Variational Effective Index Method for 3D Vectorial Scattering Problems in Photonics: TE Polarization

O. V. (Alyona) Ivanova¹, Remco Stoffer², Lasse Kauppinen¹, and Manfred Hammer¹

¹*MESA*⁺ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands ²*PhoeniX Software, Enschede, The Netherlands*

Introduction

Before actually fabricating a device, designers in integrated optics need to know how light behaves in their microstructures for a given optical influx:

Some popular and accurate techniques include Finite Difference Time Domain and Finite Element Methods. However, these rely on spatial discretization and quickly introduce a large number of unknowns - and thus require large computational effort.

The well-known Effective Index Method (EIM) [1], [7], [4] reduces simulations of 3D structures to two spatial dimensions. However, this method relies on the presence of guided modes in each cross-section. Frequently, as is the case for photonic crystal slabs, these do not exist, and the parameters for the 2D simulation rely more or less on guesswork.

Governing Equation

The only equation to be solved is

$$\left(\partial_{y}\frac{1}{\varepsilon_{\text{eff}}(y,z)}\partial_{y} + \partial_{z}\frac{1}{\varepsilon_{\text{eff}}(y,z)}\partial_{z} + k^{2}\right)P^{H_{x}}(y,z) = 0$$
(1)

with effective permittivity

$$\varepsilon_{\rm eff}(y,z) = \frac{\beta_{\rm r}^2}{k^2} + \frac{\int \left(\varepsilon(x,y,z) - \varepsilon_{\rm r}(x)\right) \left(X^{E_y}(x)\right)^2 \, dx}{\int \left(X^{E_y}(x)\right)^2 \, dx}.$$
 (2)

Photonic Crystal Slab Waveguide

slab

 $n_{si} = \sqrt{12.1}$ (220nm)

 $n_{air}=1.0$

holes

Transmission Spectrum

This poster shows a mathematical formulation that allows to a priori derive these parameters when going from 3D to 2D based on a sound variational reasoning (Variational EIM, VEIM).

Scattering Problems in Photonics

The time-harmonic propagation of a given optical influx is governed by the Maxwell equations

$$abla imes \mathbf{E} = -\mathrm{i}\,\omega\mu_0\mu\mathbf{H}, \quad
abla imes \mathbf{H} = \mathrm{i}\,\omega\varepsilon_0\varepsilon\mathbf{E}$$

Alternatively it can be found as a stationary point of the functional [6]

$$\mathfrak{F}(\mathbf{E},\mathbf{H}) = \int \left(\mathbf{E} \cdot (\nabla \times \mathbf{H}) + \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{i} \, \omega \varepsilon_0 \varepsilon \mathbf{E}^2 + \mathbf{i} \, \omega \mu_0 \mu \mathbf{H}^2 \right) dx \, dy \, dz$$

with electric $\mathbf{E}(x, y, z)$ and magnetic $\mathbf{H}(x, y, z)$ fields, angular frequency ω , vacuum permittivity ε_0 , vacuum permeability μ_0 , relative permittivity $\varepsilon(x, y, z) = n^2(x, y, z)$, refractive index n(x, y, z) and relative permeability $\mu(x, y, z) = 1$.

Variational EIM: $3D \rightarrow 2D$

We use a slab TE mode:

Field Distributions

The VEIM predictions of the location of the stopband and the general spectral features are reasonably close to the 3D FDTD reference results [2], while the 'conventional' EIM data, using either the cladding (1.0) or substrate permittivity (1.445^2) as effective values for the hole regions, are much further off.

Numerical Solution

- Rectangular 2D computational domain
- Interior: Finite Element discretization (COMSOL)
- Boundaries: Transparent Influx Boundary Conditions [3],
 [5] with Perfectly Matched Layers ↔ prescribed influx, undisturbed outflow of radiation

Concluding Remarks

Variational Effective Index for Scattering Problems

- Allows in a straightforward and simple way to reduce the dimensionality of the scattering problems from 3D to 2D for TE-like polarized light.
- A similar procedure has also been developed for TM polarization.
- Currently, work is in progress to extend the method to deal with the third dimension even more accurately, by means of superpositions of multiple slab modes.

Acknowledgement

This work was supported by the Dutch Technology Founda-

$$\mathbf{E}(x,z) = \begin{pmatrix} 0 \\ X^{E_y}(x) \\ 0 \end{pmatrix} \cdot \mathbf{e}^{-\mathbf{i}\beta_{\mathbf{r}}z}, \ \mathbf{H}(x,z) = \begin{pmatrix} X^{H_x}(x) \\ 0 \\ X^{H_z}(x) \end{pmatrix} \cdot \mathbf{e}^{-\mathbf{i}\beta_{\mathbf{r}}z}$$
with X^{E_y} :

 $\left(X^{E_y}(x)\right)'' + k^2 \varepsilon_{\mathbf{r}}(x) X^{E_y}(x) = \beta_{\mathbf{r}}^2 X^{E_y}(x),$

propagation constant β_r , permittivity distribution of the reference slice $\varepsilon_r(x)$, wavelength λ and vacuum wavenumber $k = 2\pi/\lambda$,

to approximate the 3D field of the complete structure as

 $\mathbf{E}(x, y, z) = \begin{pmatrix} 0 \\ X^{E_y}(x)P^{E_y}(y, z) \\ X^{E_y}(x)P^{E_z}(y, z) \end{pmatrix}, \ \mathbf{H}(x, y, z) = \begin{pmatrix} X^{H_x}(x)P^{H_x}(y, z) \\ X^{H_z}(x)P^{H_y}(y, z) \\ X^{H_z}(x)P^{H_z}(y, z) \end{pmatrix}$

with unknown functions *P*.

Using the relations between the slab mode components, it turns out that as soon as we know P^{H_x} all the other unknown functions can be derived as

$$\begin{pmatrix} P^{E_y} & P^{E_z} \\ P^{H_y} & P^{H_z} \end{pmatrix} (y,z) = \frac{\mathbf{i}\,\beta_\mathbf{r}}{k^2\varepsilon_{\mathrm{eff}}(y,z)} \begin{pmatrix} \partial_z P^{H_x} & -\partial_y P^{H_x} \\ \partial_y P^{H_x} & \partial_z P^{H_x} \end{pmatrix} (y,z).$$

Reconstruction of 3D Field

tion (BSIK / NanoNed project TOE.7143).

References

- [1] M. Dems and W. Nakwaski. The modelling of high-contrast photonic crystal slabs using the novel extension of the effective index method. *Optica Applicata*, 36(1):51–56, 2006.
- [2] MEEP. Free finite-difference time-domain simulation software package developed at MIT. http://www.ab-initio.mit.edu/meep.
- [3] J. B. Nicolau and E. van Groesen. Hybrid analytic-numeric method for light through a bounded planar dielectric domain. *Journal of Nonlinear Optical Physics and Materials*, 14(2):161–176, 2005.
- [4] M. Qiu. Effective index method for heterostructure-slab-waveguidebased two-dimensional photonic crystals. *Applied Physics Letters*, 81(7):1163–1165, 2002.
- [5] R. Stoffer, A. Sopaheluwakan, M. Hammer, and E. van Groesen. Helmholtz solver with transparent influx boundary conditions and nonuniform exterior. In *Proc. of XVI International Workshop on Optical Waveguide Theory and Numerical Modelling*, Copenhagen, Denmark, 2007. book of abstracts 3.
- [6] C. Vassallo. Optical waveguide concepts. Elsevier, Amsterdam, 1991.
- [7] L. Yang, J. Motohisa, and T. Fukui. Suggested procedure for the use of the effective-index method for high-index-contrast photonic crystal slabs. *Optical Engineering*, 44(7):078002–1–078002–7, 2005.