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1 Effective index approximations

The propagation of light through slab-like photonic crystals (PCs) is frequently de-
scribed in terms of effective indices (effective index method EIM, cf. e.g. Refs. [1,2,3]).
One replaces the actual 3-D structure by an effective 2-D permittivity, given by the
propagation constants of the slab modes of the local vertical refractive index profiles.
Though the approach is usually described for the approximate calculation of waveguide
modes, it is just as well applicable to propagation problems.
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Our aim is to check the approximation by analogous steps thatreduce finite 2-D wave-
guide Bragg-gratings, which in turn can be seen as sections through 3-D PC mem-
branes, to 1-D problems, which are tractable by standard transfer matrix methods. A
2-D Helmholtz solver (QUEP [4,5], reference method) allowsto solve the 2-D problem
rigorously, i.e. to assess the quality of the EIM approximation.

The EIM-viewpoint becomes particularly questionable if locally the vertical refractive
index profile cannot accommodate any guided mode, as e.g. in the holes of a PC mem-
brane. We check numerically a recipe [1,6], based on a variational view on the EIM, to
uniquely define an effective permittivity even for these cases.

Our simulations [12,13] show clearly that a treatment of a propagation problem involv-
ing a high contrast PC membrane in terms of effective indicescan hardly be expected
to be more than a mere qualitative, or rather crude quantitative, approximation. Nev-
ertheless, situations may arise where, for various reasons, there are no options but to
restrict simulations of real 3-D devices to 2-D. One should then at least invest the small
effort to determine the correction term in Eq. (7), and perform the 2-D calculation for
the thus established effective permittivity profile. At least for the present examples we
could observe that the resulting variational effective index approximation comes closer
to reality than any “conventional” EIM with educated guesses of effective indices for
regions where no local modes exist.

2 2-D propagation problems
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• The 2-D frequency domain propagation of TE-polarized lightwith vacuum wave-
lengthλ and wavenumberk = 2π/λ through a dielectric structure with relative per-
mittivity ǫ(x, z) = n2(x, z) is governed by the scalar equation

∂2
xEy + ∂2

zEy + k2ǫ Ey = 0 (1)

for the single principal electric field componentEy(x, z).

• Define the functional [1,6,7,8]

H(E) =
1

2

∫∫

Ω

(

(∂xE)2 + (∂zE)2 − k2ǫE2
)

dx dz (2)

on the domain of interestΩ, part of thex-z-plane.

• Boundary conditions representing incoming and outgoing light, and related addi-
tional boundary terms inH, can be disregarded for the present formalism.

• H becomes stationary for solutions of Eq. (1):
If the first variation

δH(E, δE) = −

∫∫

Ω

(

(∂2
xE + ∂2

zE + k2ǫE
)

δE dx dz (3)

of H atE vanishes for arbitraryδE, thenE satisfies Eq. (1) withinΩ.

3 Variational effective index approximation
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• Select a vertical reference permittivity profileǫr(x), for which a guided slab mode
φ(x) with effective mode indexneff satisfies the 1-D mode equation

∂2
xφ + k2(ǫr − n2

eff)φ = 0 . (4)

• Assumption:φ constitutes a reasonable approximation for the vertical field shape on
the entire horizontal axis, such that the optical field is given by

Ey(x, z) = ψ(z)φ(x) , (5)

up to a yet to be determined functionψ.

• Upon restricting the functionalH to fields of the form (5), one obtains, as a condition
for stationarity with respect toψ, the 1-D Helmholtz equation

∂2
zψ + k2ǫeff ψ = 0 (6)

for the field dependence on the horizontal coordinate with effective permittivity [1,6]

ǫeff(z) = n2
eff +

∫

(ǫ(x, z) − ǫr(x))φ2(x) dx
∫

φ2(x) dx
, ǫeff(z) = N2

eff(z), (7)

which can well turn out to be smaller than1 locally, or even to be negative.

Variational Effective Index Method vEIM

Analogous expressions can be derived for different polarization [9], and based on variational forms [1,10]
of the full 3-D Maxwell equations, just as in the context of scalar [9] and vectorial [11] mode solvers.

4 Deeply etched waveguide Bragg grating
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nc = 1.0, nf = 2.0, ns = 1.45,
Λ = 0.21µm, g = 0.11µm,
d = 0.6µm, t = 0.2µm.
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Rel. guided wave (fundamental mode) transmissionT and reflectionR versus vacuum wavelengthλ.
Effective indices (EIM, vEIM) for the slab segments:Nslab

eff ∈ [1.87λ = 0.4 µm, 1.67λ = 0.9 µm].
vEIM effective index in the etched regions:Nholes

eff ∈ [0.82λ = 0.4 µm, 0.71λ = 0.9 µm].
Background shading∼ losses (QUEP). Patches: the wavelength range where the slabis multimode.
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5 Defect cavity in a waveguide Bragg grating
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g = 0.135µm,L = 1.515µm.
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Vertically nonsymmetric waveguide grating with central defect,
spectral transmissionT and reflectionR around a defect resonance.
Nslab

eff ∈ [2.75λ = 1.56 µm, 2.77λ = 1.52 µm] (vEIM and EIM),
ǫholes

eff ∈ [−0.96λ = 1.56 µm,−0.94λ = 1.52 µm] (vEIM).

6 High contrast PC membrane
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High contrast vertically symmetric waveguide Bragg grating,
modal transmissionT and reflectionR versus vacuum wavelengthλ.
Nslab

eff ∈ [2.33λ = 2.2 µm, 3.09λ = 0.8 µm] (vEIM and EIM),
ǫholes

eff ∈ [−1.30λ = 2.2 µm,−0.41λ = 0.8 µm] (vEIM).
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