HCMT interaction of whispering gallery modes in circuits of circular integrated optical micro-resonators

E.F. Franchimon, K.R. Hiremath, R. Stoffer, M. Hammer*

Integrated Optical MicroSystems MESA⁺ Institute for Nanotechnology University of Twente, The Netherlands

> XXth International Workshop on Optical Waveguide Theory and Numerical Modelling, OWTNM 2012 Sitges, Barcelona, Spain — April 20 – 21, 2012

* Department of Electrical Engineering, University of Twente Phone: +31/53/489-3448 Fax: +31/53/489-3996 P.O. Box 217, 7500 AE Enschede, The Netherlands E-mail: m.hammer@utwente.nl

Excitation of whispering gallery resonances

2-D, $n_{\rm g} > n_{\rm b}$

Excitation of whispering gallery resonances

2-D,
$$n_{\rm g} > n_{\rm b}$$
, $\left\{ \omega_j^{\rm c}, \left(\begin{array}{c} \boldsymbol{E} \\ \boldsymbol{H} \end{array} \right)_j^{\rm c} (x, z) \right\}$

Excitation of whispering gallery resonances

Localized resonances & guided wave excitation

- Whispering gallery modes
- Hybrid analytical / numerical coupled mode theory
- Benchmarks, micro-ring and -disk
- Supermode analysis, perturbations
- CROW
- Three-ring molecule

Micro-ring, resonances

 $Q = \operatorname{Re}\omega^{\mathrm{c}}/(2\operatorname{Im}\omega^{\mathrm{c}}), \qquad \lambda_{\mathrm{r}} = 2\pi \mathrm{c}/\operatorname{Re}\omega^{\mathrm{c}}, \qquad \text{outgoing radiation, FWHM:} \quad \Delta \lambda = \lambda_{\mathrm{r}}/Q.$

Micro-ring, resonances

 $Q = \operatorname{Re}\omega^{\mathrm{c}}/(2\operatorname{Im}\omega^{\mathrm{c}}), \qquad \lambda_{\mathrm{r}} = 2\pi \mathrm{c}/\operatorname{Re}\omega^{\mathrm{c}}, \qquad \text{outgoing radiation, FWHM:} \quad \Delta \lambda = \lambda_{\mathrm{r}}/Q.$

Micro-ring, resonances

WGM(0, 39): $\lambda_{\rm r} = 1.5637 \,\mu{\rm m}, \ Q = 1.1 \cdot 10^5, \ \Delta \lambda = 1.4 \cdot 10^{-5} \,\mu{\rm m}.$

WGM(0, 39): $\lambda_{\rm r} = 1.6025 \,\mu{\rm m}, \ Q = 5.7 \cdot 10^5, \ \Delta \lambda = 2.8 \cdot 10^{-6} \,\mu{\rm m}.$

WGM(1, 36): $\lambda_{\rm r} = 1.5367 \,\mu{\rm m}, \ Q = 2.2 \cdot 10^4, \ \Delta \lambda = 7.0 \cdot 10^{-4} \,\mu{\rm m}.$

TE, $R = 7.5 \,\mu\text{m}$, $w = 0.6 \,\mu\text{m}$, $d = 0.75 \,\mu\text{m}$, $g = 0.3 \,\mu\text{m}$, $n_{\text{g}} = 1.5$, $n_{\text{b}} = 1.0$, $\lambda \approx 1.55 \,\mu\text{m}$.

Ringresonator, field template

- Frequency ω given, $\sim \exp(i\omega t)$.
- Bus channels: $\psi^{\mathrm{f,b}}(x,z) = \left(\frac{\tilde{E}}{\tilde{H}} \right)^{\mathrm{f,b}}(x) \mathrm{e}^{\pm \mathrm{i}\beta z}.$
- Cavity, WGMs: $\psi_j^{c}(r,\theta) = \left(\begin{array}{c} \tilde{E} \\ \tilde{H} \end{array} \right)_j^{c}(r) e^{-im_j \theta},$ $m_j \in \mathbb{Z}.$
- Further terms: bidirectional propagation, higher order modes, other channels, etc..

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x,z) = f(z) \, \boldsymbol{\psi}^{\mathrm{f}}(x,z) + b(z) \, \boldsymbol{\psi}^{\mathrm{b}}(x,z) + \sum_{j} c_{j} \, \boldsymbol{\psi}^{\mathrm{c}}_{j}(r,\theta),$$
$$r = r(x,z), \ \theta = \theta(x,z). \qquad f, b, c_{j}: \ \boldsymbol{?}$$

Ringresonator, HCMT procedure

$$\begin{split} \boldsymbol{\varsigma} \quad & \left(\begin{array}{c} \boldsymbol{E} \\ \boldsymbol{H} \end{array} \right) \!\! (x,z) = \sum_{j} f_{j} \big(\alpha_{j} \boldsymbol{\psi}_{j}^{\mathrm{f}} \big) (x,z) + \sum_{j} b_{j} \big(\alpha_{j} \boldsymbol{\psi}_{j}^{\mathrm{b}} \big) (x,z) + \sum_{j} c_{j} \, \boldsymbol{\psi}_{j}^{'\mathrm{c}} (x,z) \\ & =: \sum_{k} a_{k} \bigg(\begin{array}{c} \boldsymbol{E}_{k} \\ \boldsymbol{H}_{k} \end{array} \bigg) (x,z), \end{split}$$

 $k \in \{\text{channels, modes, elements, resonances}\}, a_k \in \{f_j, b_j, c_j\}, a_k : ?$

$$\nabla \times \boldsymbol{H} - i\omega\epsilon_0 \epsilon \boldsymbol{E} = 0 \\ -\nabla \times \boldsymbol{E} - i\omega\mu_0 \boldsymbol{H} = 0$$

$$\cdot \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} \end{pmatrix}^*, \quad \iint_{\text{comp. domain}}$$

$$\checkmark \qquad \qquad \int \int \mathcal{K}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \quad \text{for all } \boldsymbol{F}, \ \boldsymbol{G},$$

where

 $\mathcal{K}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) = \boldsymbol{F}^* \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}) - \boldsymbol{G}^* \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) - \mathrm{i}\omega\epsilon_0\epsilon \boldsymbol{F}^* \cdot \boldsymbol{E} - \mathrm{i}\omega\mu_0\boldsymbol{G}^* \cdot \boldsymbol{H}.$

• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_{k} a_k \begin{pmatrix} E_k \\ H_k \end{pmatrix}$$
,

select {u}: indices of unknown coefficients,
 {g}: given values related to prescribed influx,

• require
$$\iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0$$
 for $l \in \{\mathbf{u}\}$
• compute $K_{lk} = \iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}_k, \boldsymbol{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k \in \{\mathbf{u}, \mathbf{g}\}} K_{lk} a_k = 0, \ l \in \{\mathbf{u}\},$$
$$\left(\mathsf{K}_{\mathbf{u}\,\mathbf{u}} \,\mathsf{K}_{\mathbf{u}\,\mathbf{g}}\right) \begin{pmatrix} \boldsymbol{a}_{\mathbf{u}} \\ \boldsymbol{a}_{\mathbf{g}} \end{pmatrix} = 0, \quad \text{or} \quad \mathsf{K}_{\mathbf{u}\,\mathbf{u}} \boldsymbol{a}_{\mathbf{u}} = -\mathsf{K}_{\mathbf{u}\,\mathbf{g}} \boldsymbol{a}_{\mathbf{g}}.$$

,

... plenty.

Single ring filter, spectral response

Single ring filter, spectral response

Single ring filter, WGM amplitudes

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x, z) = f(z) \boldsymbol{\psi}^{\mathrm{f}}(x, z)$$

+ $b(z) \boldsymbol{\psi}^{\mathrm{b}}(x, z)$
+ $\sum_{j} \boldsymbol{c}_{j} \boldsymbol{\psi}^{'\mathrm{c}}_{j}(x, z)$

Single ring filter, WGM amplitudes

Single ring filter, transmission resonance

Single ring filter, transmission resonance

Single ring filter, transmission resonance

Single ring filter, resonance positions I

Single ring filter, resonance positions I

Supermodes

Look for $\omega^{s} \in \mathbb{C}$ where the system $\begin{cases}
\boldsymbol{\nabla} \times \boldsymbol{H} - i\omega^{s}\epsilon_{0}\epsilon\boldsymbol{E} = 0 \\
-\boldsymbol{\nabla} \times \boldsymbol{E} - i\omega^{s}\mu_{0}\boldsymbol{H} = 0
\end{cases}$ boundary conditions: "outgoing waves" \end{cases}

permits nontrivial solutions E, H.

Supermodes

Look for $\omega^{s} \in \mathbb{C}$ where the system $\begin{cases}
\boldsymbol{\nabla} \times \boldsymbol{H} - i\omega^{s}\epsilon_{0}\epsilon\boldsymbol{E} = 0 \\
-\boldsymbol{\nabla} \times \boldsymbol{E} - i\omega^{s}\mu_{0}\boldsymbol{H} = 0
\end{cases}$ boundary conditions: "outgoing waves" \end{cases}

permits nontrivial solutions E, H.

$$\begin{aligned} \boldsymbol{\nabla} \times \boldsymbol{H} &- \mathrm{i} \omega^{\mathrm{s}} \epsilon_{0} \epsilon \boldsymbol{E} = 0 \\ -\boldsymbol{\nabla} \times \boldsymbol{E} &- \mathrm{i} \omega^{\mathrm{s}} \mu_{0} \boldsymbol{H} = 0 \end{aligned} \qquad \cdot \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} \end{pmatrix}^{*}, \qquad \iint_{\mathrm{comp. domain}} \end{aligned}$$

$$\iint \mathcal{A}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \quad \text{for all} \ \boldsymbol{F},\boldsymbol{G},$$

where $\mathcal{A}(F, G; E, H) = F^* \cdot (\nabla \times H) - G^* \cdot (\nabla \times E)$, $\mathcal{B}(F, G; E, H) = i\epsilon_0\epsilon F^* \cdot E + i\mu_0 G^* \cdot H$.

• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_k a_k \begin{pmatrix} E_k \\ H_k \end{pmatrix}$$
,

• require

$$\iint \mathcal{A}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \text{ for all } l,$$

• compute
$$A_{lk} = \iint \mathcal{A}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$$
,
 $B_{lk} = \iint \mathcal{B}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k} A_{lk} a_k - \omega^{s} B_{lk} a_k = 0 \text{ for all } l, \text{ or } A\boldsymbol{a} = \omega^{s} B\boldsymbol{a}.$$

• Insert
$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} = \sum_{k} a_{k} \begin{pmatrix} \boldsymbol{E}_{k} \\ \boldsymbol{H}_{k} \end{pmatrix}$$
,

• require

$$\iint \mathcal{A}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \text{ for all } l,$$

• compute
$$A_{lk} = \iint \mathcal{A}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$$
,
 $B_{lk} = \iint \mathcal{B}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k} A_{lk} a_{k} - \omega^{s} B_{lk} a_{k} = 0 \text{ for all } l, \text{ or } A\boldsymbol{a} = \omega^{s} B\boldsymbol{a}.$$
$$\boldsymbol{\varsigma} \quad \left\{ \omega, \lambda_{r}, Q, \Delta\lambda; \boldsymbol{E}, \boldsymbol{H} \right\}^{s}.$$

... plenty.
WGMs, small uniform perturbations

WGMs, small uniform perturbations

24

Single ring filter, unidirectional supermodes

Single ring filter, unidirectional supermodes

Single ring filter, unidirectional supermodes

Single ring filter, bidirectional supermodes

Single ring filter, bidirectional supermodes

Single ring filter, supermodes vs. gap

TE, $R = 7.5 \,\mu\text{m}, \ d = 0.75 \,\mu\text{m},$ $w = 0.6 \,\mu\text{m},$ $n_{\rm g} = 1.5, \ n_{\rm b} = 1.0.$

Single ring filter, supermodes vs. gap

TE, $R = 7.5 \,\mu\text{m}, \, d = 0.75 \,\mu\text{m},$ $w = 0.6 \,\mu\text{m},$ $n_{\rm g} = 1.5, \, n_{\rm b} = 1.0.$

Single ring filter, supermodes vs. gap

Single ring filter, transmission, bidirectional template

Single ring filter, transmission, bidirectional template

WGMs only

WGMs only

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (1)

Micro-disk, resonant fields (1)

Micro-disk, resonant fields (1)

CROW, spectral response I

CROW, spectral response I

CROW, spectral response I

CROW, spectral response II

CROW, spectral response II

Template: $3 \times WGM(0, \pm 39) \longrightarrow 6$ supermodes.

Three-ring molecule, excitation

Three-ring molecule, excitation

Three-ring molecule, excitation

WGM-HCMT:

- an ab-initio, quantitative, quite general CMT variant, alternatively
- a numerical (FEM) approach with highly specialized base functions,
- configurations with localized resonances: demonstrated,
- extension to 3-D (todo): numerical basis fields, still moderate effort,
- reasonably versatile:

Time consuming: evaluation of modal "overlaps" K_{lk} in K:

$$K_{lk} = \iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}_k, \boldsymbol{H}_k) \,\mathrm{d}x \,\mathrm{d}z.$$

All properties of the modal basis fields change but slowly with λ ; rapid spectral variations are due to the *solution* of the linear system involving K.

$\checkmark \qquad \text{Interpolate } \mathsf{K}(\lambda):$

• Interval of interest
$$\lambda \in [\lambda_a, \lambda_b]$$
, $\lambda_0 := \frac{3}{4}\lambda_a + \frac{1}{4}\lambda_b$, $\lambda_1 := \frac{1}{4}\lambda_a + \frac{3}{4}\lambda_b$,

• compute only $K_0 = K(\lambda_0)$ and $K_1 = K(\lambda_1)$ directly,

• interpolate
$$K_i(\lambda) = K_0 + \frac{\lambda - \lambda_0}{\lambda_1 - \lambda_0} (K_1 - K_0)$$
,

• solve for $\boldsymbol{a}(\lambda)$ with $\mathsf{K}_{\mathrm{i}}(\lambda)$.

Computational window

Computational window

$$R=7.5\,\mu\mathrm{m}$$

Computational window

