

COST 268 benchmark, waveguide Bragg grating, 2-D

▲□▶ ▲ 壹 ▶ ∽ ९ ९ 3

COST 268 benchmark, waveguide Bragg grating, 2-D

 $n_{\rm s} \approx 1.45, n_{\rm g} \approx 1.99, n_{\rm a} = 1.0, d_{\rm g} = 0.5 \,\mu{\rm m}, d_{\rm e} = 0.375 \,\mu{\rm m}, \Lambda = 0.430 \,\mu{\rm m}, g = \Lambda/2, N_{\rm g} = 20,$ in: TE, $\lambda \in [0.8, 1.8] \,\mu{\rm m}.$

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. de Ridder, R. Stoffer, G. Klaase, J. Petráček, P. Lalanne, J.-P. Hugonin, and R. M. De La Rue, Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task, *Optical and Quantum Electronics* **34**(5/6), 455–470, 2002.

▲□▶ ▲≣▶ 釣�?

COST 268 benchmark, waveguide Bragg grating, 2-D

<□> < ≣> のQ(?) 3

Simple waveguide Bragg grating

Simple waveguide Bragg grating

r

▲□▶ ▲ ≣ ▶ ∽ 𝔄 𝔅 4

Lossless operation of high-contrast integrated optical waveguide gratings

Overview

- Oblique incidence of semi-guided waves
- Band structure analysis
- Symmetric high-contrast grating
- Apodization
- Reduced reflector strength
- Narrow-band Fabry-Perot filter

High-contrast waveguide Bragg gratings

U

(2.5-D)

 $1 \mid 2 \mid \cdots \mid N$

 $n_{\rm b}$

◆□▶ ◆重▶ めぬぐ

Λ

 $n_{\rm b} = 1.45$ (SiO₂), $n_{\rm f} = 3.45$ (Si), $d = 0.22 \,\mu\text{m}$, variable Λ , g, N; TE-excitation at $\theta = 45^{\circ}$ for $\lambda \in [0.8, 2.2] \,\mu\text{m}$.

Semi guided waves at oblique angles of incidence

• y-homogeneous problem: $(E, H) \sim e^{-ik_y y}$ everywhere.

Semi guided waves at oblique angles of incidence

▲□▶ ▲≣▶ 釣�?

<□▶ <≣▶ ∽Q@ 7

Semi guided waves at oblique angles of incidence

- Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$ $k^2 N_{\text{out}}^2 = k_y^2 + k_{\varepsilon}^2, \quad k_y = k N_{\text{in}} \sin \theta.$
- $k^2 N_{out}^2 > k_v^2$: $k_{\xi} = k N_{out} \cos \theta_{out}$, wave propagating at angle θ_{out} , $N_{\text{out}} \sin \theta_{\text{out}} = N_{\text{in}} \sin \theta.$

▲□▶ ▲ Ξ ▶ のQ@

mm E1

- Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$ $k^2 N_{\text{out}}^2 = k_y^2 + k_{\varepsilon}^2, \quad k_y = k N_{\text{in}} \sin \theta.$
- $k^2 N_{\text{out}}^2 < k_y^2$: $k_{\xi} = -i \sqrt{k_y^2 k^2 N_{\text{out}}^2}$, ξ -evanescent wave, the outgoing wave does not carry optical power.

Semi guided waves at oblique angles of incidence

• Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$

 $k^2 N_{\text{out}}^2 = k_y^2 + k_{\varepsilon}^2, \quad k_y = k N_{\text{in}} \sin \theta.$

• Scan over θ :

change from ξ -propagating to ξ -evanescent if $k^2 N_{out}^2 = k^2 N_{in}^2 \sin^2 \theta$ \longrightarrow mode $\{N_{out}; \Psi_{out}\}$ does not carry power for $\theta > \theta_{cr}$,

critical angle $\theta_{\rm cr}$, $\sin \theta_{\rm cr} = N_{\rm out}/N_{\rm in}$.

Critical angles

- $n_{\rm g} > n_{\rm b},$ $N_{\rm TE0} > N_{\rm TM0} > N_{\rm TE1} > N_{\rm TM1} > n_{\rm b},$ in: TE₀.
- Outgoing mode $\in \{TM_0, TE_1, TM_1\}$ with effective mode indices $N_{out} < N_{TE0}$ $\sim R_{out} = T_{out} = 0$, for $\theta > \theta_{cr}$, $\sin \theta_{cr} = N_{out}/N_{TE0}$.
- Propagation in the substrate and cladding relates to effective indices $N_{\text{out}} \le n_{\text{b}}$ $\sim R_{\text{TE0},1} + R_{\text{TM0},1} + T_{\text{TE0},1} + T_{\text{TM0},1} = 1$ for $\theta > \theta_{\text{b}}$, $\sin \theta_{\text{b}} = n_{\text{b}}/N_{\text{TE0}}$.

▲□▶ < ≣▶ < つへ <>> 8

TE TM

Critical angles

10

Symmetry

Mirror symmetry $x \leftrightarrow -x$

	E_x	E_y	E_z	H_x	H_y	H_z	
TE ₀	_	+	+	+		—	$PMC_{x=0}$
TM_0	+	_	_	_	+	+	$PEC_{x=0}$
TE_1	+	_	_	_	+	+	$PEC_{x=0}$
TM_1	_	+	+	+	_	_	$PMC_{x=0}$

• Symmetry of the incoming TE_0 -field extends to the full solution.

 \subseteq Excitation of TM₀ and TE₁-modes is suppressed.

<□> < ≣> のQ (? 1)

Laterally limited input

(3-D)
$$\partial_y \epsilon = 0$$
, $(\boldsymbol{E}, \boldsymbol{H}) = \int (.) e^{-ik_y y} dk_y$

Fields

Incoming semi-guided beams

▲□ → ▲ Ξ → · · · · · ○ < ○ 13</p>

▲□▶ ▲ 臺▶ の Q (? 14)

◆□▶ ◆重▶ めぬぐ

Incoming semi-guided beams

◆□ ▶ < ≣ ▶ の Q (P) 14</p>

Apodized gratings

▲□▶ ▲ ≣▶ • • • • • • • 15

Defect gratings

◆□▶ < ≣▶ のQ (?) 17</p>

Defect gratings

Defect gratings

▲□▶ ▲≣▶ ዏ�? 17

▲□▶ ▲≣▶ 釣�� 17

Narrow-band Fabry-Perot filter

◆□▶ ◆≣▶ ���� 18

Narrow-band Fabry-Perot filter

Narrow-band Fabry-Perot filter

Narrow-band Fabry-Perot filter

Concluding remarks

Lossless (. . .) high-contrast integrated optical waveguide gratings

- realized with oblique incidence of semi-guided waves,
- grating symmetry and critical angles lead to true single-mode operation,
- spectral filters with reasonable flat-top response, apodization possible,
- widths of reflection bands / transmission peaks span three orders of magnitude.

JOSA B 40 (4), 862-873 (2023)

