A vectorial solver for the reflection of semi-confined waves at slab waveguide discontinuities for non-perpendicular incidence

Manfred Hammer* MESA ${ }^{+}$, University of Twente, The Netherlands \& TET, University of Paderborn, Germany

Oblique incidence at a slab discontinuity

The effects of transitions between regions with different layering on thin-film guided, in-plane unguided light form the basis for a series of classical integrated optical 6] [6], but also for complex lens-systems [7], or, more recently, for entire spectrometers
[8]. The relevant interfaces are either straight, or merely slighly a description of the in-plane wave propagation in terms of geometrical optics. Hence we take a closer look at what happens to vertically guided, laterally plane waves at straight interfaces, facets, or transition regions with other cross section shapes.

While standard scalar TE /TM Helmholtz equations apply for perpendicular incidence,
for non-normal incidence one is led to a vectorial problem [9] that is formally identical to that for the modes of 3-D channel waveguides. Here, however, it needs to be solved as a parametrized, inhomogeneous system on a 2-D computational window with transparent-influx boundary conditions. As a step beyond the scalar approximation [9], and older bidirectional approaches $[10,11]$, we here report on a dedicated vectorial
solver for - in principle - arbitrary rectangular cross section geometries, based on solver for - in principle - arbirary rectangular cross section geomerries, based on
simultaneous expansions into slab modes along two orthogonal coordinate axes $[12]$.

2 Vectorial quadridirectional eigenmode propagation

- Homogeneous Maxwell equations, frequency domain, linear dielectric media, $\operatorname{curl} \check{\boldsymbol{E}}=-\mathrm{i} \omega \mu_{0} \tilde{\boldsymbol{H}}, \quad \operatorname{curl} \tilde{\boldsymbol{H}}=\mathrm{i} \omega \epsilon \epsilon_{0} \check{\boldsymbol{E}}$
for electric and magnetic fields $\boldsymbol{E}, \boldsymbol{H}$, oscillating $\sim \exp (\mathrm{i} \omega t)$ in time wit frequency $\omega=k \mathrm{c}=2 \pi \mathrm{c} / \lambda$, for vacuum wavenumber k, wavelength λ, speed of light c , permittivity ϵ_{0}, and permeability μ_{0}.
Relative permittivity $\epsilon=n^{2}$ with $\partial_{y} \epsilon=0$ everywhere
$C\binom{\tilde{\boldsymbol{E}}}{\tilde{\boldsymbol{H}}}(x, y, z)=\binom{\boldsymbol{E}}{\boldsymbol{H}}$

Tor each slice / layer.

$$
\partial_{x}^{2} \psi+\left(k^{2} \epsilon-\beta^{2}\right) \psi=0, \quad \beta^{2}=k_{y}^{2}+k_{2}^{2}, \quad \text { (TE) }
$$

$$
\boldsymbol{E}(x, z)=\left(\begin{array}{c}
0 \\
z_{z} \psi(x) / /^{2} \\
-k_{y} \psi(x) / \beta^{2}
\end{array}\right) \mathrm{e}^{-\mathrm{i} k_{z} z}, \quad \boldsymbol{H}(x, z)=\frac{1}{\omega \mu_{0}}\left(\begin{array}{c}
-\psi(x) \\
\mathrm{i} k_{z} \partial_{x} \psi(x) / \beta^{2} \\
\mathrm{i} k_{z} \partial \psi \psi(x) / \beta^{2}
\end{array}\right) \mathrm{e}^{-\mathrm{i} k_{z} z} .
$$

$$
\epsilon \partial_{x} \frac{1}{\epsilon} \partial_{x} \psi+\left(k^{2} \epsilon-\beta^{2}\right) \psi=0, \quad \beta^{2}=k_{y}^{2}+k_{z}^{2}
$$

$$
\begin{aligned}
& \text { - Boundary conditions } \psi=0 \text { or } \partial_{x} \psi=0(\ldots)(\ldots \text {) } \\
& \sim \text { discretized mode spectra, complete sets. }
\end{aligned}
$$

$$
\text { - Exchange roles of } x \text { and } z: \text { modes travelling along } \pm x \text {, profiles depend on } z
$$

$$
\text { - Incoming field: slab mode with } \beta_{\text {in }}=k N_{\text {in }} \text { at angle } \theta \leadsto k_{y}(\theta)=k N_{\text {in }} \sin \theta
$$

$$
\text { - Mode types (z-propagating/-evanescent) change with } \theta: \quad k_{z}(\theta)= \pm \sqrt{\beta^{2}-k_{y}^{2}(\theta)} \text {. }
$$

- Expand the electromagnetic field into local sets of TE \& TM eigenmodes.
- Bidirectional mode overlaps along all interfaces,
\qquad

-

cross-overlaps at outer interfaces connect inner solutions and external regions
(vBEP: vectorial bidirectional eigenmode propation) (vBEP: vectorial bidirectional eigenmode propagation)

3 Critical angles
Uniform $k_{y}=k N_{\text {in }} \sin \theta$
related to incoming mode $\left(N_{\text {in }}\right) \&$ incidence angle
Outgoing modes $\left(N_{\text {out }}\right)$
with $k_{y}=k N_{\text {out }} \sin \theta_{\text {out }}$
with $k_{y}=k N_{\text {out }} \sin \theta_{\text {out }}$
different for every outgoing mode
generalized Snell's law: $\quad N_{\text {out }} \sin \theta_{\text {out }}=N_{\text {in }} \sin \theta$,
applicable to all (reflected, transmitted, up- or downwards scattered) outgoing propagating modes.
C Outgoing modes with $N_{\text {out }} \leq N_{\text {crit }}$ become evanescent for incidence angles $\theta \geq \theta_{\text {crit }}$ with $\sin \theta_{\text {crit }}=N_{\text {crit }} / N_{\text {int }}$, i.e. these modes do not carry power away Relevant values for the following examples:

- $\sin \theta_{\mathrm{c}}=n_{\mathrm{c}} / N_{\text {in }}$, no forward/backward power loss into the cover for $\theta \geq \theta$

4 Rectangular slab waveguide facet

5 Beam displacement
 \rightarrow lateral displacement Δ of incident and reflected wave bundles Goos-Hanchen-shift $[14,9]: \Delta=\frac{1}{k N_{\mathrm{in}} \cos \theta} \frac{\mathrm{d} \phi}{\mathrm{d} \theta}$.

6 vQUEP versus VBEP

7 Strip waveguide, lateral excitation

$=\int_{\text {stuip }}$ (energy density) $\mathrm{d} x \mathrm{~d} z, \quad \theta_{\text {тёoo, }}, \theta_{\text {TMOO }}:$ strip, vectorial modes (WMM [13]).

Acknowledgements
The author likes to thank the members of the TET group, and in particular J. Förstner for the hospitality experienced during the stay at the University of Paderborn.

9 References

\qquad Modern Physics, 49(2):361-419, 1977
\qquad
G. C. Righini, V. Russo, S. Sottini, and G. Toraldo di Francia. Geodesic lenses for guided optical waves. Applied Optics 1227$)$:1477-1481, 1973.
Zemike. Luneburg lens for optical waveguide use. Optics Communications, 12(4):379-381,
 . Misawa, M. Aoki, S. Fuita, A. Takaura, T. Kihara, K. Yokomori, and H. Funato
waveguide mirror with a tapered edge. Applied Optics, $33(16) 3365-3770$, 1994 . C.-. Tseng, W.-T. T Tang, and S. Wang. A thin-film prism as a beam separator for multimode
guided waves in integrated optics. Optics Communications, 13(3):342-346, 1975 .):342-346,1975. G. C. Righini and G. Molesini. Design of
Applied Optics, 27(20):4193-4199, 1988 .
F. Civitici, M. Hammer, and H. J. W. M. Hoekstra. Design of a prism spectrometer based on
ddiabatically connected waveguiding slabs. Jounnal of Liehtwave Tectunopy (subuited adiabaically connected waveguiding slabs, Journal of Lightwave Technology (submitted for
publication, 2013). F. Civiti, M. Hammer, and H. J. W. M. Hoekstra. Semi-guided plane wave reffection by thin-
film transitions for angled incidence. Optical and Ouantum Electronics, 46(3):47--490, 2014. T. P. Shen. R. F. Wallis, A. A. Maradudin, and G. . . Stegeman. Fresnel. -ike behavior of guided
waves. Journal of the Optical Society of America A, 4(11):2120-2132, 1987. waves. Journal of the Optical Society of America A, 4(11):2120-2132, 1987. W. Biehlig and U. Langbein. Three-dimensional step discontinuities in planar waveguides:
Angular-spectrum representation of guided wavefields and generalized matrix-operator formal Angular-spectrum representation of guided wavecields and ge
ism. Optical and Quantum Electronics, 22(4):319-333, 1990 . M. Hammer. Quadridirectional eigenmode expansion scheme for 2-D modeling
agation in integrated optics. Optics Communications, $235(4-6): 285-303,2004$. M. Lohmeyer. Vectorial wa cal and Quantum Electronics, 30:385-396. 1998

