Guided wave interaction in photonic integrated circuits

UNIVERSITY OF TWENTE. Manfred Hammer*

Integrated Optical MicroSystems MESA⁺ Institute for Nanotechnology University of Twente, The Netherlands

> Group Seminar Theoretical Photonics / Electrical Engineering, University of Paderborn, Germany October 31, 2013

* (temporary) FG TET, University of Paderborn Phone: +49(0)5251/60-3560

Fax: +49(0)5251/60-3524

Warburger Str. 100, 33098 Paderborn, Germany E-mail: m.hammer@utwente.nl

Guided wave interaction in photonic integrated circuits

Guided wave interaction in photonic integrated circuits

Guided wave interaction in photonic integrated circuits

Outline

- Simulations in guided wave optics
 - Macroscopic Maxwell equations
 - Straight dielectric waveguides
 - Waveguide bends
 - Whispering gallery resonances
- Hybrid analytical / numerical coupled-mode modeling
 - Field ansatz
 - Amplitude discetization, 1-D FEM
 - Solution
- Examples
 - Coupled straight waveguides
 - Channel crossing
 - Corrugated waveguides
 - Ring resonators
 - Excitation of whispering gallery resonances

... for the optical electric and magnetic fields E, H

- frequency domain, $\sim \exp(\mathrm{i}\omega t)$,
- no free currents and charges, no sources, homogeneous equations,
- typical media:
 - nonmagnetic at optical frequencies,
 - linear, isotropic, lossless (transparent) dielectrica

 $\begin{array}{ll} & \label{eq:constraint} & \mbox{relative permittivity} & \hat{\epsilon} = \epsilon \mathbf{1}, \quad \epsilon = n^2, \\ & \text{refractive index} & n(x,y,z;\omega) \in \mathbb{R}. \end{array}$

 $\operatorname{curl} \boldsymbol{E} = -\mathrm{i}\omega\mu_0\boldsymbol{H}, \quad \operatorname{curl} \boldsymbol{H} = \mathrm{i}\omega\epsilon_0\hat{\epsilon}\boldsymbol{E},$

given excitation frequency $\omega = kc = 2\pi c/\lambda$, scans over $\omega \sim spectral data$.

(SI)

Abstract scattering problem

Abstract scattering problem

Typical parameters:

- vacuum wavelength $\lambda \in [400, 700] \text{ nm (visible light)},$ $\lambda \approx 1.3 \,\mu\text{m}, 1.55 \,\mu\text{m}$ (optical fibers, attenuation min.),
- refractive indices $n \in [1, 3.4]$.
- Interesting domain: $(10 \lambda 100 \lambda)^d$, d = 2, 3 (2-D, 3-D).
- Details: $\approx \lambda/10$, $\approx \lambda/100$.
- Influx and outflux: guided & nonguided waves ---- boundary conditions.

Abstract scattering problem

Typical parameters:

- vacuum wavelength $\lambda \in [400, 700] \text{ nm (visible light)},$ $\lambda \approx 1.3 \,\mu\text{m}, 1.55 \,\mu\text{m}$ (optical fibers, attenuation min.),
- refractive indices $n \in [1, 3.4]$.
- Interesting domain: $(10 \lambda 100 \lambda)^d$, d = 2, 3 (2-D, 3-D).
- Details: $\approx \lambda/10$, $\approx \lambda/100$.
- Influx and outflux: guided & nonguided waves ---- boundary conditions.
- Emphasis: device concepts, design.

 $\partial_y \epsilon = 0, \ \epsilon(x, z) = n^2(x, z),$ $\partial_y \mathbf{E} = 0, \ \partial_y \mathbf{H} = 0;$ equations split into two subsets:

TE, E_y , H_x , and H_z , principal component E_y :

i $\omega \mu_0 H_x = \partial_z E_y$, i $\omega \mu_0 H_z = -\partial_x E_y$, i $\omega \epsilon_0 \epsilon E_y = \partial_z H_x - \partial_x H_z$, or $\partial_x^2 E_y, + \partial_z^2 E_y + k^2 \epsilon E_y = 0.$

TM, H_y , E_x , and E_z , principal component H_y : $i\omega\epsilon_0\epsilon E_x = -\partial_z H_y$, $i\omega\epsilon_0\epsilon E_z = \partial_x H_y$, $-i\omega\mu_0 H_y = \partial_z E_x - \partial_x E_z$, or

$$\partial_x \frac{1}{\epsilon} \partial_x H_y, + \partial_z \frac{1}{\epsilon} \partial_z H_y + k^2 H_y = 0.$$

Straight dielectric waveguides

$$\partial_z n = 0,$$
 $\omega = kc = 2\pi c/\lambda$ given,
 $E_y(x,z) = \tilde{E}_y(x) e^{-i\beta z},$

$$\overline{\left(\partial_x^2 + k^2 n^2(x)\right)\tilde{E}_y} = \beta^2 \tilde{E}_y \qquad \checkmark \qquad \left\{\beta, \tilde{E}_y\right\}.$$

Straight dielectric waveguides

Straight dielectric waveguides

$$\begin{aligned} \partial_{\theta} n &= 0, & \omega = kc = 2\pi c/\lambda \text{ given}, \\ E_y(r,\theta) &= \tilde{E}_y(r) e^{-i\gamma R\theta}, & \gamma = \beta - i\alpha \in \mathbb{C}, \\ \hline \frac{\partial^2 \tilde{E}_y}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{E}_y}{\partial r} + \left(k^2 n^2 - \frac{\gamma^2 R^2}{r^2}\right) \tilde{E}_y = 0 \\ & \longleftarrow \quad \left\{\gamma, \tilde{E}_y\right\}. \end{aligned}$$

$$\begin{split} \partial_{\theta}n &= 0, \qquad \qquad \omega = kc = 2\pi c/\lambda \text{ given}, \\ E_y(r,\theta) &= \tilde{E}_y(r) e^{-i\gamma R\theta}, \qquad \gamma = \beta - i\alpha \in \mathbb{C}, \\ \hline \frac{\partial^2 \tilde{E}_y}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{E}_y}{\partial r} + \left(k^2 n^2 - \frac{\gamma^2 R^2}{r^2}\right) \tilde{E}_y = 0 \\ &\longleftarrow \quad \left\{\gamma, \tilde{E}_y\right\}. \end{split}$$

$$\begin{split} &\partial_{\theta}n = 0, \qquad \qquad \omega = kc = 2\pi c/\lambda \text{ given}, \\ &E_y(r,\theta) = \tilde{E}_y(r) e^{-i\gamma R\theta}, \qquad \gamma = \beta - i\alpha \in \mathbb{C}, \\ &\frac{\partial^2 \tilde{E}_y}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{E}_y}{\partial r} + \left(k^2 n^2 - \frac{\gamma^2 R^2}{r^2}\right) \tilde{E}_y = 0 \\ & \longleftarrow \quad \left\{\gamma, \tilde{E}_y\right\}. \end{split}$$

$$\begin{split} \partial_{\theta}n &= 0, & \omega = kc = 2\pi c/\lambda \text{ given}, \\ E_y(r,\theta) &= \tilde{E}_y(r) e^{-i\gamma R\theta}, & \gamma = \beta - i\alpha \in \mathbb{C}, \\ \hline \frac{\partial^2 \tilde{E}_y}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{E}_y}{\partial r} + \left(k^2 n^2 - \frac{\gamma^2 R^2}{r^2}\right) \tilde{E}_y = 0 \\ & \longleftarrow \quad \left\{\gamma, \tilde{E}_y\right\}. \end{split}$$

$$\begin{split} \partial_{\theta}n &= 0, & \omega^{c} \in \mathbb{C} \text{ eigenvalue}, \\ E_{y}(r,\theta) &= \tilde{E}_{y}(r) e^{-im\theta}, & m \in \mathbb{Z}, \\ \hline \frac{\partial^{2}\tilde{E}_{y}}{\partial r^{2}} + \frac{1}{r} \frac{\partial\tilde{E}_{y}}{\partial r} + \left(\left(\frac{\omega^{c}}{c}\right)^{2}n^{2} - \frac{m^{2}}{r^{2}}\right)\tilde{E}_{y} = 0 \\ & \longleftarrow \quad \left\{\omega^{c}, \tilde{E}_{y}\right\}, \ \left\{\text{WGM}(l,m)\right\}. \end{split}$$

$$\begin{split} \partial_{\theta}n &= 0, \qquad \qquad \omega^{c} \in \mathbb{C} \text{ eigenvalue}, \\ E_{y}(r,\theta) &= \tilde{E}_{y}(r) e^{-im\theta}, \qquad \qquad m \in \mathbb{Z}, \\ \hline \frac{\partial^{2}\tilde{E}_{y}}{\partial r^{2}} + \frac{1}{r} \frac{\partial\tilde{E}_{y}}{\partial r} + \left(\left(\frac{\omega^{c}}{c}\right)^{2}n^{2} - \frac{m^{2}}{r^{2}}\right)\tilde{E}_{y} = 0 \\ & \longleftarrow \quad \left\{\omega^{c}, \tilde{E}_{y}\right\}, \ \left\{\text{WGM}(l,m)\right\}. \end{split}$$

 $Q = {\rm Re}\,\omega^{\rm c}/(2{\rm Im}\,\omega^{\rm c}), \qquad \lambda_{\rm r} = 2\pi{\rm c}/{\rm Re}\,\omega^{\rm c}, \qquad {\rm outgoing\ radiation,\ FWHM:}\ \ \Delta\lambda = \lambda_{\rm r}/Q.$

$$\begin{split} & \frac{\partial_{\theta}n = 0,}{E_{y}(r,\theta) = \tilde{E}_{y}(r) e^{-im\theta},} \qquad \qquad \omega^{c} \in \mathbb{C} \text{ eigenvalue}, \\ & \frac{\partial^{2}\tilde{E}_{y}}{\partial r^{2}} + \frac{1}{r} \frac{\partial\tilde{E}_{y}}{\partial r} + \left(\left(\frac{\omega^{c}}{c}\right)^{2}n^{2} - \frac{m^{2}}{r^{2}}\right)\tilde{E}_{y} = 0 \\ & \longleftarrow \qquad \left\{\omega^{c}, \tilde{E}_{y}\right\}, \ \left\{\mathrm{WGM}(l,m)\right\}. \end{split}$$

TE, $R = 7.5 \,\mu\text{m}$, $d = 0.75 \,\mu\text{m}$, $n_{\rm g} = 1.5, n_{\rm b} = 1.0$.

WGM(0, 39): $\lambda_{\rm r} = 1.5637 \,\mu{\rm m},$ $Q = 1.1 \cdot 10^5,$ $\Delta \lambda = 1.4 \cdot 10^{-5} \,\mu{\rm m}.$

$$\begin{aligned} \partial_{\theta} n &= 0, & \omega^{c} \in \mathbb{C} \text{ eigenvalue}, \\ E_{y}(r,\theta) &= \tilde{E}_{y}(r) e^{-im\theta}, & m \in \mathbb{Z}, \\ \hline \frac{\partial^{2} \tilde{E}_{y}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \tilde{E}_{y}}{\partial r} + \left(\left(\frac{\omega^{c}}{c} \right)^{2} n^{2} - \frac{m^{2}}{r^{2}} \right) \tilde{E}_{y} = 0 \\ & \longleftarrow \quad \left\{ \omega^{c}, \tilde{E}_{y} \right\}, \ \left\{ \text{WGM}(l,m) \right\}. \end{aligned}$$

TE, $R = 7.5 \,\mu\text{m}$, $n_{\rm g} = 1.5, n_{\rm b} = 1.0$.

WGM(0, 39): $\lambda_{\rm r} = 1.6025 \,\mu{\rm m},$ $Q = 5.7 \cdot 10^5,$ $\Delta \lambda = 2.8 \cdot 10^{-6} \,\mu{\rm m}.$

$$\begin{split} \partial_{\theta} n &= 0, \qquad \qquad \omega^{c} \in \mathbb{C} \text{ eigenvalue}, \\ E_{y}(r,\theta) &= \tilde{E}_{y}(r) e^{-im\theta}, \qquad \qquad m \in \mathbb{Z}, \\ \hline \frac{\partial^{2} \tilde{E}_{y}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \tilde{E}_{y}}{\partial r} + \left(\left(\frac{\omega^{c}}{c} \right)^{2} n^{2} - \frac{m^{2}}{r^{2}} \right) \tilde{E}_{y} = 0 \\ & \longleftarrow \quad \left\{ \omega^{c}, \tilde{E}_{y} \right\}, \ \left\{ \text{WGM}(l,m) \right\}. \end{split}$$

TE, $R = 7.5 \,\mu\text{m}$, $n_{\rm g} = 1.5, n_{\rm b} = 1.0$.

WGM(1, 36): $\lambda_{\rm r} = 1.5367 \,\mu{\rm m},$ $Q = 2.2 \cdot 10^4,$ $\Delta \lambda = 7.0 \cdot 10^{-4} \,\mu{\rm m}.$

A waveguide crossing

A waveguide crossing

Coupled Mode Model ?

Field ansatz

Basis elements (crossing):

• guided modes of the horizontal WG

$$\boldsymbol{\psi}^{\mathrm{f},\mathrm{b}}_{m}(x,z) = \left(\begin{matrix} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{matrix} \right)^{\mathrm{f},\mathrm{b}}_{m}(x) \, \mathrm{e}^{\mp \mathrm{i}\beta^{\mathrm{f},\mathrm{b}}_{m}z},$$

• guided modes of the vertical WG

$$\boldsymbol{\psi}_{m}^{\mathrm{u,d}}(x,z) = \left(\begin{split} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{matrix}
ight)_{m}^{\mathrm{u,d}}(z) \, \mathrm{e}^{\mp \mathrm{i} \beta_{m}^{\mathrm{u,d}} x}$$

• (and further terms).

Field ansatz

Basis elements (crossing):

• guided modes of the horizontal WG

$$\boldsymbol{\psi}^{\mathrm{f},\mathrm{b}}_{m}(x,z) = \left(\begin{matrix} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{matrix} \right)^{\mathrm{f},\mathrm{b}}_{m}(x) \, \mathrm{e}^{\mp \mathrm{i}\beta^{\mathrm{f},\mathrm{b}}_{m}z},$$

• guided modes of the vertical WG

$$\boldsymbol{\psi}_{m}^{\mathrm{u,d}}(x,z) = \left(\begin{split} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{matrix}
ight)_{m}^{\mathrm{u,d}}(z) \, \mathrm{e}^{\mp \mathrm{i} \beta_{m}^{\mathrm{u,d}} x}$$

• (and further terms).

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x,z) = \sum_{m} f_{m}(z) \boldsymbol{\psi}_{m}^{\mathrm{f}}(x,z) + \sum_{m} b_{m}(z) \boldsymbol{\psi}_{m}^{\mathrm{b}}(x,z) + \sum_{m} u_{m}(x) \boldsymbol{\psi}_{m}^{\mathrm{u}}(x,z) + \sum_{m} d_{m}(x) \boldsymbol{\psi}_{m}^{\mathrm{d}}(x,z) \qquad f_{m}, b_{m}, u_{m}, d_{m}: \boldsymbol{?}$$

General: a reasonable superposition of known fields with amplitudes that are functions of suitable propagation coordinate(s).

Amplitude functions, discretization

 $k \in \{ \text{waveguides, modes, elements} \}, a_k \in \{ f_{m,j}, b_{m,j}, u_{m,j}, d_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, d_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j}, u_{m,j} \}, a_k \in \{ f_{m,j}, u_{m,j}, u_{m,$

$$\nabla \times \boldsymbol{H} - i\omega\epsilon_0 \epsilon \boldsymbol{E} = 0 \\ -\nabla \times \boldsymbol{E} - i\omega\mu_0 \boldsymbol{H} = 0$$

$$\cdot \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} \end{pmatrix}^*, \quad \iint_{\text{comp. domain}}$$

$$\checkmark \qquad \qquad \int \int \mathcal{K}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \quad \text{for all } \boldsymbol{F}, \ \boldsymbol{G},$$

where

 $\mathcal{K}(\boldsymbol{F},\boldsymbol{G};\boldsymbol{E},\boldsymbol{H}) = \boldsymbol{F}^* \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}) - \boldsymbol{G}^* \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) - \mathrm{i}\omega\epsilon_0\epsilon \boldsymbol{F}^* \cdot \boldsymbol{E} - \mathrm{i}\omega\mu_0\boldsymbol{G}^* \cdot \boldsymbol{H}.$

• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_{k} a_k \begin{pmatrix} E_k \\ H_k \end{pmatrix}$$
,

select {u}: indices of unknown coefficients,
 {g}: given values related to prescribed influx,

• require
$$\iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0$$
 for $l \in \{\mathbf{u}\}$
• compute $K_{lk} = \iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}_k, \boldsymbol{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k \in \{\mathbf{u}, \mathbf{g}\}} K_{lk} a_k = 0, \ l \in \{\mathbf{u}\},$$
$$\left(\mathsf{K}_{u\,u} \,\mathsf{K}_{u\,g}\right) \begin{pmatrix} \boldsymbol{a}_u \\ \boldsymbol{a}_g \end{pmatrix} = 0, \quad \text{or} \quad \mathsf{K}_{u\,u} \boldsymbol{a}_u = -\mathsf{K}_{u\,g} \boldsymbol{a}_g.$$

,

... plenty.

Straight waveguide

Straight waveguide

Basis element: fundamental forward propagating TE mode, input amplitude $f_0 = 1$, FEM discretization in $z \in [-20, 20] \,\mu\text{m}$, $\Delta z = 2 \,\mu\text{m}$, computational domain $z \in [<-20, > 20] \,\mu\text{m}$, $x \in [-3.0, 3.0] \,\mu\text{m}$.

Straight waveguide

Basis element: fundamental forward propagating TE mode, input amplitude $f_0 = 1$, FEM discretization in $z \in [-20, 20] \mu \text{m}$, $\Delta z = 2 \mu \text{m}$, computational domain $z \in [<-20, > 20] \mu \text{m}$, $x \in [-3.0, 3.0] \mu \text{m}$.

Two coupled parallel cores, amplitudes

Two coupled parallel cores, amplitudes

Basis elements: forward propagating fundamental TE modes of the separate cores, input amplitude $f_{\rm b} = 1$,

FEM discretization: $z \in [-20, 20] \, \mu \mathrm{m}, \, \Delta z = 0.5 \, \mu \mathrm{m},$

computational domain:

 $z \in [-20, 20] \, \mu \mathrm{m}, x \in [-3.0, 3.0] \, \mu \mathrm{m}.$
Two coupled parallel cores, amplitudes

17

Two coupled parallel cores, modal power

Two coupled parallel cores, coupling length

 $n_{\rm g} = 3.4, \ n_{\rm b} = 1.45, \ \lambda = 1.55 \,\mu{\rm m},$ $h = 0.2 \,\mu{\rm m}, \ v$ variable, TE polarization.

Basis elements: guided modes of the horizontal and vertical cores (directional variants).

FEM discretization: $z \in [v/2 - 1.5 \,\mu\text{m}, v/2 + 1.5 \,\mu\text{m}], \Delta x = 0.025 \,\mu\text{m},$ $x \in [w/2 - 1.5 \,\mu\text{m}, w/2 + 1.5 \,\mu\text{m}], \Delta z = 0.025 \,\mu\text{m}.$

Computational window: $z \in [-4 \,\mu\text{m}, 4 \,\mu\text{m}], x \in [-4 \,\mu\text{m}, 4 \,\mu\text{m}].$

Waveguide crossing, fields (I)

 $v = 0.45 \,\mu\text{m}$:

reference

Waveguide crossing, fields (I)

 $v = 0.45 \,\mu\text{m}$:

Waveguide crossing, amplitude functions

$v = 0.45 \,\mu{\rm m}$:

Waveguide crossing, power transfer (I)

Waveguide crossing, fields (II)

 $v = 0.45 \,\mu\text{m}$:

24

Waveguide crossing, fields (II)

 $v = 0.45 \,\mu{\rm m}$:

HCMT basis fields: guided modes + 4 Gaussian beams, outgoing along the diagonals.

Waveguide crossing, power transfer (II)

TE, $R = 7.5 \,\mu\text{m}, w = 0.6 \,\mu\text{m}, d = 0.75 \,\mu\text{m}, g = 0.3 \,\mu\text{m}, n_{\text{g}} = 1.5, n_{\text{b}} = 1.0, \lambda \approx 1.55 \,\mu\text{m}.$

Ringresonator, field template

(-)

Basis elements:

• bus WGs:

$$\boldsymbol{\psi}^{\mathrm{f,b}}(x,z) = \left(\begin{split} \tilde{\boldsymbol{E}} \\ \tilde{\boldsymbol{H}} \end{split}^{\mathrm{f,b}}(x) \, \mathrm{e}^{\mp \mathrm{i}\beta z}, \end{split}$$

• cavity:

$$\psi^{c}(r,\theta) = \left(\begin{array}{c} \tilde{E} \\ \tilde{H} \end{array} \right)^{c} (r) e^{\mp i \gamma R \theta},$$
$$\gamma R \to \text{floor}(\text{Re}\gamma R + 1/2),$$

further terms: bidirectional propagation, higher order modes, other channels, etc..

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x,z) = f(z) \boldsymbol{\psi}^{\mathrm{f}}(x,z) + b(z) \boldsymbol{\psi}^{\mathrm{b}}(x,z) + c(\theta) \boldsymbol{\psi}^{\mathrm{c}}(r,\theta),$$
$$r = r(x,z), \ \theta = \theta(x,z). \qquad f, b, c: \ \boldsymbol{?}$$

Ringresonator, HCMT procedure

 $k \in \{\text{channels, modes, elements}\}, a_k \in \{f_j, b_j, c_j\}.$

HCMT solution as before.

Excitation of whispering gallery resonances

 $n_{\rm g} > n_{\rm b}$

Excitation of whispering gallery resonances

$$n_{
m g} > n_{
m b} , \qquad \left\{ \omega_j^{
m c}, \ \left(egin{array}{c} {m E} \ {m ilde H}
ight)_j^{
m c} (x,z)
ight.$$

Excitation of whispering gallery resonances

$$n_{\rm g} > n_{\rm b}$$

$$P_{\rm in}(\omega)$$
 given: $T(\omega), D(\omega) = ?$

Ringresonator, field template

• Frequency ω given, $\sim \exp(i\omega t)$.

Bus channels:

$$\psi^{\mathrm{f,b}}(x,z) = \left(\frac{\tilde{E}}{\tilde{H}} \right)^{\mathrm{f,b}}(x) \mathrm{e}^{\pm \mathrm{i}\beta z}.$$

• Cavity, WGMs:

$$\psi_j^{\rm c}(r,\theta) = \left(\begin{array}{c} \tilde{E} \\ \tilde{H} \end{array} \right)_j^{\rm c}(r) \, {\rm e}^{-{\rm i} m_j \theta},$$
 $m_j \in \mathbb{Z}.$

• Further terms: bidirectional propagation, higher order modes, other channels, etc. .

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x,z) = f(z) \, \boldsymbol{\psi}^{\mathrm{f}}(x,z) + b(z) \, \boldsymbol{\psi}^{\mathrm{b}}(x,z) + \sum_{j} c_{j} \, \boldsymbol{\psi}^{\mathrm{c}}_{j}(r,\theta),$$
$$r = r(x,z), \ \theta = \theta(x,z). \qquad f, b, c_{j}: \ \boldsymbol{?}$$

Ringresonator, HCMT procedure

Channels: 1-D FEM discretization,

$$f(z) \to \{f_j\},\ b(z) \to \{b_j\}.$$

General HCMT solution as before.

Single ring filter, spectral response

Single ring filter, spectral response

Single ring filter, WGM amplitudes

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} (x, z) = f(z) \boldsymbol{\psi}^{\mathrm{f}}(x, z)$$

$$+ b(z) \boldsymbol{\psi}^{\mathrm{b}}(x, z)$$

$$+ \sum_{j} \boldsymbol{c}_{j} \boldsymbol{\psi}^{'\mathrm{c}}_{j}(x, z)$$

Single ring filter, WGM amplitudes

Single ring filter, transmission resonance

Single ring filter, transmission resonance

Single ring filter, transmission resonance

Single ring filter, resonance positions I

Single ring filter, resonance positions I

Supermodes

Look for $\omega^{s} \in \mathbb{C}$ where the system $\begin{cases}
\boldsymbol{\nabla} \times \boldsymbol{H} - i\omega^{s}\epsilon_{0}\epsilon\boldsymbol{E} = 0 \\
-\boldsymbol{\nabla} \times \boldsymbol{E} - i\omega^{s}\mu_{0}\boldsymbol{H} = 0
\end{cases}$ boundary conditions: "outgoing waves" \end{cases}

permits nontrivial solutions E, H.

Supermodes

Look for $\omega^{s} \in \mathbb{C}$ where the system $\begin{cases} \nabla \times \boldsymbol{H} - i\omega^{s}\epsilon_{0}\epsilon\boldsymbol{E} = 0 \\ -\nabla \times \boldsymbol{E} - i\omega^{s}\mu_{0}\boldsymbol{H} = 0 \end{cases}$ boundary conditions: "outgoing waves" \end{cases}

permits nontrivial solutions E, H.

$$\begin{aligned} \boldsymbol{\nabla} \times \boldsymbol{H} &- \mathrm{i} \omega^{\mathrm{s}} \epsilon_{0} \epsilon \boldsymbol{E} = 0 \\ -\boldsymbol{\nabla} \times \boldsymbol{E} &- \mathrm{i} \omega^{\mathrm{s}} \mu_{0} \boldsymbol{H} = 0 \end{aligned} \qquad \cdot \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} \end{pmatrix}^{*}, \qquad \iint_{\mathrm{comp. domain}} \end{aligned}$$

$$\iint \mathcal{A}(\boldsymbol{F}, \boldsymbol{G}; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{F}, \boldsymbol{G}; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \quad \text{for all} \ \boldsymbol{F}, \boldsymbol{G},$$

where $\mathcal{A}(F, G; E, H) = F^* \cdot (\nabla \times H) - G^* \cdot (\nabla \times E)$, $\mathcal{B}(F, G; E, H) = i\epsilon_0\epsilon F^* \cdot E + i\mu_0 G^* \cdot H$.
• Insert
$$\begin{pmatrix} E \\ H \end{pmatrix} = \sum_{k} a_k \begin{pmatrix} E_k \\ H_k \end{pmatrix}$$
,

• require

$$\iint \mathcal{A}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \text{ for all } l,$$

• compute
$$A_{lk} = \iint \mathcal{A}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$$
,
 $B_{lk} = \iint \mathcal{B}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k} A_{lk} a_k - \omega^{s} B_{lk} a_k = 0 \text{ for all } l, \text{ or } A\boldsymbol{a} = \omega^{s} B\boldsymbol{a}.$$

• Insert
$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} = \sum_{k} a_{k} \begin{pmatrix} \boldsymbol{E}_{k} \\ \boldsymbol{H}_{k} \end{pmatrix}$$
,

• require

$$\iint \mathcal{A}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z - \omega^{\mathrm{s}} \iint \mathcal{B}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}, \boldsymbol{H}) \, \mathrm{d}x \, \mathrm{d}z = 0 \text{ for all } l,$$

• compute
$$A_{lk} = \iint \mathcal{A}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$$
,
 $B_{lk} = \iint \mathcal{B}(\mathbf{E}_l, \mathbf{H}_l; \mathbf{E}_k, \mathbf{H}_k) \, \mathrm{d}x \, \mathrm{d}z$.

$$\sum_{k} A_{lk} a_{k} - \omega^{s} B_{lk} a_{k} = 0 \text{ for all } l, \text{ or } A\boldsymbol{a} = \omega^{s} B\boldsymbol{a}.$$
$$\left\{ \omega, \lambda_{r}, Q, \Delta\lambda; \boldsymbol{E}, \boldsymbol{H} \right\}^{s}.$$

... plenty.

WGMs, small uniform perturbations

WGMs, small uniform perturbations

1.60

1.58

Single ring filter, unidirectional supermodes

Single ring filter, unidirectional supermodes

Single ring filter, unidirectional supermodes

Single ring filter, bidirectional supermodes

Single ring filter, bidirectional supermodes

Single ring filter, supermodes vs. gap

g [µm]

Single ring filter, supermodes vs. gap

TE, $R = 7.5 \,\mu\text{m}, \, d = 0.75 \,\mu\text{m},$ $w = 0.6 \,\mu\text{m},$ $n_{\rm g} = 1.5, \, n_{\rm b} = 1.0.$

Single ring filter, supermodes vs. gap

CROW, spectral response I

CROW, spectral response I

CROW, spectral response I

48

Template: $3 \times WGM(0, \pm 39) \longrightarrow 6$ supermodes.

Three-ring molecule, excitation

Three-ring molecule, excitation

Three-ring molecule, excitation

Hybrid analytical / numerical Coupled Mode Theory, HCMT:

- an ab-initio, quantitative, quite general CMT variant, alternatively
- a numerical (FEM) approach with highly specialized base functions,
- configurations with localized resonances: demonstrated,
- extension to 3-D (todo): numerical basis fields, still moderate effort,
- very close to common ways of reasoning in integrated optics,
- reasonably versatile:

— supplementary material —
Time consuming: evaluation of modal "overlaps" K_{lk} in K:

$$K_{lk} = \iint \mathcal{K}(\boldsymbol{E}_l, \boldsymbol{H}_l; \boldsymbol{E}_k, \boldsymbol{H}_k) \,\mathrm{d}x \,\mathrm{d}z.$$

All properties of the modal basis fields change but slowly with λ ; rapid spectral variations are due to the *solution* of the linear system involving K.

$\checkmark \qquad \text{Interpolate } \mathsf{K}(\lambda):$

• Interval of interest
$$\lambda \in [\lambda_a, \lambda_b]$$
, $\lambda_0 := \frac{3}{4}\lambda_a + \frac{1}{4}\lambda_b$, $\lambda_1 := \frac{1}{4}\lambda_a + \frac{3}{4}\lambda_b$,

• compute only $K_0 = K(\lambda_0)$ and $K_1 = K(\lambda_1)$ directly,

• interpolate
$$K_i(\lambda) = K_0 + \frac{\lambda - \lambda_0}{\lambda_1 - \lambda_0} (K_1 - K_0),$$

• solve for $\boldsymbol{a}(\lambda)$ with $\mathsf{K}_{\mathrm{i}}(\lambda)$.

Computational window

Computational window

$$R=7.5\,\mu\mathrm{m}$$

Computational window

 Ω : domain of interest,

$$\left\{ \begin{aligned} \boldsymbol{\nabla} \times \boldsymbol{H} &- \mathrm{i}\omega\epsilon_0\epsilon \boldsymbol{E} = 0 \\ -\boldsymbol{\nabla} \times \boldsymbol{E} &- \mathrm{i}\omega\mu_0 \boldsymbol{H} = 0 \end{aligned} \right\} \text{ in } \Omega$$

for given frequency ω , permittivity $\epsilon = n^2$,

S: an exemplary port plane, waveguides enter Ω through S.

 Ω : domain of interest,

$$\left\{ \begin{array}{l} \boldsymbol{\nabla} \times \boldsymbol{H} - \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E} = 0 \\ -\boldsymbol{\nabla} \times \boldsymbol{E} - \mathrm{i}\omega\mu_{0}\boldsymbol{H} = 0 \end{array} \right\} \text{ in } \Omega$$

for given frequency ω , permittivity $\epsilon = n^2$,

S: an exemplary port plane, waveguides enter Ω through S.

Variational form including suitable boundary conditions ?

Ingredients:

- Complete set of normal modes on S, $(\tilde{E}_m, \pm \tilde{H}_m)(x, y) \longrightarrow$ propagation along $\pm z$.
- Product on S: $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \iint_{S} (\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{e}_{z} \, \mathrm{d}x \, \mathrm{d}y.$

• Modal orthogonality properties $\langle \tilde{E}_l, \tilde{H}_k \rangle = \delta_{lk} N_k, \ N_k = \langle \tilde{E}_k, \tilde{H}_k \rangle.$

"Any" electric field \boldsymbol{E} and magnetic field \boldsymbol{H} on S can be expanded as

$$oldsymbol{E} = \sum_{m} e_m \tilde{oldsymbol{E}}_m, \ e_m = rac{1}{N_m} \langle oldsymbol{E}, ildsymbol{ ilde{H}}_m
angle, \ oldsymbol{H} = \sum_{m} h_m ilde{oldsymbol{H}}_m, \ h_m = rac{1}{N_m} \langle ilde{oldsymbol{E}}_m, oldsymbol{H}
angle,$$

Ingredients:

- Complete set of normal modes on S, $(\tilde{E}_m, \pm \tilde{H}_m)(x, y) \dashrightarrow$ propagation along $\pm z$.
- Product on S: $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \iint_{S} (\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{e}_{z} \, \mathrm{d}x \, \mathrm{d}y.$

• Modal orthogonality properties $\langle \tilde{E}_l, \tilde{H}_k \rangle = \delta_{lk} N_k, \ N_k = \langle \tilde{E}_k, \tilde{H}_k \rangle.$

"Any" electric field \boldsymbol{E} and magnetic field \boldsymbol{H} on S can be expanded as

$$\boldsymbol{E} = \sum_{m} e_{m} \tilde{\boldsymbol{E}}_{m}, \ e_{m} = \frac{1}{N_{m}} \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle, \ \boldsymbol{H} = \sum_{m} h_{m} \tilde{\boldsymbol{H}}_{m}, \ h_{m} = \frac{1}{N_{m}} \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H} \rangle,$$

or
$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} = \sum_{m} f_{m} \begin{pmatrix} \tilde{\boldsymbol{E}}_{m} \\ \tilde{\boldsymbol{H}}_{m} \end{pmatrix} + \sum_{m} b_{m} \begin{pmatrix} \tilde{\boldsymbol{E}}_{m} \\ -\tilde{\boldsymbol{H}}_{m} \end{pmatrix}, \qquad \begin{array}{c} f_{m} = (e_{m} + h_{m})/2, \\ b_{m} = (e_{m} - h_{m})/2 \end{array}$$

(transverse components only).

 \ldots on S for inhomogeneous exterior, incoming waveguides:

$$E = \sum_{m} 2F_{m}\tilde{E}_{m} - \sum_{m} \frac{1}{N_{m}} \langle \tilde{E}_{m}, H \rangle \tilde{E}_{m},$$

$$H = \sum_{m} 2F_{m}\tilde{H}_{m} - \sum_{m} \frac{1}{N_{m}} \langle E, \tilde{H}_{m} \rangle \tilde{H}_{m};$$

 F_m : influx, given coefficients of incoming waves;

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix}_{\text{inc}} = \sum_{m} F_m \begin{pmatrix} \tilde{\boldsymbol{E}}_m \\ \tilde{\boldsymbol{H}}_m \end{pmatrix}.$$

 \ldots on S for inhomogeneous exterior, incoming waveguides:

$$E = \sum_{m} 2F_{m}\tilde{E}_{m} - \sum_{m} \frac{1}{N_{m}} \langle \tilde{E}_{m}, H \rangle \tilde{E}_{m},$$

$$H = \sum_{m} 2F_{m}\tilde{H}_{m} - \sum_{m} \frac{1}{N_{m}} \langle E, \tilde{H}_{m} \rangle \tilde{H}_{m};$$

 F_m : influx, given coefficients of incoming waves;

$$\begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix}_{\text{inc}} = \sum_{m} F_m \begin{pmatrix} \tilde{\boldsymbol{E}}_m \\ \tilde{\boldsymbol{H}}_m \end{pmatrix}.$$

$$\textbf{For a general field of the form} \begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix} = \sum_{m} f_m \begin{pmatrix} \tilde{\boldsymbol{E}}_m \\ \tilde{\boldsymbol{H}}_m \end{pmatrix} + \sum_{m} b_m \begin{pmatrix} \tilde{\boldsymbol{E}}_m \\ -\tilde{\boldsymbol{H}}_m \end{pmatrix}$$

the TIBCs require $f_m = F_m$, while b_m can be arbitrary.

Consider the functional

$$\mathcal{L}(\boldsymbol{E}, \boldsymbol{H}) = \iiint_{\Omega} \left\{ \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}) + \boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) - i\omega\epsilon_0\epsilon\boldsymbol{E}^2 + i\omega\mu_0\boldsymbol{H}^2 \right\} dx \, dy \, dz$$
(cf. e.g. C. Vassallo. *Optical Waveguide Concepts*. Elsevier, Amsterdam, 1991).

First variation:

$$\begin{split} \delta \mathcal{L}(\boldsymbol{E},\boldsymbol{H};\delta\boldsymbol{E},\delta\boldsymbol{H}) &= \iiint \{ 2\delta \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H} - \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E}) \\ &+ 2\delta \boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E} + \mathrm{i}\omega\mu_{0}\boldsymbol{H}) \} \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ &- \iint_{\partial\Omega} \left\{ (\boldsymbol{n} \times \boldsymbol{E}) \cdot \delta \boldsymbol{H} + (\boldsymbol{n} \times \boldsymbol{H}) \cdot \delta \boldsymbol{E} \right\} \, \mathrm{d}A \, . \end{split}$$

Stationarity $\delta \mathcal{L}(\mathbf{E}, \mathbf{H}; \delta \mathbf{E}, \delta \mathbf{H}) = 0$ for arbitrary $\delta \mathbf{E}, \delta \mathbf{H}$ implies

- that $\boldsymbol{E}, \boldsymbol{H}$ satisfy the Maxwell equations in Ω
- and that transverse components of \boldsymbol{E} and \boldsymbol{H} vanish on $\partial \Omega$.

... based on the functional:

$$\begin{split} \mathcal{F}(\boldsymbol{E},\boldsymbol{H}) &= \iiint_{\Omega} \left\{ \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}) + \boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) - \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E}^{2} + \mathrm{i}\omega\mu_{0}\boldsymbol{H}^{2} \right\} \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ &- \sum_{m} 2F_{m} \left\{ \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H} \rangle - \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle \right\} \\ &+ \sum_{m} \frac{1}{2N_{m}} \left\{ \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H} \rangle^{2} - \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle^{2} \right\} \end{split}$$

$$\begin{split} \delta \mathcal{F}(\boldsymbol{E},\boldsymbol{H};\delta\boldsymbol{E},\delta\boldsymbol{H}) &= \iiint_{\Omega} \left\{ 2\delta \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H} - \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E}) \right. \\ &+ 2\delta \boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E} + \mathrm{i}\omega\mu_{0}\boldsymbol{H}) \right\} \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ &+ \left\langle \boldsymbol{E} - \sum_{m} 2F_{m}\tilde{\boldsymbol{E}}_{m} + \sum_{m} \frac{1}{N_{m}} \langle \tilde{\boldsymbol{E}}_{m},\boldsymbol{H} \rangle \tilde{\boldsymbol{E}}_{m}, \delta\boldsymbol{H} \right\rangle \\ &+ \left\langle \delta \boldsymbol{E}, \, \boldsymbol{H} - \sum_{m} 2F_{m}\tilde{\boldsymbol{H}}_{m} + \sum_{m} \frac{1}{N_{m}} \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle \tilde{\boldsymbol{H}}_{m} \right\rangle \\ &- \left\langle \delta \boldsymbol{E}, \, \boldsymbol{H} - \sum_{m} 2F_{m}\tilde{\boldsymbol{H}}_{m} + \sum_{m} \frac{1}{N_{m}} \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle \tilde{\boldsymbol{H}}_{m} \right\rangle \\ &- \left. \iint_{\partial\Omega \setminus S} \left\{ (\boldsymbol{n} \times \boldsymbol{E}) \cdot \delta \boldsymbol{H} + (\boldsymbol{n} \times \boldsymbol{H}) \cdot \delta \boldsymbol{E} \right\} \, \mathrm{d}A \, . \end{split}$$

$$\begin{split} \delta \mathcal{F}(\boldsymbol{E},\boldsymbol{H};\delta\boldsymbol{E},\delta\boldsymbol{H}) &= \iiint_{\Omega} \left\{ 2\delta \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H} - \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E}) \right. \\ &+ 2\delta \boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E} + \mathrm{i}\omega\mu_{0}\boldsymbol{H}) \right\} \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ &+ \left\langle \boldsymbol{E} - \sum_{m} 2F_{m}\tilde{\boldsymbol{E}}_{m} + \sum_{m} \frac{1}{N_{m}} \langle \tilde{\boldsymbol{E}}_{m},\boldsymbol{H} \rangle \tilde{\boldsymbol{E}}_{m}, \delta\boldsymbol{H} \right\rangle \\ &= \left\langle \delta \boldsymbol{E}, \, \boldsymbol{H} - \sum_{m} 2F_{m}\tilde{\boldsymbol{H}}_{m} + \sum_{m} \frac{1}{N_{m}} \langle \boldsymbol{E}, \tilde{\boldsymbol{H}}_{m} \rangle \tilde{\boldsymbol{H}}_{m} \right\rangle \\ &- \left\langle \int_{\partial\Omega \setminus S} \left\{ (\boldsymbol{n} \times \boldsymbol{E}) \cdot \delta \boldsymbol{H} + (\boldsymbol{n} \times \boldsymbol{H}) \cdot \delta \boldsymbol{E} \right\} \, \mathrm{d}A \, . \end{split}$$

Stationarity $\delta \mathcal{F}(\boldsymbol{E}, \boldsymbol{H}; \delta \boldsymbol{E}, \delta \boldsymbol{H}) = 0$ for arbitrary $\delta \boldsymbol{E}, \delta \boldsymbol{H}$ implies

- that E, H satisfy the Maxwell equations in Ω ,
- that *E*, *H* satisfy TIBCs on *S*,
- and that transverse components of E and H vanish on $\partial \Omega \setminus S$.

Variational HCMT scheme

$$(\boldsymbol{E},\boldsymbol{H}) = \sum_{k} a_{k}(\boldsymbol{E}_{k},\boldsymbol{H}_{k})$$

$$\boldsymbol{\mathcal{F}}(\boldsymbol{E},\boldsymbol{H}) \qquad \boldsymbol{\mathcal{F}}_{\mathrm{r}}(\boldsymbol{a})$$

Restricted functional:

$$\begin{split} \mathcal{F}_{\mathbf{r}}(\boldsymbol{a}) &= \sum_{l,k} a_{l} F_{lk} a_{k} + \sum_{l} R_{l} a_{l} + \sum_{l,k} a_{l} B_{lk} a_{k} \,, \\ F_{lk} &= \iiint_{\Omega} \left\{ \boldsymbol{E}_{l} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}_{k}) + \boldsymbol{H}_{l} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}_{k}) \right. \\ &- \mathrm{i}\omega\epsilon_{0}\epsilon\boldsymbol{E}_{l} \cdot \boldsymbol{E}_{k} + \mathrm{i}\omega\mu_{0}\boldsymbol{H}_{l} \cdot \boldsymbol{H}_{k} \right\} \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \,, \\ R_{l} &= -\sum_{m} 2F_{m} \left\{ \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H}_{l} \rangle - \langle \boldsymbol{E}_{l}, \tilde{\boldsymbol{H}}_{m} \rangle \right\} , \\ B_{lk} &= \sum_{m} \frac{1}{2N_{m}} \left\{ \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H}_{l} \rangle \langle \tilde{\boldsymbol{E}}_{m}, \boldsymbol{H}_{k} \rangle - \langle \boldsymbol{E}_{l}, \tilde{\boldsymbol{H}}_{m} \rangle \langle \boldsymbol{E}_{k}, \tilde{\boldsymbol{H}}_{m} \rangle \right\} , \end{split}$$

+ contributions R, B from other port planes.

Restricted functional:

 $\mathcal{F}_{\mathrm{r}}(\boldsymbol{a}) = \boldsymbol{a} \cdot \mathsf{M} \boldsymbol{a} + \boldsymbol{R} \cdot \boldsymbol{a}.$

$$(\boldsymbol{E},\boldsymbol{H}) = \sum_{k} a_{k}(\boldsymbol{E}_{k},\boldsymbol{H}_{k})$$

$$\boldsymbol{\mathcal{F}}(\boldsymbol{E},\boldsymbol{H}) \qquad \boldsymbol{\mathcal{F}}_{\mathrm{r}}(\boldsymbol{a})$$

Restricted functional:

$$\mathcal{F}_{\mathrm{r}}(\boldsymbol{a}) = \boldsymbol{a} \cdot \mathsf{M}\boldsymbol{a} + \boldsymbol{R} \cdot \boldsymbol{a}.$$

Require
$$\delta \mathcal{F}_{r} = \delta \boldsymbol{a} \cdot \left(\left(\mathsf{M} + \mathsf{M}^{\mathsf{T}} \right) \boldsymbol{a} + \boldsymbol{R} \right) = 0$$
 for all $\delta \boldsymbol{a}$,
 $\left(\mathsf{M} + \mathsf{M}^{\mathsf{T}} \right) \boldsymbol{a} + \boldsymbol{R} = 0$,
 \boldsymbol{a} ,
 $\boldsymbol{f}_{m}, \ \boldsymbol{b}_{m}, \ \boldsymbol{u}_{m}, \ \boldsymbol{d}_{m}, \ \boldsymbol{E}, \ \boldsymbol{H}$.

Comments

HCMT scheme based on the variational form of the guided wave scattering problem:

- Expansions at the TIBC ports reduce to single terms due to modal orthogonality.
- Bidirectional basis fields are required for all channels in the field templates.

Alternative functional:

$$egin{aligned} \mathcal{C}(oldsymbol{E},oldsymbol{H}) &= \iiint_{\Omega} ig\{ oldsymbol{E}^*\!\!\cdot (oldsymbol{
abla} imes oldsymbol{H}) - oldsymbol{H}^*\!\!\cdot (oldsymbol{
abla} imes oldsymbol{H}) - oldsymbol{H}^*\!\!\cdot oldsymbol{E} + \mathrm{i}\omega\mu_0oldsymbol{H}^*\!\!\cdot oldsymbol{H} ig\} \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z. \ &- \mathrm{i}\omega\epsilon_0\epsilonoldsymbol{E}^*\!\!\cdot oldsymbol{E} + \mathrm{i}\omega\mu_0oldsymbol{H}^*\!\!\cdot oldsymbol{H} ig\} \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z. \end{aligned}$$

Extend \mathcal{C} by boundary integrals such that

- the boundary terms in δC cancel → the Galerkin scheme could be viewed as a variational restriction of C.
- TIBCs are satisfied as natural boundary conditions if *C* becomes stationary → variational scheme with complex conjugate fields.

TE, $n_{\rm g} = 1.6$, $n_{\rm b} = 1.45$, $p = 1.538 \,\mu{\rm m}$, $s = 0.281 \,\mu{\rm m}$, $N_{\rm p} = 40$, $W = 9.955 \,\mu{\rm m}$.

Waveguide Bragg reflector

TE, $n_{\rm g} = 1.6$, $n_{\rm b} = 1.45$, $p = 1.538 \,\mu{\rm m}$, $s = 0.281 \,\mu{\rm m}$, $N_{\rm p} = 40$, $W = 9.955 \,\mu{\rm m}$.

Waveguide Bragg reflector

Grating-assisted rectangular resonator

Grating-assisted rectangular resonator

Grating-assisted rectangular resonator

Single ring filter, transmission, bidirectional template

Single ring filter, transmission, bidirectional template

WGMs only

WGMs only

(1,34)

(0, 39)

1.60

λ [μm]

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (0)

Micro-disk, resonant fields (1)

Micro-disk, resonant fields (1)

Micro-disk, resonant fields (1)

CROW, spectral response II

CROW, spectral response II

