

Wave interaction in photonic integrated circuits

(D) (2) 040

Wave interaction in photonic integrated circuits

- Basis fields
 - · Straight channels
 - · Curved waveguides
 - · Localized resonances
- · Hybrid coupled mode theory
- · Field templates
- · Amplitude discretization
- · Solution procedures
- Supermode analysis
- · Coupled straight waveguides
- · Channel crossing
- · Micro-ring circuits

Frequency domain,

- $\nabla \times \boldsymbol{H} \mathrm{i}\omega\epsilon_0\epsilon\boldsymbol{E} = 0, \\ -\nabla \times \boldsymbol{E} \mathrm{i}\omega\mu_0\boldsymbol{H} = 0,$
- $\omega = k \mathbf{c} = 2\pi \mathbf{c}/\lambda$ given,
- $\epsilon=n^2,\ n(x,y,z),$

2-D examples & specifics, 2-D (3-D) formalism.

Straight dielectric waveguide

TE, $n_b = 1.5$, $n_g = 2.0$, $d = 1.0 \,\mu\text{m}$, $\lambda = 1.5 \,\mu\text{m}$, $\beta_0/k = 1.924$, $\beta_1/k = 1.697$.

101 131 000

Straight dielectric waveguide

Waveguide bend

Whispering gallery resonances

 $Q = {\rm Re}\,\omega^{\rm c}/(2{\rm Im}\,\omega^{\rm c}), \qquad \lambda_{\rm r} = 2\pi{\rm c}/{\rm Re}\,\omega^{\rm c}, \qquad {\rm outgoing\ radiation,\ FWHM:}\ \Delta\lambda = \lambda_{\rm r}/Q.$

Waveguide bend

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (\boldsymbol{r}, \boldsymbol{\theta}) \approx \ \boldsymbol{c}(\boldsymbol{\theta}) \begin{pmatrix} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{pmatrix} (\boldsymbol{r}) \, \mathrm{e}^{-\mathrm{i} \gamma \boldsymbol{R} \boldsymbol{\theta}}$$

Whispering gallery resonances

Localized resonances

 $\binom{E}{H}(x, z) \approx c \binom{\bar{E}}{\bar{H}}(x, z)$

101 (2) 940 9

A waveguide crossing

Coupled Mode Model ?

Field ansatz

Basis elements:

 $\begin{pmatrix} E \\ H \end{pmatrix} (x,z) = f(z)\psi^{i}(x,z) + b(z)\psi^{b}(x,z) + \sum_{m} u_{m}(x)\psi^{u}_{m}(x,z) + \sum_{m} d_{m}(x)\psi^{d}_{m}(x,z)$ $f, b, u_{m}, d_{m}; ?$

Amplitude functions, discretization

Galerkin procedure, continued

• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_{k} a_k \begin{pmatrix} E_k \\ H_k \end{pmatrix}$$
,
• select $\{u\}$: indices of unknown coefficients,
 $\{g\}$: given values related to prescribed influx,
• require $\int \iint \mathcal{K}(E_l, H_l; E, H) dx dy dz = 0$ for $l \in \{u\}$
• compute $K_R = \int \iint \mathcal{K}(E_l, H_l; E_k, H_k) dx dy dz$.

$$\sum_{k \in \{\mathbf{u},g\}} K_{lk} a_k = 0, \ l \in \{\mathbf{u}\}, \qquad \left(\mathsf{K}_{\mathbf{u}\,\mathbf{u}} \,\mathsf{K}_{\mathbf{u}\,g}\right) \begin{pmatrix} \boldsymbol{a}_{\mathbf{u}} \\ \boldsymbol{a}_{g} \end{pmatrix} = 0, \qquad \text{or} \qquad \mathsf{K}_{\mathbf{u}\,\mathbf{u}} \boldsymbol{a}_{\mathbf{u}} = -\mathsf{K}_{\mathbf{u}\,g} \boldsymbol{a}_{g} \,.$$

Galerkin procedure

$$\begin{array}{l} \nabla \times \boldsymbol{H} - \operatorname{isc}_{oc} \boldsymbol{cE} = 0 \\ -\nabla \times \boldsymbol{E} - \operatorname{isc}_{op} \boldsymbol{0} \boldsymbol{H} = 0 \end{array} \qquad (\begin{array}{c} \boldsymbol{F} \\ \boldsymbol{G} \end{array})^*, \qquad \int \int \int \\ \int \int \mathcal{K}(\boldsymbol{F}, \boldsymbol{G}; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{dx} \, \mathrm{dy} \, \mathrm{dz} = 0 \quad \text{for all } \boldsymbol{F}, \ \boldsymbol{G}, \end{array}$$

where

$$\mathcal{K}(F, G; E, H) = F^* \cdot (\nabla \times H) - G^* \cdot (\nabla \times E) - i\omega\epsilon_0 \epsilon F^* \cdot E - i\omega\mu_0 G^* \cdot H.$$

10) (B) 000 13

Further issues

... plenty.

Straight waveguide

Two coupled parallel cores

Basis: forward TE₀ modes of the individual cores, input amplitude $f_b = 1$, FEM discretization:

 $z \in [-20, 20] \,\mu\text{m}, \,\Delta z = 0.5 \,\mu\text{m},$

computational domain: $z \in [-20, 20] \ \mu\text{m}, x \in [-3.0, 3.0] \ \mu\text{m}.$

Two coupled parallel cores

basis. forward TE₀ modes of the individual cores, input amplitude $f_b = 1$, FEM discretization: $z \in [-20, 20] \, \mu$ m, $\Delta z = 0.5 \, \mu$ m, computational domain: $z \in [-20, 20] \, \mu$ m, $x \in [-3.0, 3.0] \, \mu$ m.

101 121 940 1

Two coupled parallel cores

Basis:

forward TE₀ modes of the individual cores, input amplitude $f_b = 1$,

FEM discretization:

 $z \in [-20, 20] \ \mu\text{m}, \ \Delta z = 0.5 \ \mu\text{m},$ computational domain:

 $z \in [-20, 20] \ \mu m, x \in [-3.0, 3.0] \ \mu m.$

Coupling length versus gap:

Waveguide crossing, fields

 $v = 0.45 \,\mu m$, bimodal vertical WG:

101 (2) OAC 1

Waveguide crossing, power transfer

Waveguide crossing, amplitude functions

Ringresonator

TE,
$$R = 7.5 \,\mu\text{m}$$
, $w = 0.6 \,\mu\text{m}$, $d = 0.75 \,\mu\text{m}$, $g = 0.3 \,\mu\text{m}$, $n_g = 1.5$, $n_b = 1.0$, $\lambda \approx 1.55 \,\mu\text{m}$.

(D) (B) 040

Ringresonator, HCMT procedure

Ringresonator, field template

Single ring filter, spectral response

Ringresonator, field template

• Frequency ω given, $\sim \exp(i\omega t)$,

• & further terms.

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (\boldsymbol{x}, \boldsymbol{z}) = f(\boldsymbol{z}) \, \boldsymbol{\psi}^{\mathrm{f}}(\boldsymbol{x}, \boldsymbol{z}) + \boldsymbol{b}(\boldsymbol{z}) \, \boldsymbol{\psi}^{\mathrm{b}}(\boldsymbol{x}, \boldsymbol{z}) + \sum_{j} c_{j} \, \boldsymbol{\psi}^{\mathrm{c}}_{j}(\boldsymbol{r}, \boldsymbol{\theta}),$$
$$\boldsymbol{r} = r(\boldsymbol{x}, \boldsymbol{z}), \, \boldsymbol{\theta} = \boldsymbol{\theta}(\boldsymbol{x}, \boldsymbol{z}).$$

Excitation of whispering gallery resonances

(D) (2) 040 2

Ringresonator, HCMT procedure

Channels: 1-D FEM discretization,

$$f(z) \to \{f_j\}, \\ b(z) \to \{b_j\}.$$

f, b, cj: ?

Single ring filter, spectral response

Single ring filter, benchmark

Single ring filter, WGM amplitudes

WGM(0.40) WGM(0.39) WGM(0.39) WGM(0.37) 1.54 1.56 1.50

WGM(0.41)

Single ring filter, transmission resonance

Single ring filter, resonance positions

⇒ (≥) 940

HCMT supermode analysis

• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_{k} d_{k} \begin{pmatrix} E_{k} \\ H_{k} \end{pmatrix}$$
,
• require $\iiint \mathcal{A}(E_{l}, H_{l}; E, H) dx dy dz - \omega^{s} \iiint \mathcal{B}(E_{l}, H_{l}; E, H) dx dy dz = 0$
for all l ,
• compute $A_{lk} = \iiint \mathcal{A}(E_{l}, H_{l}; E_{k}, H_{k}) dx dy dz$,
 $B_{lk} = \iiint \mathcal{B}(E_{l}, H_{l}; E_{k}, H_{k}) dx dy dz$.

Supermodes

Look for
$$\omega^{s} \in \mathbb{C}$$
 where the system

$$\begin{cases}
\nabla \times H - i\omega^{s}c_{0}cE = 0 \\
-\nabla \times E - i\omega^{s}\mu_{0}H = 0
\end{cases}$$
boundary conditions: "outgoing waves" \end{cases}

permits nontrivial solutions E, H.

$$\begin{array}{c|c} \nabla \times H - i\omega^{3}\epsilon_{0}\epsilon E = 0 \\ -\nabla \times E - i\omega^{5}\mu_{0}H = 0 \end{array} & \begin{pmatrix} F \\ G \end{pmatrix}^{*}, & \iiint \\ \int \iint \mathcal{A}(F,G;E,H) \, \mathrm{dx} \, \mathrm{dy} \, \mathrm{dz} - \omega^{5} \iiint \mathcal{B}(F,G;E,H) \, \mathrm{dx} \, \mathrm{dy} \, \mathrm{dz} = 0 \quad \text{for all } F, G, \\ \text{where} \quad \mathcal{A}(F,G;E,H) = F^{*} \cdot (\nabla \times H) - G^{*} \cdot (\nabla \times E) , \\ \mathcal{B}(F,G;E,H) = i\epsilon_{0}\epsilon F^{*} \cdot E + i\mu_{0}G^{*} \cdot H. \end{array}$$

101 (2) OQC 3

Further issues

... plenty.

WGMs, small uniform perturbations

r lumi

101 131 000

Single ring filter, unidirectional supermodes

Single ring filter, resonance positions

Annat

o r lumi

 $Q = 4.4 \cdot 10^2$

Single ring filter, bidirectional supermodes

_

(D) (B) 000 -

Coupled resonator optical waveguide

(日) (き) のへひ 44

CROW, spectral response

CROW, supermode pattern

Three-ring molecule, supermodes

Three-ring molecule, supermodes

(0) (3) 000 47

Three-ring molecule, supermodes

Three-ring molecule, supermodes

Three-ring molecule, supermodes

Three-ring molecule, supermodes

Three-ring molecule, excitation

 $\lambda_r = 1.55988 \, \mu m$

 $Q = 1.2 \cdot 10^5$. $\tilde{\Delta}\lambda = 1.3 \cdot 10^{-5} \, \text{um}$

Concluding remarks

Hybrid Coupled Mode Theory:

- an ab-initio, quantitative, quite general CMT variant, very close to common ways of reasoning in integrated optics,
- alternatively: a numerical (FEM) approach with highly specialized base functions,
- · reasonably versatile:

• extension to 3-D: numerical basis fields, still moderate effort expected (in progress).

(日) (注) のQ() 50