

An open dielectric resonator with a rectangular cavity

An open dielectric resonator with a rectangular cavity

An open dielectric resonator with a rectangular cavity

 $n_{g} = 3.2, n_{b} = 1.0,$ $d = 0.2 \,\mu\text{m}, W = 1.54 \,\mu\text{m}, \text{ variable } g,$ $\lambda \in [1.508, 1.538] \,\mu\text{m}, \text{ in: TE}_{0}.$

▲□▶ ▲≣▶ ∽९९०
 2

An open dielectric resonator with a rectangular cavity

1.53 1.535

An open dielectric resonator with a rectangular cavity

(2-D) $\partial_y \epsilon = 0, \ \partial_y (\boldsymbol{E}, \boldsymbol{H}) = 0$

◆□▶ ◆≣▶ めぬで

An open dielectric resonator with a rectangular cavity

(2.5-D) $\partial_{y}\epsilon = 0$, $(\boldsymbol{E}, \boldsymbol{H}) \sim \exp(-ik_{y}y)$, $k_{y} \sim \sin\theta$

An open rectangular dielectric optical cavity with unlimited Q

Overview

- Oblique incidence of semi-guided waves
- Snell's law, critical angles
- Strip resonator, resonance properties

・ロト <
言 ト の Q の 4
</p>

◆□▶ ◆重▶ めぬぐ

4

Semi guided waves at oblique angles of incidence

- Incoming slab mode $\{N_{\text{in}}; \Psi_{\text{in}}\}, (E, H) \sim \Psi_{\text{in}}(x) e^{-i(k_y y + k_z z)},$ incidence angle $\theta, k^2 N_{\text{in}}^2 = k_y^2 + k_z^2, k_y = k N_{\text{in}} \sin \theta.$
- y-homogeneous problem: $(E, H) \sim e^{-ik_y y}$ everywhere.

Semi guided waves at oblique angles of incidence

<ロト < 言> のQ () 6

Semi guided waves at oblique angles of incidence

- Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$ $k^2 N_{\text{out}}^2 = k_y^2 + k_\xi^2, k_y = k N_{\text{in}} \sin \theta.$
- $k^2 N_{out}^2 > k_y^2$: $k_{\xi} = k N_{out} \cos \theta_{out}$, wave propagating at angle θ_{out} , $N_{out} \sin \theta_{out} = N_{in} \sin \theta$.

・ロト ・ヨト めへぐ

$\begin{array}{c} x \\ \theta \\ R \end{array}$

- y ξ_3 ξ_2 y y
- Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$ $k^2 N_{\text{out}}^2 = k_y^2 + k_\xi^2, k_y = k N_{\text{in}} \sin \theta.$
- $k^2 N_{out}^2 < k_y^2$: $k_{\xi} = -i \sqrt{k_y^2 k^2 N_{out}^2}$, ξ -evanescent wave, the outgoing wave does not carry optical power.

Semi guided waves at oblique angles of incidence

- Outgoing wave $\{N_{\text{out}}; \Psi_{\text{out}}\}, (E, H) \sim \Psi_{\text{out}}(.) e^{-i(k_y y + k_\xi \xi)},$ $k^2 N_{\text{out}}^2 = k_y^2 + k_\xi^2, \quad k_y = k N_{\text{in}} \sin \theta.$
- Scan over θ :

change from ξ -propagating to ξ -evanescent if $k^2 N_{out}^2 = k^2 N_{in}^2 \sin^2 \theta$

 $\longrightarrow \text{ mode } \{N_{\text{out}}; \Psi_{\text{out}}\} \text{ does not carry power for } \theta > \theta_{\text{cr}}, \\ \text{critical angle } \theta_{\text{cr}}, \quad \sin \theta_{\text{cr}} = N_{\text{out}}/N_{\text{in}}.$

<□> < ≧> < つへの 6

Critical angles

 $n_{g} > n_{b}$, single mode slabs, $N_{TE0} > N_{TM0} > n_{b}$, in: TE₀.

- Propagation in the cladding relates to effective indices $N_{\text{out}} \le n_{\text{b}}$ $\sim R_{\text{TE0}} + R_{\text{TM0}} + T_{\text{TE0}} + T_{\text{TM0}} = 1$ for $\theta > \theta_{\text{b}}$, $\sin \theta_{\text{b}} = n_{\text{b}}/N_{\text{TE0}}$.
- TM polarized waves relate to effective mode indices $N_{out} \le N_{TM0}$ $\sim R_{TM0} = T_{TM0} = 0$, $R_{TE0} + T_{TE0} = 1$ for $\theta > \theta_{TM}$, $\sin \theta_{TM} = N_{TM0}/N_{TE0}$.

▲□▶ ▲≣▶ めんの ()

Strip resonator, fields

Oblique resonant excitation of a dielectric strip

The strip supports a guided TE-like mode with effective index $N_{\rm m}$ @ $\lambda = \lambda_{\rm m}$

Resonant interaction with the waves in the slab expected at $\theta \approx \theta_{\rm m}$, where $k_{\rm y} = kN_{\rm in} \sin \theta \approx kN_{\rm m}$, $\sin \theta_{\rm m} = N_{\rm m}/N_{\rm in}$.

▲□▶ ▲≣▶ 釣�??

Strip resonator, fields

<ロト < E ト の Q (P 9

Strip resonator, fields

Strip resonator, fields

▲□▶ ▲≣▶ ∽९९~ 9

. 0 z [μm] 0.5

1 1.5

-0.5

-1.5 -1

Oblique resonant excitation of a dielectric strip

Oblique resonant excitation of a dielectric strip

<ロト < E ト の Q 〇 10

▲□▶ ▲ ≣▶ ∽ ९ २ ? 10

Oblique resonant excitation of a dielectric strip

Oblique resonant excitation of a dielectric strip

Oblique resonant excitation of a dielectric strip

▲□▶ ▲≣▶ 釣९៚ 10

▲□▶ ▲ ≧▶ • • • • • • 10

Oblique resonant excitation of a dielectric strip

<ロト < E ト の Q 〇 11

<□> < ≧> のQ(? 11)

Strip resonator, resonance properties

Strip resonator, formation of resonances

Relevant states:

- the bound state Ψ_m of the isolated cavity (large g), eigenfrequency ω_m = 2πc/λ_m ∈ ℝ,
- a continuum of guided waves Ψ_s in the isolated slab (large g), frequencies ω ∈ [ω₀, ω₁], where ω₀ < ω_m < ω₁,
- the leaky eigenstate Ψ_c of the composite system (finite g),
 eigenfrequency ω_c ∈ C, Ψ_c → Ψ_m with ω_c → ω_m at large g,
- the resonant transmission state Ψ_t (finite g), a superposition of Ψ_c and Ψ_s .

(ロ) (目) (目) の(の) 13

(fixed $\theta = \theta_{\rm m}$, variable λ, ω)

Strip resonator, resonance properties

Concluding remarks

Oblique semi-guided excitation of a dielectric strip:

- an open dielectric resonator with unlimited Q,
- exceptionally simple,
- a system that supports a bound state and a continuum of waves in a frequency range that covers the real eigenfrequency of the bound state: "Bound state Coupled to a Continuum" (BCC).

(... BIC ?)

