Modeling of photon scanning tunneling microscopy by 2-D quadridirectional eigenmode expansion



MES

AAM

Manfred Hammer\*

MESA<sup>+</sup> Research Institute University of Twente, The Netherlands

PIERS 2004, Progress in Electromagnetics Research Symposium, Pisa, Italy, 28. – 31.03.2004

\* Department of Applied Mathematics, University of Twente Phone: +31/53/489-3448 Fax: +31/53/489-4833 P.O. Box 217, 7500 AE Enschede, The Netherlands E-mail: m.hammer@math.utwente.nl

1

# **Photon scanning tunneling microscopy (PSTM) of photonic devices**







 $P_{in} = 1. \quad S(p) = ?$ R(p), T(p) = ? $S(p) \xleftarrow{?} (optical field)|_p$ 



$$P_{in} = 1. \quad S(p) = ?$$
$$R(p), T(p) = ?$$
$$S(p) \stackrel{?}{\longleftrightarrow} (optical field)|_p$$

Fixed optical frequency, rectangular piecewise constant refractive index, horizontal & vertical guided wave in- and outflux

 $\rightarrow$  **QUEP** simulations

- Quadridirectional eigenmode propagation:
  - Problem setting
  - Eigenmode expansion
  - Algebraic procedure
- 2-D PSTM model, numerical results:
  - Probing evanescent fields
  - Hole defect in a slab waveguide
  - Short waveguide Bragg grating
  - Resonant defect cavity
  - Bragg grating: PSTM experiment & 2-D model



• 2-D TE/TM Helmholtz problem, vacuum wavelength  $\lambda = 2\pi/k$ .



- 2-D TE/TM Helmholtz problem, vacuum wavelength  $\lambda = 2\pi/k$ .
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.



- 2-D TE/TM Helmholtz problem, vacuum wavelength  $\lambda = 2\pi/k$ .
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.
- Rectangular interior computational domain, influx & outflux across all four boundaries, outwards homogeneous external regions.



- 2-D TE/TM Helmholtz problem, vacuum wavelength  $\lambda = 2\pi/k$ .
- Piecewise constant, rectangular refractive index distribution; linear, lossless materials.
- Rectangular interior computational domain, influx & outflux across all four boundaries, outwards homogeneous external regions.
- Assumption  $E_y = 0$ ,  $H_y = 0$  on the corner points and on the external border lines is reasonable for the problems under investigation.

Basis fields, defined by Dirichlet boundary conditions  $E_y = 0$  (TE) or  $H_y = 0$  (TM):



Horizontally traveling eigenmodes:

| $M_x$ profiles            | $\boldsymbol{\psi}^{d}_{s,m}(x)$ |
|---------------------------|----------------------------------|
| and propagation constants | $\pm eta_{s,m}$                  |

of order m, on slice s, for propagation directions d = f, b, Basis fields, defined by Dirichlet boundary conditions  $E_y = 0$  (TE) or  $H_y = 0$  (TM):



... and vertically traveling fields:

| $M_z$ profiles            | $\hat{oldsymbol{\psi}}^{d}_{l,m}(z)$ |
|---------------------------|--------------------------------------|
| and propagation constants | $\pm \hat{eta}_{l,m}$                |

of order m, on layer l, for propagation directions d = u, d.





Mode products  $\leftrightarrow$  normalization, projection:

$$(\boldsymbol{E}_{1}, \boldsymbol{H}_{1}; \boldsymbol{E}_{2}, \boldsymbol{H}_{2}) = \frac{1}{4} \int (E_{1,x}^{*} H_{2,y} - E_{1,y}^{*} H_{2,x} + H_{1,y}^{*} E_{2,x} - H_{1,x}^{*} E_{2,y}) \,\mathrm{d}x \,,$$
  
$$\langle \boldsymbol{E}_{1}, \boldsymbol{H}_{1}; \boldsymbol{E}_{2}, \boldsymbol{H}_{2} \rangle = \frac{1}{4} \int (E_{1,y}^{*} H_{2,z} - E_{1,z}^{*} H_{2,y} + H_{1,z}^{*} E_{2,y} - H_{1,y}^{*} E_{2,z}) \,\mathrm{d}z \,.$$

## Algebraic procedure



- Consistent bidirectional projection at all interfaces  $\longrightarrow$  linear system of equations in  $\{F_{s,m}, B_{s,m}, U_{l,m}, D_{l,m}\}$ .
- Influx:  $F_0$ ,  $B_{N_x+1}$ ,  $U_0$ ,  $D_{N_z+1} \longrightarrow$  RHS, given.
- Outflux:  $B_0$ ,  $F_{N_x+1}$ ,  $D_0$ ,  $U_{N_z+1} \longrightarrow$  primary unknowns.

# Algebraic procedure

• "Exact" mode profiles —> interior problems decouple:



Solve for  $F_2, \ldots, F_{N_z}$  and  $B_1, \ldots, B_{N_z-1}$ in terms of  $F_1$  and  $B_{N_z}$   $\longrightarrow$  BEP I.

Solve for  $U_2, \ldots, U_{N_x}$  and  $D_1, \ldots, D_{N_x-1}$ in terms of  $U_1$  and  $D_{N_x}$   $\longrightarrow$  BEP II.

• Continuity of *E* and *H* on outer interfaces:



Interior BEP solutions + equations at  $z = z_0, z_{N_z}, x = x_0, x_{N_x}$  $\longrightarrow B_0, F_{N_x+1}, D_0, U_{N_z+1}.$ 

"QUadridirectional Eigenmode Propagation method" (QUEP).



TE, g = 10 nm

$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2\,\mu{\rm m}, w = 100\,{\rm nm}, n_{\rm p} = 1.5, \\ \lambda &= 0.633\,\mu{\rm m}, (x,z) \in [-3.0,3.0] \times [-3.0,3.0]\,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$



$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2\,\mu{\rm m}, w = 100\,{\rm nm}, n_{\rm p} = 1.5, \\ \lambda &= 0.633\,\mu{\rm m}, (x,z) \in [-3.0,3.0] \times [-3.0,3.0]\,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$

12



$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2\,\mu{\rm m}, w = 100\,{\rm nm}, n_{\rm p} = 1.5, \\ \lambda &= 0.633\,\mu{\rm m}, (x,z) \in [-3.0,3.0] \times [-3.0,3.0]\,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$











 $n_{\rm s} = 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2 \,\mu\text{m}, s = 0.2 \,\mu\text{m}, g = 10 \,\text{nm}, w = 100 \,\text{nm}, n_{\rm p} = 1.5,$ TE,  $\lambda = 0.633 \,\mu\text{m}, (x, z) \in [-3.0, 3.0] \times [-3.1, 3.1] \,\mu\text{m}^2, M_x = M_z = 80.$ 



$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2 \,\mu{\rm m}, s = 0.2 \,\mu{\rm m}, g = 10 \,{\rm nm}, w = 100 \,{\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.633 \,\mu{\rm m}, (x,z) \in [-3.0, 3.0] \times [-3.1, 3.1] \,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$



$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2\,\mu{\rm m}, s = 0.2\,\mu{\rm m}, g = 10\,{\rm nm}, w = 100\,{\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.633\,\mu{\rm m}, (x,z) \in [-3.0, 3.0] \times [-3.1, 3.1]\,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$



$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2\,\mu{\rm m}, s = 0.2\,\mu{\rm m}, g = 10\,{\rm nm}, w = 100\,{\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.633\,\mu{\rm m}, (x,z) \in [-3.0, 3.0] \times [-3.1, 3.1]\,\mu{\rm m}^2, M_x = M_z = 80. \end{split}$$



![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2 \,\mu{\rm m}, d = 0.6 \,\mu{\rm m}, \\ \Lambda &= 0.21 \,\mu{\rm m}, s = 0.11 \,\mu{\rm m}, g = 10 \,{\rm nm}, w = 100 \,{\rm nm}, n_{\rm p} = 1.5, \\ \text{TE}, \lambda &= 0.633 \,\mu{\rm m}, (x, z) \in [-3.0, 3.0] \times [-3.0, 4.58] \,\mu{\rm m}^2, M_x = 100, M_z = 120. \end{split}$$

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 1.45, n_{\rm f} = 2.0, n_{\rm c} = 1.0, t = 0.2 \,\mu{\rm m}, d = 0.6 \,\mu{\rm m}, \\ \Lambda &= 0.21 \,\mu{\rm m}, s = 0.11 \,\mu{\rm m}, g = 10 \,{\rm nm}, w = 100 \,{\rm nm}, n_{\rm p} = 1.5, \\ \text{TE}, \lambda &= 0.633 \,\mu{\rm m}, (x, z) \in [-3.0, 3.0] \times [-3.0, 4.58] \,\mu{\rm m}^2, M_x = 100, M_z = 120. \end{split}$$

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 1.45, \, n_{\rm f} = 2.0, \, n_{\rm c} = 1.0, \, t = 0.2 \, \mu {\rm m}, \, d = 0.6 \, \mu {\rm m}, \\ \Lambda &= 0.21 \, \mu {\rm m}, \, s = 0.11 \, \mu {\rm m}, \, L = 0.2275 \, \mu {\rm m}, \, g = 10 \, {\rm nm}, \, w = 100 \, {\rm nm}, \, n_{\rm p} = 1.5, \\ {\rm TE}, \, \lambda &= 0.633 \, \mu {\rm m}, \, (x,z) \in [-3.0, 3.0] \times [-3.0, 4.7075] \, \mu {\rm m}^2, \, M_x = 100, \, M_z = 120. \end{split}$$

![](_page_37_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 1.45, \, n_{\rm f} = 2.0, \, n_{\rm c} = 1.0, \, t = 0.2 \, \mu {\rm m}, \, d = 0.6 \, \mu {\rm m}, \\ \Lambda &= 0.21 \, \mu {\rm m}, \, s = 0.11 \, \mu {\rm m}, \, L = 0.2275 \, \mu {\rm m}, \, g = 10 \, {\rm nm}, \, w = 100 \, {\rm nm}, \, n_{\rm p} = 1.5, \\ {\rm TE}, \, \lambda &= 0.633 \, \mu {\rm m}, \, (x,z) \in [-3.0, 3.0] \times [-3.0, 4.7075] \, \mu {\rm m}^2, \, M_x = 100, \, M_z = 120. \end{split}$$

![](_page_38_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 1.45, \, n_{\rm f} = 2.0, \, n_{\rm c} = 1.0, \, t = 0.2 \, \mu {\rm m}, \, d = 0.6 \, \mu {\rm m}, \\ \Lambda &= 0.21 \, \mu {\rm m}, \, s = 0.11 \, \mu {\rm m}, \, L = 0.2275 \, \mu {\rm m}, \, g = 10 \, {\rm nm}, \, w = 100 \, {\rm nm}, \, n_{\rm p} = 1.5, \\ {\rm TE}, \, \lambda &= 0.633 \, \mu {\rm m}, \, (x,z) \in [-3.0, 3.0] \times [-3.0, 4.7075] \, \mu {\rm m}^2, \, M_x = 100, \, M_z = 120. \end{split}$$

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

20

### **Bragg grating: PSTM experiment** \*

![](_page_42_Figure_1.jpeg)

- Sample: Rib waveguide with a series of deep, rectangular slits,  $n_{\rm s} = 3.4, n_{\rm b} = 1.45, n_{\rm f} = 2.01, n_{\rm c} = 1.0, t = 55 \text{ nm}, h = 11 \text{ nm}, w = 1.5 \,\mu\text{m},$  $W = 2.5 \,\mu\text{m}, b = 3.2 \,\mu\text{m}, \Lambda = 220 \text{ nm}, s = 110 \text{ nm}, d = 70 \text{ nm}, N_{\rm g} = 15.$
- **Probe:** Tapered cylindrical fiber tip with aluminium coating,  $a \approx 80 \text{ nm}, c \approx 100 \text{ nm}, g = 10 \text{ nm}, n_p = 1.5;$ TE polarized light, vacuum wavelength  $\lambda = 0.6328 \,\mu\text{m}.$
- \* E. Flück, M. Hammer, A. M. Otter, J. P. Korterijk, L. Kuipers, N. F. van Hulst, *Amplitude and phase evolution of optical fields inside periodic photonic structures*, Journal of Lightwave Technology **21**(5), 1384-1393 (2003)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 3.4, n_{\rm b} = 1.45, n_{\rm f} = 2.01, n_{\rm c} = 1.0, t = 55 \, {\rm nm}, b = 3.2 \, \mu {\rm m}, d = 70 \, {\rm nm}, \\ \Lambda &= 220 \, {\rm nm}, s = 110 \, {\rm nm}, N_{\rm g} = 15, g = 10 \, {\rm nm}, w = 100 \, {\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.6328 \, \mu {\rm m}, (x, z) \in [-3.5, 1.5] \times [-2.0, 5.2] \, \mu {\rm m}^2, M_x = 80, M_z = 100. \end{split}$$

![](_page_45_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 3.4, n_{\rm b} = 1.45, n_{\rm f} = 2.01, n_{\rm c} = 1.0, t = 55 \, {\rm nm}, b = 3.2 \, \mu {\rm m}, d = 70 \, {\rm nm}, \\ \Lambda &= 220 \, {\rm nm}, s = 110 \, {\rm nm}, N_{\rm g} = 15, g = 10 \, {\rm nm}, w = 100 \, {\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.6328 \, \mu {\rm m}, (x, z) \in [-3.5, 1.5] \times [-2.0, 5.2] \, \mu {\rm m}^2, M_x = 80, M_z = 100. \end{split}$$

![](_page_46_Figure_1.jpeg)

$$\begin{split} n_{\rm s} &= 3.4, n_{\rm b} = 1.45, n_{\rm f} = 2.01, n_{\rm c} = 1.0, t = 55 \, {\rm nm}, b = 3.2 \, \mu {\rm m}, d = 70 \, {\rm nm}, \\ \Lambda &= 220 \, {\rm nm}, s = 110 \, {\rm nm}, N_{\rm g} = 15, g = 10 \, {\rm nm}, w = 100 \, {\rm nm}, n_{\rm p} = 1.5, \\ {\rm TE}, \lambda &= 0.6328 \, \mu {\rm m}, (x,z) \in [-3.5, 1.5] \times [-2.0, 5.2] \, \mu {\rm m}^2, M_x = 80, M_z = 100. \end{split}$$

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_1.jpeg)

# QUEP scheme:

a semianalytical quadridirectional eigenmode expansion technique, here applied as convenient tool for "virtual" PSTM experiments:

- Evanescent field probing, signal  $\not\sim |E|^2$ .
- Direct scattering into the probe tip.
- Resonance breakdown caused by the presence of the probe.
- Reasonable mapping of evanescent fields for specific configurations.
- Ample qualitative agreement with real PSTM experiments on a waveguide Bragg grating.

![](_page_50_Figure_8.jpeg)

![](_page_50_Figure_9.jpeg)