
On effective index approximations of photonic crystal slabs

Manfred Hammer, Alyona Ivanova, MESA⁺ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

1 Effective index approximations

The propagation of light through slab-like photonic crystals (PCs) is freque scribed in terms of effective indices (effective index method EIM, cf. e.g. Refs. [1,2,3]). One replaces the actual 3-D structure by an effective 2-D permittivity, given by the propagation constants of the slab modes of the local vertical refractive index profiles. Though the approach is usually described for the approximate calculation of waveguide modes, it is just as well applicable to propagation problems.

Our aim is to check the approximation by analogous steps that reduce finite 2-D wave-guide Bragg-gratings, which in turn can be seen as sections through 3-D PC mem-branes, to 1-D problems, which are tractable by standard transfer matrix methods. A 2-D Helmholtz solver (QUEP [4,5], reference method) allows to solve the 2-D problem rigorously, i.e. to assess the quality of the EIM approximation.

The EIM-viewpoint becomes particularly questionable if locally the vertical refractive The EIM-Viewpoint occurse particulary questionable in tocary the vertical retractive index profile cannot accommodate any guided mode, as e.g. in the holes of a PC mem-brane. We check numerically a recipe [1,6], based on a variational view on the EIM, to uniquely define an effective permittivity even for these cases.

Our simulations [12,13] show clearly that a treatment of a propagation problem involv-ing a high contrast PC membrane in terms of effective indices can hardly be expected to be more than a mere qualitative, or rather crude quantitative, approximation. Nevertheless, situations may arise where, for various reasons, there are no options but to restrict simulations of real 3-D devices to 2-D. One should then at least invest the small restrict simulations of real 3-D devices to 2-D. One should then at least invest the small effort to determine the correction term in Eq. (7), and perform the 2-D calculation for the thus established effective permittivity profile. At least for the present examples we could observe that the resulting variational effective index approximation comes closer to reality than any "conventional" EIM with educated guesses of effective indices for regions where no local modes exist.

2 2-D propagation problems

The 2-D frequency domain propagation of TE-polarized light with vacuum wavelength λ and wavenumber $k=2\pi/\lambda$ through a dielectric structure with relative permittivity $\epsilon(x,z)=n^2(x,z)$ is governed by the scalar equation $\partial^2 E_{\mu} + \partial^2 E_{\mu} + k^2 \epsilon E_{\mu} = 0$ (1)

02-9 · 02-9 · 0 · -9 ·
for the single principal electric field component $E_{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{z}).$

• Define the functional [1,6,7,8]

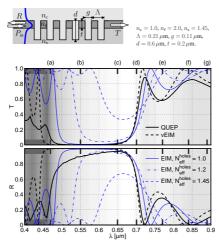
$\mathcal{H}(E) = \frac{1}{2} \iint_{\Omega} \left((\partial_x E)^2 + (\partial_z E)^2 - k^2 \epsilon E^2 \right) \mathrm{d}x \mathrm{d}z$
--

on the domain of interest $\Omega,$ part of the x-z-plane

Boundary conditions representing incoming and outgoing light, and related additional boundary terms in \mathcal{H} , can be disregarded for the present formalism

(2)

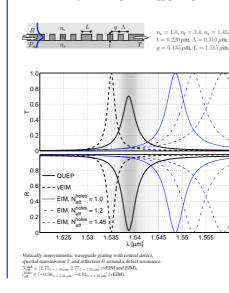
(3)

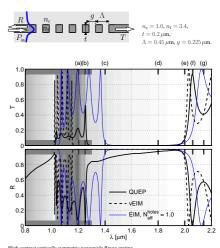

• *H* becomes stationary for solutions of Eq. (1): If the first variation

 $\delta \mathcal{H}(E, \delta E) = - \iint_{\Omega} \left((\partial_x^2 E + \partial_z^2 E + k^2 \epsilon E) \delta E \, dx \, dz \right)$ of \mathcal{H} at E vanishes for arbitrary δE , then E satisfies Eq. (1) within Ω .

3 Variational effective index approximation

$\begin{array}{c} R & \downarrow^{x} & \phi(x) & \epsilon(x,z) \\ \hline P_{a} & \downarrow^{x} & \downarrow^{x} & \downarrow^{x} \\ \hline P_{a} & \downarrow^{x} & \downarrow^{x} & \downarrow^{x} \\ \hline \end{array} \xrightarrow{e^{a}} & \underset{P_{a}}{\overset{e^{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{R}{\longrightarrow}} & \underset{P_{a}}{\overset{e^{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\overset{P_{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\overset{P_{a}}{\overset{P_{a}}{\longrightarrow}} & \underset{P_{a}}{\overset{P_{a}}{\overset{P_{a}}{P_{a$				
• Select a vertical reference permittivity profile $\epsilon_{\rm f}(x),$ for which a guided slab mode $\phi(x)$ with effective mode index $n_{\rm eff}$ satisfies the 1-D mode equation				
$\partial_x^2 \phi + k^2 (\epsilon_r - n_{\text{eff}}^2) \phi = 0.$ (4)				
 Assumption: φ constitutes a reasonable approximation for the vertical field shape on the entire horizontal axis, such that the optical field is given by 				
$E_{g}(x,z) = \psi(z) \phi(x) , \qquad (5)$				
up to a yet to be determined function ψ .				
• Upon restricting the functional \mathcal{H} to fields of the form (5), one obtains, as a condition for stationarity with respect to ψ , the 1-D Helmholtz equation				
$\partial_z^2 \psi + k^2 \epsilon_{\rm eff} \psi = 0 \tag{6}$				
for the field dependence on the horizontal coordinate with effective permittivity [1,6]				
$\epsilon_{\rm eff}(z) = n_{\rm eff}^2 + \frac{\int (\epsilon(x, z) - \epsilon_{\rm r}(x)) \phi^2(x) \mathrm{d}x}{\int \phi^2(x) \mathrm{d}x}, \qquad \epsilon_{\rm eff}(z) = N_{\rm eff}^2(z), \tag{7}$				
which can well turn out to be smaller than 1 locally, or even to be negative.				
Variational Effective Index Method vEIM				
Analogous expressions can be derived for different polarization [9], and based on variational forms [1,10] of the full 3-D Maxwell equations, just as in the context of scalar [9] and vectorial [11] mode solvers.				


4 Deeply etched waveguide Bragg grating


use wave (tunnamentai mone) transmission 1⁺ and reflection R versus vacuum wa e indices (ELM, VELM) for the slab segments: $N_{eff}^{adb} \in [1.87_{A} - 0.6_{\mu m}, 1.67_{A} - 0.6_{\mu m}]$. Tective index in the etched regions: $N_{eff}^{bala} \in [0.82_{A} - 0.4_{\mu m}, 0.71_{A} - 0.6_{\mu m}]$, und shading ~ losses (QUEP). Patches: the wavelength range where the slab is m Effective indices (EIM, vEIM) for the vEIM effective index in the etched res

1 (a) QUEP, λ = 0.47μm	(a) vEIM, $\lambda = 0.47 \mu m$
5. 5. 	•••••••••••••••••••••••••••••••••••••••
(b) QUEP, λ = 0.55μm	(b) νΕΙΜ, λ = 0.55μm
€ o s- -1	•••••••••••••••••••••••••••••••••••••••
(c) QUEP, \ = 0.65	(c) vEIM, $\lambda = 0.65 \mu m$
-0.5 -1 -1 (d) QUEP, \lambda = 0.70µm	(d) vEIM, 1 = 0.70µm
	WWW
-0.5 -1 0.5	(e) vEIM, λ = 0.77μm
-1 1 (1) OUEP, $\lambda = 0.84 \mu m$ 0.5	(f) vEM, λ = 0.84μm
0.5 0.5 0.5	(g) vEIM, λ = 0.80µm
-0.5 -1 -2 -1 0 1 2 3	-2 -1 0 1 2 3
z [µm]	z [µm]

5 Defect cavity in a waveguide Bragg grating

6 High contrast PC membrane

_____ Ĩ Ĩ

1 z lumi

Acknowledgments

This work has been supported by the Dutch Technology foundation STW (BSIK / NanoNed project TOE.7143). The authors thank Brenny van Groesen, Hugo Hoekstra, and Remco Stoffer for many fruitful discussions.

[m]

E

- [1] C. Vassallo. Optical Waveguide Concepts. Elsevier, Amste
- [2] R. März. Integrated Optics Design and Modeling. Artech House, Boston, London, 1994
- [3] K. Okamoto. Fundamentals of Optical Waveguides. Academic Press, San Diego, 2000.
- K. Somment. Quadridirection are generated with a specific problem of the specific problem
- es SIAM
- [6] E. W. C. van Groesen and J. Molenaar. Continuum Modeling in the Physical Scie publishers, Philadelphia, USA, 2007.
- [7] E. van Groesen. Variational modelling for integrated optical devices. Proceeding symposium on Mathematical Modelling, Vienna, 2003. [8] A. Sopaheluwakan. Characterization and Simulation of Localized States in Op University of Twente, Enschede, The Netherlands, 2006. Ph.D. Thesis.
- [9] O. V. Ivanova, M. Hammer, R. Stoffer, and E. van Groesen. A variational mode expa mode solver. Optical and Quantum Electronics, 39(10–11):849–864, 2007.
- [10] M. Hammer. Hybrid analytical / numerical coupled-mode modeling of guided wave devices Journal of Lightwave Technology, 25(9):2287–2298, 2007.
- [11] O. V. Ivanova, R. Stoffer, M. Hammer, and E. van Groesen. A vectorial variational mode solver and its application to piecewise constant and diffused waveguides. 12-th International Conference on Mathematical Methods in Electromagnetic Theory MMET08, Odessa, Ukraine, Proceedings, 495-497 (2008).
- [12] M. Hammer and O. V. Ivanova. On effective index approximations of photonic crystal slabs IEEE/LEOS Benlux Chapter, 13th Annual Symposium, Enschede, The Netherlands, Confer ence Proceedings, 203-206 (2008).
- [13] O. V. Ivanova, R. Stoffer, and M. Hammer. A dimensionality reduction technique for scatteri problems in photonics. 1st International Workshop on Theoretical and Computational Nau Photonics TaCoNa-Photonics, Conference Proceedings, 47 (2008)

Manfred Hammer University of Twente, Department of Applied Mathematics Contact: Mulanred Hammer University of Iwente, Department of Applied Multematics Applied Analysis & Multematical Physics Group, PO, Box 217, 7500 AE Enschede, The Netherlands Phone: ++31/53/489-3448 Fax: ++31/53/489-4833 E-mail: m.hammer@math.utwente.nl

Ø