On effective index approximations of photonic crystal slabs

Institute for Nanotechnology

Manfred Hammer*, Alyona Ivanova

Applied Analysis & Mathematical Physics MESA⁺ Institute for Nanotechnology University of Twente, The Netherlands

> XVIIIth International Workshop on Optical Waveguide Theory and Numerical Modelling OWTNM 2009, Jena, Germany, April 17–18, 2009

* Department of Applied Mathematics, University of Twente
Phone: +31/53/489-3448P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: m.hammer@math.utwente.nl

Effective index approximations

$3D \rightarrow 2D$

Effective index approximations

$3D \rightarrow 2D$

$2D \to 1D$

Effective index approximations

- $2D \rightarrow 1D$, examples
- A variational view on the effective index method
- vEIM $2D \rightarrow 1D$, examples
- $3D \rightarrow 2D$, scalar approximation
- Outlook: vectorial formalism

$$(n_{\rm s}, n_{\rm f}, n_{\rm c}) = (1.45, 2.0, 1.0),$$

$$\Lambda = 0.21 \,\mu\text{m}, \ g = 0.11 \,\mu\text{m},$$

$$d = 0.6 \,\mu\text{m}, \ t = 0.2 \,\mu\text{m},$$

TE, $\lambda \in [0.4, 0.9] \,\mu\text{m}.$

$$(n_{\rm s}, n_{\rm f}, n_{\rm c}) = (1.45, 2.0, 1.0),$$

$$\begin{split} \Lambda &= 0.21\,\mu{\rm m}, \ g = 0.11\,\mu{\rm m}, \\ d &= 0.6\,\mu{\rm m}, \ t = 0.2\,\mu{\rm m}, \end{split}$$

TE, $\lambda \in [0.4, 0.9] \, \mu \text{m}$.

 $2D \rightarrow 1D$ effective index approximation:

$$N_{\text{eff}}^{\text{slab}} \in [1.67, 1.87],$$

 $N_{\text{eff}}^{\text{holes}} = ?$

QUEP - reference.

6

2D, TE, frequency domain problems, vacuum wavelength $\lambda = 2\pi/k$, permittivity $\epsilon(x, z) = n^2(x, z)$, principal electric component $E_y(x, z)$.

If the functional

$$\mathcal{H}(E_y) := \frac{1}{2} \iint_{\Omega} \left((\partial_x E_y)^2 + (\partial_z E_y)^2 - k^2 \epsilon E_y^2 \right) \mathrm{d}x \, \mathrm{d}z$$

is stationary for E_y , then E_y satisfies the Helmholtz equation

$$\partial_x^2 E_y + \partial_z^2 E_y + k^2 \epsilon E_y = 0, \qquad (x, z) \in \Omega.$$

Variational effective index approximation

Reference permittivity $\epsilon_{\rm r}(x)$ with guided mode $\phi(x)$, mode index β/k :

$$\partial_x^2 \phi + (k^2 \epsilon_{\rm r} - \beta^2) \phi = 0$$

Assumption:

 ϕ constitutes a reasonable approximation for the vertical field shape on the entire horizontal axis,

$$E_y(x,z) = \psi(z) \phi(x), \qquad \psi = ?$$

Variational effective index approximation

Restriction of \mathcal{H} to $E_y(x,z) = \psi(z) \phi(x)$ \checkmark stationarity condition

$$\partial_z^2 \psi + k^2 \epsilon_{\text{eff}}(z) \, \psi = 0$$

with effective permittivity

$$\epsilon_{\rm eff}(z) = (\beta/k)^2 + \frac{\int (\epsilon(x,z) - \epsilon_{\rm r}(x)) \phi^2(x) \,\mathrm{d}x}{\int \phi^2(x) \,\mathrm{d}x}, \qquad \epsilon_{\rm eff}(z) = N_{\rm eff}^2(z).$$

Variational Effective Index Method vEIM

QUEP - reference.

13

Choose $\epsilon_{\mathbf{r}}(x)$, $\phi(x)$, β , with $\partial_x^2 \phi + (k^2 \epsilon_{\mathbf{r}} - \beta^2) \phi = 0$. Assume $E(x, y, z) = \psi(y, z) \phi(x)$: $\partial_y^2 \psi + \partial_z^2 \psi + k^2 \epsilon_{\text{eff}}(y, z) \psi = 0$, $\epsilon_{\text{eff}}(y, z) = (\beta/k)^2 + \frac{\int (\epsilon(x, y, z) - \epsilon_{\mathbf{r}}(x)) \phi^2(x) dx}{\int \phi^2(x) dx}$, $\epsilon_{\text{eff}}(y, z) = N_{\text{eff}}^2(y, z)$.

(*) 3D FDTD: Lasse Kauppinen, IOMS group, MESA⁺, University of Twente.

Contrast (1.445 : 3.48 : 1.0).

Contrast (1.445 : 3.48 : 1.0).

 $N_{\text{eff}}^{\text{slab}} \in [2.68, 2.96], \ N_{\text{eff}}^{\text{holes}} = 1.445, 1.0$ (EIM).

Contrast (1.445 : 3.48 : 1.0).

 $N_{\text{eff}}^{\text{slab}} \in [2.68, 2.96], \ \epsilon_{\text{eff}}^{\text{holes}} \in [-0.792, -1.146]$ (vEIM).

Contrast (1.445 : 3.48 : 1.0).

 $N_{\text{eff}}^{\text{slab}} \in [2.68, 2.96], \ \epsilon_{\text{eff}}^{\text{holes}} \in [-0.792, -1.146] \ \text{(vEIM)}.$

Effective index treatment of photonic crystal slabs:

- a mere qualitative, sometimes perhaps a crude quantitative approximation,
- where unavoidable:

use effective permittivity $\epsilon_{\text{eff}} = N_{\text{eff}}^2$ with perturbational correction term; ϵ_{eff} can well be smaller than one, or be negative, less heuristic approach with well-defined field approximation,

• in general: no guarantees.

