ky, kz), (3.42)

�̃Ez̄(x > xp, ky, kz) =
1

−iωε0n2
p

αpH̃ȳ(x < x1, ky, kz). (3.43)

Then from Eq. (3.13) the radiated power into layer 1 in the cylindrical
coordinate system can be expressed as

Px,1 =
iω

32π2ε0n2
1

k1∫
0

2π∫
0

|α1|kz̄px

f1,+(k‖)
αm

+ pz̄g1,+(k‖)|2kdθdk (3.44)

Px,1 =
iω

32πε0n
2
1

k1∫
0

α1

[
2

(
px(k

2
y + k2

z)
|f1,+(k‖)|

αm

)2

+ |g1,+(k‖)|2(p2
y + p2

z)

]
kdk(3.45)

A similar expression can be obtained for the power radiated into layer p as

Px,p =
iω

32πε0n2
p

kp∫
0

αp

[
2

(
px(k

2
y + k2

z)
|fp,−(k‖)|

αm

)2

+ |gp,−(k‖)|2(p2
y + p2

z)

]
kdk(3.46)

3.2.2 Guided Fields and Guided Power

In this section we solve Eq. (3.36) to find the expressions for the guided fields
and the guided power for the TM polarization. We also assume that only a
single guided mode is present with amplitude b0. As we mentioned before
the dipole moment is present in all directions, x, y and z.

Instead of solving Eq. (3.34) we solve Eq. (3.36) to avoid the complexity
that is caused by the curl term that is present in the former equation.
We are looking for a solution with an x dependence according to the zero-
order mode, so we can define the potential �A(�r) as

A(�r) = h0(x)Ah(y, z) + g(x, y, z). (3.47)

with g(x, y, z) ⊥ h0(x)/n(x) for the all values of y and z [7].
In the present subsection we are interested to find the outgoing fields in the



3.2. TM POLARIZATION 35

term of the guided fields. Thus, we will pay all out attention to determine
the first part of the field.
From Eq.(3.35) it follows that

h0(x) �Hh(y, z) = h0(x)∇0 × �Ah(y, z). (3.48)

Substituting Eq. (3.47) into Eq. (3.36) and writing δ(x − x0) = b0h0(x)
(before taking the limit limd→0) then, multiplying through by h0(x)/n2(x) it
follows after integrating through with respect to x (x runs from −∞ to ∞)

[∂yy + ∂zz + β2] �Ah(y, z) = iω�pb0δ(y − y0)δ(z − z0) (3.49)

where β =
√

k2
y + k2

z is the propagation constant of the zero-order guided
mode h0(x).
Eq. (3.49) corresponds to 2D problem in a uniform system with refractive

index N0 = β/k0 with E along x. First we solve Eq. (3.49) to find �Ah(y, z)

then using Eq. (3.48) we determine all components of �Hh. Once the H̃h are
found we apply the Maxwell curl equations to determine Ẽh,x.
From Eq.(2.22) in the previous chapter, the solution of Eq. (3.49) is found
as

Ãh(ky, z < z0) = pjb0γ, (3.50)

where

γ =
ω

2
√

2πkz

ei(kyy0+kzz0(z−z0)). (3.51)

The components of �̃Hh(ky, z) are determined by taking the curl0 of Eq. (3.50)

�̃Hh,x(ky, z < z0) = γb0 (−ikypz + ikzpy) (3.52)

�̃Hh,y(ky, z < z0) = −γ
(
ikzb0px + b

′
0pz

)
(3.53)

�̃Hh,z(ky, z < z0) = γ
(
b
′
0py − ikyb0pz

)
(3.54)

where b
′
0 stands for db0

dx0
.

Using the curl Maxwell equation we can now express the electric field Ẽh,x

as

Ẽh,x(ky, z < z0) =
γ

iωε0N
2
0

[
β2b0px + ikyb

′
0py − ikzb

′
0pz

]
. (3.55)
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From the Maxwell curl equations and Eq.(3.48) the resulting magnetic fields
read

�̃Hy(x, ky, z < z0) =
ikz

iωµ0

h0(x)Ẽh,x(ky, z < z0), (3.56)

�̃Hz(x, ky, z < z0) = − iky

iωµ0
h0(x)Ẽh,x(ky, z < z0). (3.57)

A similar expressions can be obtained for the magnetic fields in the positive
y direction.
Now we apply Eq. (3.26) to calculate the total power. As we mentioned in
the previous section it is sufficient to calculate the power either along y or
along z direction. For the power transmitted say into negative z direction
we only need to determine the x-component of the electric field. Thus, by
using the Maxwell curl equations we readily find

�̃Ex(x, ky, z < z0) =
γ

ω2ε0µ0n2(x)
β2Ẽh,x(ky, z < z0). (3.58)

From Eq. (3.27) the total power guided along the negative z direction is
given by

P−z =
1

2π
Re

∞∫
−∞

∞∫
−∞

dxdz

−β∫
β

�̃Ex(x, ky, z < z0)dkz

−β∫
β

�̃H∗
y (x, k

′
y, z < z0)dk

′
z,(3.59)

where the subscript
′
indicates that the involved component corresponds to

�̃ ∗
H .

Performing the integration and using the fact that along positive z the same
amount of power is running, it follows

P TM
g,tot =

w

16n2
mε0

∞∫
−∞

h2
0(x)

n2(x)

[
2β2h2

0(x0)p
2
x + h

′2
0 (x0)(p

2
y + p2

z)
]
. (3.60)
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Discussion of the Results

Although our method is different for that of Lukosz [8] (see also [4]) our result
expressions for the power form a radiating dipole going to the radiation modes
agrees with those of [8]. In the present chapter we will focus mainly on layered
structures supporting also a guided modes in order to illustrate our theory
and also to show that the obtained results make sense, thus supporting the
correctness of the presented theory for application for structures with guided
modes.

4.1 Uniform Space

As we present in the following the radiated power (by a dipole in a layered
system with refractive index n(x)) relative to that for a uniform space (with
refractive index n) we will first give expressions for the later case.
We assume a uniform space with refractive index n.The total radiated power
in the uniform space for the TE polarization is given by, according to Eqs.
(3.18) and (3.19)

P TE
0 =

ω3µ0

16π
(p2

y + p2
z)

K∫
0

k

α
dk =

ω3µ0

16π
K(p2

y + p2
z), (4.1)

where K = k0n and α = αj, j = 1, p, m.
The total radiated power in the case of the TM polarization follows from
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Eqs. (3.45) and (3.46)

P TM
0 =

ω

16πε0n2


p2

x

K∫
0

2
k3

α
dk + (p2

y + p2
z)

K∫
0

αkdk




=
ωK3

48πε0n2
(4p2

x + p2
y + p2

z),

P TM
0 =

ω3Kµ0

48π
(4p2

x + p2
y + p2

z). (4.2)

We have used that

k2
0 =

ω2

c2
,

c2 =
1

ε0µ0

.

4.2 System closed with metal/manetic walls

Here we calculate the total power in a system closed with a metal walls and
magnetic walls for the TE and the TM polarization, respectively.

d

d

r=-1

r=-1

Metal/magnetic walls

p
xp d

d

r=-1

r=-1

Metal/magnetic walls

||

xp

Figure 4.1: Radiating dipole at the origin of a system closed with
metal/magnetic walls

For the TE polarization, we consider a source at the origin of a system
closed with metal walls at ±d, where 2d is the width of the waveguide, as
shown in figure (4.1). In such case the eignfunctions (guided modes) are
given by [1]

em(x) = sin{kx,m(x − d)}, (4.3)
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Thus,

e2m−1(0) = 1, (4.4)

e2m(0) = 0. (4.5)

where km,x = mπ/2d and the subscript m indicates the order of the consid-
ered mode.
From Eqs. (4.4) and (4.5) it can be seen that only the power that is trans-
ferred to the odd guided modes contributes. Applying Eq. (3.32) it follows
that the power that is transmitted to each odd mode

P TE
2m-1 =

ωk2
0

16dε
(p2

y + p2
z), (4.6)

where d =
∞∫

−∞
e2

m(x)dx.

The spacing between the odd modes is ∆kx = π/d, with kx in the region
(0, k0n). For large d-values the summation over all modes leads to

P TE
tot =

ωk2
0

16dε
(p2

y + p2
z) ×

k0nd

π
,

P TE
tot =

ω3Kµ0

16π
(p2

y + p2
z). (4.7)

And so for TM polarization, we consider a source at the origin of a system
closed with magnetic walls at ±d as shown in figure 4.1, where 2d is the
width of the waveguide.

The eigenfuntions of the system are given by Eqs (4.3)-(4.5). For the
sake of simplicity we will treat the contribution of the polarization along x
direction, p2

x, and the contribution of the polarization on the y − z plane,
p2
‖(= p2

y + p2
z) separately.

First we treat the contribution of a dipole oscillating along x direction. From
Eq. (3.60) the guided power that is transferred by an odd guided mode m is
given by

P TM
2m−1,px

=
ω

8dε0n4
β2

mp2
x, (4.8)

where β2
m =

√
k2

0n − k2
x,m.
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The total power can be written as

P TM
tot,px

=

k0∑
m=0

ω

8dε0
β2

mp2
x ×

d

π
∆kx,

=

k0∑
m=0

ω

8πε0n4
p2

x

k0n2∫
0

β2
mdkx,

P TM
tot,px

=
ω3Kµ0

12π
β2

mp2
x. (4.9)

Similarly we can calculate the contribution of a dipole oscillating in the y−z
plane. From Eq. (3.60) it follows

P TM
2m−1,p‖ =

k4
0k

2
x,m

16dω3ε0µ0n4
p2
‖, (4.10)

then it follows for the total power

P TM
tot,p‖

=
k4

0k
2
x,m

16dω3ε0µ0n4
p2
‖ ×

d

π

k0n∫
0

k2
xdkx,

P TM
tot,p‖

=
ω3Kµ0

48π
(p2

y + p2
z). (4.11)

From Eqs. (4.9) and (4.11) the total power for the TM polarization is given
by

P TM
tot =

ω3Kµ0

48π
(4p2

x + p2
y + p2

z). (4.12)

For both the TE and the TM polarization, Eqs. (4.1), (4.2), (4.7) and (4.12)
show that the total power that radiated into a uniform space is exactly equal
to the total power that is transmitted to the guided modes in a system closed
with metallic/magnetic walls as it should.

In the following we discuss the obtained result for the total power that
is transmitted in a uniform space (or a system closed with metal/magnetic
walls).
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px p‖
RTE 0 3/4
RTM 1 1/4
Rtot 1 1

Table 4.1: Relative power, R = P/Ptot,uniform, for a single radiating dipole

In the following we use the radiative power relative to that in a uniform
space with refractive index equal to the material surrounding the dipole
RTE = PTE/Ptot,uniform and RTM = PTE/Ptot,unifrom for testing and

analyzing the obtained expressions.
As we can see in the last row of table (4.1), the total relative power for both
the TE and the TM is equal to 1. This means that the total radiated power
of a dipole in a uniform space does not depend on the orientation of the
radiating dipole as expected.

px p‖
∑

R
RTE 1 × 0 2 × 3/4 1.5
RTM 1 × 1 2 × 1/4 1.5

Table 4.2: Summation of relative power in a uniform space, R =
P/Ptot,uniform, due to a single radiating dipole

In the last column of table (4.2) we can see that , the summation of the
relative power in a uniform space over px, py and pz for both the TE and
TM polarization are equivalent. Which means that for a large number of
radiating oriented dipoles the power going into the TE polarization is equal
to that going into the TM polarization, as expected.

4.3 Slab Wave Guides

In this section is to apply the obtained result to simple layered structures. In
the following we use a relative power summed over the TE the TM polariza-
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tion, Rguided = Pguided/Ptot,uniform and Rradiated = Pradiated/Ptot,uniform.

Matlab simulation environment version 6.5 is used for the programming. The
required input for the main program are the wavelength λ, the thicknesses
t and refractive indexes n of the all layers. Using these input values we can
determine the profile for the relative radiated power and the relative guided
power for the TE and the TM polarization and for all dipole orientations.

• Example 1
As a first example we calculate (simulate) the total relative power in
a three layered symmetric system with a radiating dipole positioned
at the center of the core layer as show in figure(4.2). We present the

n1=1

n2=2

n3=1

x0

m5.42 ���t

z

x

n1=1

n2=2

n3=1

||p
x0

m5.42 ���t

z

x

z

x

Figure 4.2: Radiating dipole at the origin of a three layered system.

result for the relative power as a function of the thickness t of the core
layer as shown in figure(4.3). We observe from the figure that the total
relative power oscillates around 1 with an amplitude that gets smaller
for large values of t. This simple example support the validity of the
obtained expressions.

• Example 2

Here we calculate the relative total power as a function of the position
x0. We apply the expressions of the total power to a three layered
planar structures that support different number of modes.
In the first case we take a structure that supports a single guided mode.
Then we increase the number of modes one by one, for both polariza-
tions, by increasing the refractive index of the core layer, see figure
(4.4).

In the first case we consider a structure with a fundamental mode. We
find that, as shown in figure (4.5), the guided power monotonically
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Figure 4.3: Relative power summed over the TE and TM polarization form
a radiating dipole in the core of symmetric slab waveguide.
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Figure 4.4: Symmetric slab waveguide

increasing towards the center of the core layer. That is reasonable
because the highest value of the fundamental modes positioned at the
center of the core layer.

As shown in figures (4.6)-(4.8) for the other cases it found that the
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Figure 4.5: case1: Single guided mode
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Figure 4.6: case2:Two guided modes

total guided power oscillating periodically according to the number of
the guided modes that are found in each structure. These results also
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Figure 4.7: case3:Three guided modes
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Figure 4.8: case4: Four guided modes

support the derived expressions.
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4.4 Conclusion

A few examples and applications of the obtained expressions have been pre-
sented. It has been shown that the radiative power in a uniform space is
equal to the guided power in a system closes with metal/magnetic walls in
the limit of infinite separation as it should. The numerical examples (namely
example1) showed that the relative power oscillates around 1 with an am-
plitude that gets smaller for large values of the thickness of the core layer
as expected. These results give us confidence that the obtained expressions
make sense.
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Summary and Conclusion

The power coming from a radiating dipole in a planar structure is considered.
Analytical exact expressions for the radiated and for the guided power for
both TE and TM polarization are obtained. In summary the following has
been presented.

• Chapter 1
In chapter 1 we stated the goal of this M.Sc thesis. We also gave an
overview of the work that have been done so far on the same topic.
Finally, the outline of the thesis is presented.

• Chapter 2
In the very beginning of chapter 2 we defined the problem. Then we
treated the twodimensional problem for both TE and TM polarization
in the Fourier domain. We derived expressions for the amplitudes of
the radiated and the guided Fields.

• Chapter 3
In chapter 3 we extended the result of chapter 2 to a threedimensional
formulation. To achieve this a rotation transform is used to reduce the
spatial dimensionality for the threedimensional problem to twodimen-
sional problem in rotated system. Then we derived expressions for the
radiated and for the guided power.

• Chapter 4
In chapter 4 we tested and investigated (theoretically) the validity of
the obtained expressions for the radiated and the guided power. We

47



48 CHAPTER 5. SUMMARY AND CONCLUSION

also gave numerical examples that have been calculated in Matlb envi-
ronment.

From the obtained expressions and the numerical tests we can see that
the transmitted power is strongly influence by the position of the radiating
source. The tests have been done so far support the validity and the read-
ability of the derived formulae. In general the obtained expression for the
radiated power , though they are in integral form, and for the guided power
they are simple, transparent and easy to evaluate (assuming that there is
already a mode solver available).
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