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We study resonance phenomena in optical cavities realized as defects in 1D gratings with piecewise constant refractive index distributions. One can view the cavity as an open system where waves are

permitted to leave the structure. Then the cavity can be characterized in terms of an eigenvalue problem for complex frequencies (eigenvalues) and Quasi-Normal-Modes (eigenfunctions). QNMs are field

profiles in which the leaky optical structure would oscillate naturally after the initial excitation is revoked, representing damped oscillatory solutions of the wave equation [1], [2], [3]. When subjected

to external excitation these structures exhibit resonant responses in transmission. We employ the QNMs to approximate transmission resonances and the related fields in 1D optical defect cavities under

external excitation. A combination of the bandgap (mirror) field of the periodic structure (without defect) and only one/few relevant QNM(s) are used as a field template for the variational form of the

transmission problem [4]. The restriction of the functional yields an excellent field representation, together with a reasonable approximation of the spectral transmission.

The (defect) grating is a finite periodic structure consisting of two materi-
als with high index nH and low index nL. The layer thicknesses LH , LL are
quarter-wavelength for the target wavelength. Optical defects are intro-
duced as changes of layer thicknesses. The grating is surrounded by two
semi-infinite media of indices nin and nout.

Quasi-normal modes

eigenvalue problem

Optical electric field with harmonic time dependence

Q(x, t) = Q(x)e−iωt. The modal profiles satisfy:

• the Helmholtz equation
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• outgoing wave boundary conditions
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• Complex frequency, eigenvalue ω ∈ C.

• Quasi-Normal Mode, eigenfunction Q(x).

Solution: analytical continuation of a transfer matrix method

in the complex plane.

Transmittance problem

The response under external excitation is described by:

• influx Einc = Aince
ikinx with ω ∈ R and Ainc given,

• the Helmholtz equation

(

∂2
x + k2(x)

)

E(x) = 0, (4)

• transparent (influx) boundary conditions

(∂x + ikin) E|x=0 = 2ikinAinc, (5)

(∂x − ikout) E|x=L = 0, (6)

where k(x) = ω2n2(x)
c2

, kin = ninω

c
, and kout = noutω

c
.

Exact solution obtained via a standard transfer matrix method

(reference).

Variational formulation of the
transmittance problem

Consider the functional [4]:

L(E) =

∫ L
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2(L) + 2ikinAincE(0).

If the first variation δL(E; δE) vanishes for arbitrary δE, then

E satisfies (4), (5), (6).

Field template

E(x, ω) ≃ Emf (x, ω) +
M

∑

p=1

ap(ω)Qp(x) (8)

• Emf : mirror field; solution of the transmittance problem for

the structure without defects.

• Qp: QNMs supported by the defect structure with

Re(ωp) ∈ relevant range, bandgap of the original structure.

• ap: decomposition coefficients.

Variational restriction

L(E) → L(a1, ..., aM). The conditions for stationarity

∂L(a1, ..., aM)

∂aq

= 0, q = 1, ..., M, (9)

lead to a system of linear equations

Aa = −b (10)

for unknown a = [a1, a2, ...ap...aM ]T and

Aqp =
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Transmittance:
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Single cavity structure

Symmetric structure with a single central defect: (HL)4H(HL)4H , nH =

3.42, nL = 1.45, nin = nout = 1.0, LH , LL-quarter-wavelength.
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Multiple cavity structure with

flat-top narrow-band transmission

Asymmetric triple cavity structure: (HL)4L(HL)9L(HL)9L(HL)4,
nH = 2.1, nL = 1.45, nin = nout = 1.52, LH , LL-quarter-wavelength.
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QNMs for defect induced complex frequencies.
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Decomposition coefficients for the field representation, corresponding to
the QNMs associated with ωL, ωM , ωR. Transmittance (11) and TMM refer-
ence.
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