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Introduction

Before actually fabricating a device, designers in integrated

optics need to know how light behaves in their micro-

structures for a given optical influx:
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Some popular and accurate techniques include Finite Differ-

ence Time Domain and Finite Element Methods. However,

these rely on spatial discretization and quickly introduce a

large number of unknowns - and thus require large compu-

tational effort.

The well-known Effective Index Method (EIM) [1], [7], [4] re-

duces simulations of 3D structures to two spatial dimensions.

However, this method relies on the presence of guided modes

in each cross-section. Frequently, as is the case for photonic

crystal slabs, these do not exist, and the parameters for the 2D

simulation rely more or less on guesswork.

e(x,y,z) eeff(y,z)

This poster shows a mathematical formulation that allows

to a priori derive these parameters when going from 3D to

2D based on a sound variational reasoning (Variational EIM,

VEIM).

Scattering Problems in Photonics

The time-harmonic propagation of a given optical influx is

governed by the Maxwell equations

∇×E = −i!�0�H, ∇×H = i!"0"E,

Alternatively it can be found as a stationary point of the func-

tional [6]

F(E,H) =

∫

(

E⋅(∇×H)+H⋅(∇×E)−i!"0"E
2+i!�0�H

2
)

dx dy dz

with electric E(x, y, z) and magnetic H(x, y, z) fields, angular frequency
!, vacuum permittivity "0, vacuum permeability �0, relative permittivity
"(x, y, z) = n2(x, y, z), refractive index n(x, y, z) and relative permeability
�(x, y, z) = 1.

Variational EIM: 3D → 2D

We use a slab TE mode:
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with XEy :
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propagation constant �r, permittivity distribution of the reference slice
"r(x), wavelength � and vacuum wavenumber k = 2�/�,

to approximate the 3D field of the complete structure as
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with unknown functions P .

Using the relations between the slab mode components, it

turns out that as soon as we know PHx all the other unknown

functions can be derived as

(
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Governing Equation

The only equation to be solved is

(
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1
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1
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∂z + k2

)

PHx(y, z) = 0 (1)

with effective permittivity

"eff(y, z) =
�2

r

k2
+

∫
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(
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. (2)

Photonic Crystal Slab Waveguide
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Field Distributions

Reconstruction of 3D Field

PHx ⋅ XHx = Hx
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VEIM, εholes
eff

 = [− 0.887λ = 1.3µm
, − 1.145λ = 1.9µm

]

EIM, εholes
eff

 = 1

EIM, εholes
eff

 = 1.4452

3D FDTD, MEEP

The VEIM predictions of the location of the stopband and the

general spectral features are reasonably close to the 3D FDTD

reference results [2], while the ‘conventional’ EIM data, using

either the cladding (1.0) or substrate permittivity (1.4452) as ef-

fective values for the hole regions, are much further off.

Numerical Solution

∙ Rectangular 2D computational domain

∙ Interior: Finite Element discretization (COMSOL)

∙ Boundaries: Transparent Influx Boundary Conditions [3],

[5] with Perfectly Matched Layers ↔ prescribed influx,

undisturbed outflow of radiation

Concluding Remarks

Variational Effective Index for Scattering Problems

∙ Allows in a straightforward and simple way to reduce the

dimensionality of the scattering problems from 3D to 2D

for TE-like polarized light.

∙ A similar procedure has also been developed for TM polar-

ization.

∙ Currently, work is in progress to extend the method to deal

with the third dimension even more accurately, by means

of superpositions of multiple slab modes.
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