Modeling of photon scanning tunneling microscopy by 2-D quadridirectional eigenmode expansion

Manfred Hammer*
MESA ${ }^{+}$Research Institute
University of Twente, The Netherlands

PIERS 2004, Progress in Electromagnetics Research Symposium, Pisa, Italy, 28. - 31.03.2004

[^0]

\[

$$
\begin{aligned}
& P_{\text {in }}=1 . \quad S(p)=? \\
& R(p), T(p)=? \\
& \left.S(p) \stackrel{?}{\longleftrightarrow}(\text { optical field })\right|_{p}
\end{aligned}
$$
\]

Simplified 2-D model

$$
\begin{aligned}
& P_{\text {in }}=1 . \quad S(p)=? \\
& R(p), T(p)=? \\
& \left.S(p) \stackrel{?}{\longleftrightarrow}(\text { optical field })\right|_{p}
\end{aligned}
$$

Fixed optical frequency, rectangular piecewise constant refractive index, horizontal \& vertical guided wave in- and outflux
\longrightarrow QUEP simulations

Outline

- Quadridirectional eigenmode propagation:
- Problem setting
- Eigenmode expansion
- Algebraic procedure
- 2-D PSTM model, numerical results:
- Probing evanescent fields
- Hole defect in a slab waveguide
- Short waveguide Bragg grating
- Resonant defect cavity
- Bragg grating: PSTM experiment \& 2-D model

- 2-D TE/TM Helmholtz problem, vacuum wavelength $\lambda=2 \pi / k$.

- 2-D TE/TM Helmholtz problem, vacuum wavelength $\lambda=2 \pi / k$.
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.

- 2-D TE/TM Helmholtz problem, vacuum wavelength $\lambda=2 \pi / k$.
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.
- Rectangular interior computational domain, influx \& outflux across all four boundaries, outwards homogeneous external regions.
- 2-D TE/TM Helmholtz problem, vacuum wavelength $\lambda=2 \pi / k$.
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.
- Rectangular interior computational domain, influx \& outflux across all four boundaries, outwards homogeneous external regions.
- Assumption $E_{y}=0, H_{y}=0$ on the corner points and on the external border lines is reasonable for the problems under investigation.

Modal basis fields

Basis fields, defined by Dirichlet boundary conditions $E_{y}=0(\mathrm{TE})$ or $H_{y}=0(\mathrm{TM})$:

Horizontally traveling eigenmodes:

M_{x} profiles	$\boldsymbol{\psi}_{s, m}^{d}(x)$
and propagation constants	$\pm \beta_{s, m}$

of order m, on slice s,
for propagation directions $d=\mathrm{f}, \mathrm{b}$,

Modal basis fields

Basis fields,
defined by Dirichlet boundary conditions $E_{y}=0(\mathrm{TE})$ or $H_{y}=0(\mathrm{TM})$:

. . . and vertically traveling fields:

M_{z} profiles	$\hat{\boldsymbol{\psi}}_{l, m}^{d}(z)$
and propagation constants	$\pm \hat{\beta}_{l, m}$
of order m, on layer l,	
for propagation directions $d=\mathrm{u}, \mathrm{d}$.	

Ansatz for the optical field, for $z_{s-1} \leq z \leq z_{s}, s=1, \ldots, N_{z}$,
and $x_{l-1} \leq x \leq x_{l}, l=1, \ldots, N_{x}$.
$\binom{\mathcal{E}}{\mathcal{H}}(x, z, t)=\operatorname{Re}\left\{\sum_{m=0}^{M_{x}-1} F_{s, m} \boldsymbol{\psi}_{s, m}^{\mathrm{f}}(x) \mathrm{e}^{-\mathbf{i} \beta_{s, m}\left(z-z_{s-1}\right)}\right.$

$$
\left.\begin{array}{l}
+\sum_{m=0}^{M_{x}-1} B_{s, m} \boldsymbol{\psi}_{s, m}^{\mathrm{b}}(x) \mathrm{e}^{+\mathbf{i} \beta_{s, m}\left(z-z_{s}\right)} \\
+\sum_{m=0}^{M_{z}-1} U_{l, m} \hat{\boldsymbol{\psi}}_{l, m}^{\mathrm{u}}(z) \mathrm{e}^{-\mathrm{i} \hat{\beta}_{l, m}\left(x-x_{l-1}\right)} \\
+\sum_{m=0}^{M_{z}-1} D_{l, m} \hat{\boldsymbol{\psi}}_{l, m}^{\mathrm{d}}(z) \mathrm{e}^{+\mathrm{i}} \hat{\beta}_{l, m}\left(x-x_{l}\right)
\end{array}\right\} \mathrm{e}^{\mathrm{i} \omega t} .
$$

Mode products \leftrightarrow normalization, projection:

$\left(\boldsymbol{E}_{1}, \boldsymbol{H}_{1} ; \boldsymbol{E}_{2}, \boldsymbol{H}_{2}\right)=\frac{1}{4} \int\left(E_{1, x}^{*} H_{2, y}-E_{1, y}^{*} H_{2, x}+H_{1, y}^{*} E_{2, x}-H_{1, x}^{*} E_{2, y}\right) \mathrm{d} x$,
$\left\langle\boldsymbol{E}_{1}, \boldsymbol{H}_{1} ; \boldsymbol{E}_{2}, \boldsymbol{H}_{2}\right\rangle=\frac{1}{4} \int\left(E_{1, y}^{*} H_{2, z}-E_{1, z}^{*} H_{2, y}+H_{1, z}^{*} E_{2, y}-H_{1, y}^{*} E_{2, z}\right) \mathrm{d} z$.

Algebraic procedure

- Consistent bidirectional projection at all interfaces
\longrightarrow linear system of equations in $\left\{F_{s, m}, B_{s, m}, U_{l, m}, D_{l, m}\right\}$.
- Influx: $\boldsymbol{F}_{0}, \boldsymbol{B}_{N_{x}+1}, \boldsymbol{U}_{0}, \boldsymbol{D}_{N_{z}+1} \longrightarrow$ RHS, given.
- Outflux: $\boldsymbol{B}_{0}, \boldsymbol{F}_{N_{x}+1}, \boldsymbol{D}_{0}, \boldsymbol{U}_{N_{z}+1} \longrightarrow$ primary unknowns.

Algebraic procedure

- "Exact" mode profiles \longrightarrow interior problems decouple:

Solve for $\boldsymbol{F}_{2}, \ldots, \boldsymbol{F}_{N_{z}}$ and $\boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{N_{z}-1}$ in terms of \boldsymbol{F}_{1} and $\boldsymbol{B}_{N_{z}}$
\longrightarrow BEP I.

Solve for $\boldsymbol{U}_{2}, \ldots, \boldsymbol{U}_{N_{x}}$ and $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{N_{x}-1}$ in terms of \boldsymbol{U}_{1} and $\boldsymbol{D}_{N_{x}}$
\longrightarrow BEP II.

- Continuity of E and H on outer interfaces:

Interior BEP solutions

+ equations at $z=z_{0}, z_{N_{z}}, x=x_{0}, x_{N_{x}}$
$\longrightarrow \boldsymbol{B}_{0}, \boldsymbol{F}_{N_{x}+1}, \boldsymbol{D}_{0}, \boldsymbol{U}_{N_{z}+1}$.

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,3.0] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,3.0] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Probing evanescent fields

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,3.0] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Hole defect in a slab waveguide

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, s=0.2 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.1,3.1] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Hole defect in a slab waveguide

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, s=0.2 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
TE, $\lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.1,3.1] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Hole defect in a slab waveguide

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, s=0.2 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.1,3.1] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Hole defect in a slab waveguide

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, s=0.2 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
TE, $\lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.1,3.1] \mu \mathrm{m}^{2}, M_{x}=M_{z}=80$.

Hole defect in a slab waveguide

Hole defect in a slab waveguide

Short waveguide Bragg grating

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.58] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Short waveguide Bragg grating

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.58] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Short waveguide Bragg grating

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.58] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Resonant defect cavity

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, L=0.2275 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.7075] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Resonant defect cavity

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, L=0.2275 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.7075] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Resonant defect cavity

$n_{\mathrm{s}}=1.45, n_{\mathrm{f}}=2.0, n_{\mathrm{c}}=1.0, t=0.2 \mu \mathrm{~m}, d=0.6 \mu \mathrm{~m}$,
$\Lambda=0.21 \mu \mathrm{~m}, s=0.11 \mu \mathrm{~m}, L=0.2275 \mu \mathrm{~m}, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.633 \mu \mathrm{~m},(x, z) \in[-3.0,3.0] \times[-3.0,4.7075] \mu \mathrm{m}^{2}, M_{x}=100, M_{z}=120$.

Resonant defect cavity

Bragg grating: PSTM experiment *

Sample: Rib waveguide with a series of deep, rectangular slits,

$$
\begin{aligned}
& n_{\mathrm{s}}=3.4, n_{\mathrm{b}}=1.45, n_{\mathrm{f}}=2.01, n_{\mathrm{c}}=1.0, t=55 \mathrm{~nm}, h=11 \mathrm{~nm}, w=1.5 \mu \mathrm{~m} \\
& W=2.5 \mu \mathrm{~m}, b=3.2 \mu \mathrm{~m}, \Lambda=220 \mathrm{~nm}, s=110 \mathrm{~nm}, d=70 \mathrm{~nm}, N_{\mathrm{g}}=15
\end{aligned}
$$

Probe: Tapered cylindrical fiber tip with aluminium coating,
$a \approx 80 \mathrm{~nm}, c \approx 100 \mathrm{~nm}, g=10 \mathrm{~nm}, n_{\mathrm{p}}=1.5$;
TE polarized light, vacuum wavelength $\lambda=0.6328 \mu \mathrm{~m}$.

* E. Flück, M. Hammer, A. M. Otter, J. P. Korterijk, L. Kuipers, N. F. van Hulst, Amplitude and phase evolution of optical fields inside periodic photonic structures, Journal of Lightwave Technology 21(5), 1384-1393 (2003)

Bragg grating: QUEP model

$n_{\mathrm{s}}=3.4, n_{\mathrm{b}}=1.45, n_{\mathrm{f}}=2.01, n_{\mathrm{c}}=1.0, t=55 \mathrm{~nm}, b=3.2 \mu \mathrm{~m}, d=70 \mathrm{~nm}$,
$\Lambda=220 \mathrm{~nm}, s=110 \mathrm{~nm}, N_{\mathrm{g}}=15, g=10 \mathrm{~nm}, w=100 \mathrm{~nm}, n_{\mathrm{p}}=1.5$,
$\mathrm{TE}, \lambda=0.6328 \mu \mathrm{~m},(x, z) \in[-3.5,1.5] \times[-2.0,5.2] \mu \mathrm{m}^{2}, M_{x}=80, M_{z}=100$.

Bragg grating: QUEP model

Bragg grating: QUEP model

2-D PSTM modeling

QUEP scheme:

a semianalytical quadridirectional eigenmode expansion technique, here applied as convenient tool for "virtual" PSTM experiments:

- Evanescent field probing, signal $\nsim|E|^{2}$.
- Direct scattering into the probe tip.
- Resonance breakdown caused by the presence of the probe.
- Reasonable mapping of evanescent fields for specific configurations.
- Ample qualitative agreement with real PSTM experiments on a waveguide Bragg grating.

[^0]: * Department of Applied Mathematics, University of Twente
 P.O. Box 217, 7500 AE Enschede, The Netherlands

 Phone: +31/53/489-3448
 Fax: +31/53/489-4833
 E-mail: m.hammer@math.utwente.nl

