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The effects of transitions between regions with different layering on thin-film guided,
in-planc unguided light form the basis for a series of classical integrated optical z
components [1, 2]. Concepts have been discussed for lenses [3, 4], mirrors [S], prisms ne
[6], but also for complex lens-systems [7], or, more recently, for entire spectrometers R w
[8]. The relevant interfaces are either straight, or merely slightly curved, permitting
a description of the in-plane wave propagation in terms of geometrical optics. Hence [
we take a closer look at what happens to vertically guided, laterally plane waves at 0 z 0 z z
straight interfaces, facets, or transition regions with other cross section shapes. n, \\
s
(a) R Y (b) (b)
, d=0.5um, \=155um. A= 155 um.
0, 0, 0 6 6.,
1
08 H Vo
PretPry, o
06 V! o
=—in:TE! [
04 9 '
T M;’. oo
=-=in: ' ' '
02 H ' ' '
While standard scalar TE / TM Helmholtz equations apply for perpendicular incidence. B e =0
for non-normal incidence one is led to a vectorial problem [9] that is formally identi- o8
cal to that for the modes of 3-D channel waveguides. Here, however, it needs to be 0.1 : :
solved as a parametrized, inhomogeneous system on a 2-D computational window with ’ ' '
transparent-influx boundary conditions. As a step beyond the scalar approximation [9]. V=== 1Rreonmio
and older bidirectional approaches [10, 11], we here report on a dedicated vectorial | |
solver for — in principle — arbitrary rectangular cross section geometries, based on 0.05 | — RivosTeo
simultaneous expansions into slab modes along o orthogonal coordinate axes [12] I I
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quasi-Brewster angle tan g = n./ (energy density) dzdz, Brgo0, Broo - strip, vectorial modes (WMM [13]).

 Homogeneous Maxwell equations, frequency domain, linear dielectric media,
curl B = —iwpH, curl H = iwee,E
for electric and magnetic fields E, H, oscillating ~ exp(icot) in time with
frequency w = ke = 2mc/, for vacuum wavenumber k, wavelength A,
speed of light ¢, permittivity ), and permeability 1.

o Relative permittivity € = n° with d,e = 0 everywhere

1Ky J,: a given parameter.

o Cross-shaped computational domain
(2. 2) € [xo,2x,] % [20, 2x.]
U {external slab regions}
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o Rectangular, piecewise constant,
permittivity ¢(, z).

e Division into slices z

2 with z-constant .
Ty

: « Division into layers x € 1
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with z-constant e. 2z [um] 2z [um]
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o] 1 2 N. +1 o Establish separate expansion bases

2 R oy for each slice / layer.

* “Vectorial” slab modes, solutions where dy¢ =0 & d.c =0, € = e(x)

O+ (Ke—p)w=0, B =kl+k. (TE)
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o Boundary conditions ¢ =0 or 9,1/ =0 (...) at @ =g, =y,
~~ discretized mode spectra, complete sets.

e Exchange roles of = and z: modes travelli

along =, profiles depend on =.
o Incoming field: slab mode with 3, = kN, atangle 6 ~= k,(6) = kNjsinf
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Linear set of equations for local mode amplitudes, with incoming field as RHS.

Algebraic procedure [12]: %::
o horizontal VBEP, inner slices, IS % A0

o vertical vBEP, inner laye; 93 Phase change ¢ upon reflection at the interface

e cross-overlaps at outer interfaces connect inner solutions and external regions — lateral displacement A of incident
(VBEP: vectorial bidirectional eigenmode propagation). and reflected wave bundles,

Goos-Hiinchen-shift [14,9]: A
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