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1 Effectiveindex approximations

The propagation of light through slab-like photonic cristPCs) is frequently
scribed in terms of effective indices (effective index nuetfEIM, cf. e.g. Refs. [1,2,
One replaces the actual 3-D structure by an effective 2-Mnjttvity, given by ti
propagation constants of the slab modes of the local vérémctive index profil

de-
3)).
he

les.

Though the approach is usually described for the approxiceitulation of waveguide

modes, it s just as well applicable to propagation problems

Our aim is to check the approximation by analogous steps¢iaice finite 2-D wave-
guide Bragg-gratings, which in turn can be seen as sectfusigh 3-D PC mem-
branes, to 1-D problems, which are tractable by standandfiza matrix methods. A
2-D Helmholtz solver (QUEP [4,5], reference method) alléavsolve the 2-D problem

rigorously, i.e. to assess the quality of the EIM approxiomat

The EIM-viewpoint becomes particularly questionable ifdby the vertical refractive

index profile cannot accommodate any guided mode, as elge indles of a PC m
brane. We check numerically a recipe [1,6], based on a vamitview on the EIM
uniquely define an effective permittivity even for thesea=sas

em-
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Our simulations [12,13] show clearly that a treatment of@ppgation problem involv-
ing a high contrast PC membrane in terms of effective indizgshardly be expected

, or rather crude q

to be more than a mere q

Nev-

ertheless, situations may arise where, for various reasbere are no options but to
restrict simulations of real 3-D devices to 2-D. One shohihtat least invest the small

effort to determine the correction term in Eq. (7), and perfthe 2-D calculation

for

the thus established effective permittivity profile. Atdefor the present examples we

could observe that the resulting pp! comes cls
to reality than any “conventional” EIM with educated guesséeffective indices
regions where no local modes exist.

2 2-D propagation problems

oser
for

The 2-D frequency domain propagation of TE-polarized lighth vacuum wave-

lengthA and wavenumbeir = 27 /A through a dielectric structure with relative per-

mittivity (z, 2) = n?(x, z) is governed by the scalar equation

OB, + OBy + K E, =0 )

for the single principal electric field componefij(, z).

« Define the functional [1,6,7,8]

H\L’):éll ((0.E)* + (0.
2JJa

on the domain of interest, part of ther-z-plane.

tional boundary terms ifit, can be disregarded for the present formalism.

* 'H becomes stationary for solutions of Eq. (1):
If the first variation

K2eB?) ded: @

Boundary conditions representing incoming and outgoigbtli and related addi-

A‘H[E.JE}*—// ((02E + 0’E + 1*¢E) 6E du dz 3)
Q

of H at E vanishes for arbitranjE, thenE satisfies Eq. (1) withif.

3 Variational effectiveindex approximation

€en(z)

Select a vertical reference permittivity profilgz), for which a guided slab m
o(z) with effective mode index. satisfies the 1-D mode equation

ode

Do+ k(e — ngy) 6= 0. &)
e Assumption: ¢ a pp for the verticial §ieape on
the entire horizontal axjssuch that the optical field is given by
®)

up to a yet to be determined function

Upon restricting the functiona{ to fields of the form (5), one obtains, as a con
for stationarity with respect tg, the 1-D Helmholtz equation

dition

D%+ Keen) = 0 (6)

for the field dependence on the horizontal coordinate wigcéfre permittivity [1,

elx)) ¢*(z) da

/(r’(md.

which can well turn out to be smaller tharocally, or even to be negative.

eoti(z) = ngg + ceff(2) = Negl

6]
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Variational Effective Index Method VvEIM

Analogous expressions can be derived for different paléida [9], and based on variational forms [1,10]

of the full 3-D Maxwell equations, just as in the context atsz [9] and vectorial [11] mode solvel

rs.

4 Deeply etched waveguide Bragg grating

ne = 1.0, nf = 2.0, ng = 1.45,
A =0.21 pm, g = 0.11 m,
d=0.6pm,t=02pm.
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Rel. guided wave (fundamental mode) transmisiand reflection?? versus vacuum wavelength
Effective indices (EIM, VEIM) for the slab segmentSZ® € [1.87, - o.4,m. 1.67x — 0.9,m]

VEIM effective index in the etched regionS?igese [0.82, - o.1m. 0.1 - 00 um]

Background shading losses (QUEP). Patches: the wavelength range where thisstatitimode.
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(6)VEIM, A= 055m

(©) QUEP, A= 0.65um

@vEM, A=0.8%m

ne =10, nf = 3.4, ng = 145,
0 4m, A = 0.310 um,
35um, L = 1515 um.
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Vertically nonsymmetric waveguide grating with central defe

spectral transmissich and reflectionf around a defect resonance.

NZED € (2.5 — 156 um, 2.7~ 1.52 ] (VEIM and EIM),
chpese [-0.9 s —0.943 _ 152, (VEIM).

6 High contrast PC membrane

n A=0
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= re=10m=34

t=02pm,
I 15, 4m, g = 0.225 pm.
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High contrast vertically symmetric waveguide Bragg grating,
‘modal transmissioif and reflectiort? versus vacuum wavelengi
NS0 € 2,335~ 22,m, 3.09 - 0.5,m] (VEIM and EIM),

4P [~1.30, - 22,m 041, 05 ] (VEIM),
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