Simulations of vertically-coupled circular microresonators by 3-D vectorial coupled mode theory

9

MESA+

Remco Stoffer¹, Kirankumar R. Hiremath², Manfred Hammer^{2,*}, Ladislav Prkna³, Jiří Čtyroký⁴

- ¹ PhoeniX BV, Enschede, The Netherlands
- ² MESA⁺ Research Institute, University of Twente, Enschede, The Netherlands
- ³ Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis, France
- ⁴ IREE, Czech Academy of Sciences, Prague, Czech Republic

12th European Conference on Integrated Optics, ECIO'05, April 6-8, 2005, Grenoble, France

* M. Hammer, Dept. of Applied Mathematics, University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands Phone: +31/53/489-3448 Fax: +31/53/489-4833 E-mail: m.hammer@math.utwente.nl

Ringresonator modeling

Ringresonator modeling

- Ringresonator
 ≈ 2 couplers
 + 2 cavity segments.
- CW description: $E, H \sim e^{i\omega t},$ $\omega = k c, \ k = 2\pi/\lambda.$

Ab initio 3-D model

3-D CMT simulations of circular microresonators

- CMT ringresonator model
 - Coupler region: Basis fields, CMT ansatz
 - Coupler region: CMT equations, solution
 - Resonator: Power transmission, spectra
- Numerical results
 - Vertically coupled microdisk-resonator
 - Resonator with "hybrid" ring-cavity

Coupler region: Basis fields & CMT ansatz

Numerical basis fields: (FD, FMM)

• Cavity: 3-D (2-D) bend modes

$$\begin{pmatrix} E_m \\ H_m \end{pmatrix} (r, \theta, y) = \begin{pmatrix} E_{m,0} \\ H_{m,0} \end{pmatrix} (r, y) e^{-i\gamma_m R\theta}$$
• Straight bug cores: 2 D (2 D) guided modes

• Straight bus core: 3-D (2-D) guided modes
$$\begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{H}_n \end{pmatrix} (x, y, z) = \begin{pmatrix} \boldsymbol{E}_{n,0} \\ \boldsymbol{H}_{n,0} \end{pmatrix} (x, y) e^{-i\beta_n z}.$$

4

 (ϵ_m)

 (ϵ_n)

,

Coupler region: Basis fields & CMT ansatz

Numerical basis fields: (FD, FMM)

• Cavity: 3-D (2-D) bend modes
$$(\epsilon_m)$$

 $\begin{pmatrix} E_m \\ H_m \end{pmatrix} (x, y, z) = \begin{pmatrix} E_{m,0} \\ H_{m,0} \end{pmatrix} (r(x, z), y) e^{-i\gamma_m R\theta(x, z)},$
• Straight bus core: 3-D (2-D) guided modes (ϵ_n)

$$\begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{H}_n \end{pmatrix} (x, y, z) = \begin{pmatrix} \boldsymbol{E}_{n,0} \\ \boldsymbol{H}_{n,0} \end{pmatrix} (x, y) e^{-i\beta_n z}.$$

4

Coupler region: Basis fields & CMT ansatz

Coupled mode ansatz:

$$\begin{pmatrix} \boldsymbol{\mathcal{E}} \\ \boldsymbol{\mathcal{H}} \end{pmatrix} (x, y, z, t) = \frac{1}{2} \operatorname{Re} \sum_{m} A_{m}(z) \begin{pmatrix} \boldsymbol{E}_{m} \\ \boldsymbol{H}_{m} \end{pmatrix} (x, y, z) e^{\mathbf{i}\omega t}.$$

Suitable integral form of Maxwell equations

$$\begin{split} & \checkmark \quad \mathsf{O}(z) \, \frac{\mathrm{d}}{\mathrm{d}z} \boldsymbol{A}(z) = \mathsf{K}(z) \, \boldsymbol{A}(z) \,, \\ & \boldsymbol{A} = (A_m) \,, \quad \mathsf{O} = (\sigma_{lm}) \,, \quad \mathsf{K} = (\kappa_{lm}) \,, \\ & \sigma_{lm} = \frac{1}{4} \, \iint \boldsymbol{e}_z \cdot (\boldsymbol{E}_m \times \boldsymbol{H}_l^* + \boldsymbol{E}_l^* \times \boldsymbol{H}_m) \, \mathrm{d}x \\ & \kappa_{lm} = -\mathrm{i} \frac{\omega \epsilon_0}{4} \, \iint \boldsymbol{E}_l^* \cdot (\epsilon - \epsilon_m) \, \boldsymbol{E}_m \, \mathrm{d}x \, \mathrm{d}y \,. \end{split}$$

Suitable integral form of Maxwell equations

Suitable integral form of Maxwell equations

$$O(z) \frac{d}{dz} A(z) = K(z) A(z),$$

$$A = (A_m), \quad O = (\sigma_{lm}), \quad K = (\kappa_{lm}),$$

$$\sigma_{lm} = \frac{1}{4} \iint e_z \cdot (E_m \times H_l^* + E_l^* \times H_m) \, dx \, dy,$$

$$\kappa_{lm} = -i \frac{\omega \epsilon_0}{4} \iint E_l^* \cdot (\epsilon - \epsilon_m) \, E_m \, dx \, dy.$$
Mumerical solution $[z_i, z_o]$, projection $|z_i, |z_o$

Coupler scattering matrix S;

$$\sum_{o} |S_{o\,i}|^2 \le 1 , \quad S_{o\,i} = S_{i\,o} \quad \left(\begin{array}{c} \text{normalized modes,} \\ \text{symmetric setting} \end{array} \right)$$

 $\wedge x$

$$\begin{pmatrix} B \\ b \end{pmatrix} = \begin{pmatrix} S_{ss} & S_{sb} \\ S_{bs} & S_{bb} \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix},$$
$$\begin{pmatrix} D \\ d \end{pmatrix} = \begin{pmatrix} S_{ss} & S_{sb} \\ S_{bs} & S_{bb} \end{pmatrix} \begin{pmatrix} C \\ c \end{pmatrix},$$
$$c = Gb, \\ a = Gd, \quad G = diag \left(e^{-i\gamma_m L} \right).$$
$$P_{in,m}, A \text{ given, } C = 0:$$

$$\begin{array}{ll} \blacktriangleright & \boldsymbol{b} = \Omega^{-1} \mathsf{S}_{\mathrm{bs}} \boldsymbol{A} \,, & \Omega = 1 - \mathsf{S}_{\mathrm{bb}} \mathsf{GS}_{\mathrm{bb}} \mathsf{G} \,, & P_{\mathrm{D},m} = |D_m|^2 \,, \\ & \boldsymbol{c} = \mathsf{G} \Omega^{-1} \mathsf{S}_{\mathrm{bs}} \boldsymbol{A} \,, & P_{\mathrm{T},m} = |B_m|^2 \,, \\ & \boldsymbol{d} = \mathsf{S}_{\mathrm{bb}} \mathsf{G} \Omega^{-1} \mathsf{S}_{\mathrm{bs}} \boldsymbol{A} \,, & \boldsymbol{D} = \mathsf{S}_{\mathrm{sb}} \mathsf{G} \Omega^{-1} \mathsf{S}_{\mathrm{bs}} \boldsymbol{A} \,, \\ & \boldsymbol{a} = \mathsf{G} \mathsf{S}_{\mathrm{bb}} \mathsf{G} \Omega^{-1} \mathsf{S}_{\mathrm{bs}} \boldsymbol{A} \,, & \boldsymbol{B} = (\mathsf{S}_{\mathrm{sb}} \mathsf{GS}_{\mathrm{bb}} \mathsf{G} \Omega^{-1} \mathsf{S}_{\mathrm{bs}} + \mathsf{S}_{\mathrm{ss}}) \boldsymbol{A} \,. \end{array}$$

$$\begin{pmatrix} B \\ b \end{pmatrix} = \begin{pmatrix} S_{ss} & S_{sb} \\ S_{bs} & S_{bb} \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix}, \qquad P_{D,m} = D + C$$

$$\begin{pmatrix} D \\ d \end{pmatrix} = \begin{pmatrix} S_{ss} & S_{sb} \\ S_{bs} & S_{bb} \end{pmatrix} \begin{pmatrix} C \\ c \end{pmatrix}, \qquad P_{D,m} = D + C$$

$$\begin{pmatrix} D \\ d \end{pmatrix} = \begin{pmatrix} S_{ss} & S_{sb} \\ S_{bs} & S_{bb} \end{pmatrix} \begin{pmatrix} C \\ c \end{pmatrix}, \qquad P_{D,m} = D + C$$

$$P_{D,m} = D + C + C$$

$$P_{D,m} = D + C + C$$

$$P_{D,m} = D + C + C$$

$$P_$$

Spectrum: $S(\lambda)$, $\gamma_m(\lambda)$

$$\sim P_{\mathrm{T},m}(\lambda), P_{\mathrm{D},m}(\lambda).$$

$$\begin{pmatrix} B \\ b \end{pmatrix} = \begin{pmatrix} \mathsf{S}_{\mathrm{ss}} & \mathsf{S}_{\mathrm{sb}} \\ \mathsf{S}_{\mathrm{bs}} & \mathsf{S}_{\mathrm{bb}} \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix}, \qquad P_{\mathrm{D},m} = \mathbf{D} - \mathbf{C}$$

$$\begin{pmatrix} D \\ d \end{pmatrix} = \begin{pmatrix} \mathsf{S}_{\mathrm{ss}} & \mathsf{S}_{\mathrm{sb}} \\ \mathsf{S}_{\mathrm{bs}} & \mathsf{S}_{\mathrm{bb}} \end{pmatrix} \begin{pmatrix} C \\ c \end{pmatrix}, \qquad P_{\mathrm{D},m} = \mathbf{D} - \mathbf{C}$$

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} \mathsf{S}_{\mathrm{ss}} & \mathsf{S}_{\mathrm{sb}} \\ \mathsf{S}_{\mathrm{bs}} & \mathsf{S}_{\mathrm{bb}} \end{pmatrix} \begin{pmatrix} C \\ c \end{pmatrix}, \qquad P_{\mathrm{D},m} = \mathbf{D} - \mathbf{C}$$

$$P_{\mathrm{D},m} = \mathbf{D} - \mathbf{D}$$

Spectrum: $S(\lambda)_{L \to 2\pi R/2}, \gamma_m(\lambda)_{\text{interpolated}}$

 $P_{\mathrm{T},m}(\lambda), P_{\mathrm{D},m}(\lambda).$

Vertically coupled multimode microdisk-resonator

Vertically coupled multimode microdisk-resonator

$$\begin{split} &w=2.0\,\mu{\rm m},\,h_{\rm s}=140\,{\rm nm},\\ &n_{\rm f}=1.98,\,n_{\rm s}=1.45,\\ &n_{\rm c}=1.4017,\,n_{\rm d}=1.6062,\\ &h_{\rm d}=1.0\,\mu{\rm m},\,R=100\,\mu{\rm m}; \end{split}$$

varying g, s; target wavelength: $\lambda = 1.55 \,\mu$ m.

CMT computational window: $[x_i, x_o] = [-12, 4] \mu m,$ $[y_b, y_t] = [-4, 4] \mu m - s,$ $[z_i, z_o] = [-30, 30] \mu m.$

Vertical straight-disk-coupler, CMT basis fields

 $s=0.5\,\mu\mathrm{m}$

Cavity disk: three TE-like bend modes,

	$n_{ m eff}$
b0, TE ₀	$1.503778 - i \ 1.35 \cdot 10^{-9}$
b1, TE_1	$1.474931 - i \ 1.77 \cdot 10^{-6}$
b2, TE_2	$1.451487 - \mathrm{i}\ 5.05 \cdot 10^{-5}$

Bus waveguides:

one TE-like mode, s, $n_{\rm eff} = 1.48229$.

Vertical straight-disk-coupler, CMT basis fields

 $\begin{bmatrix} b_{b0} \\ b_{b1} \end{bmatrix}$

 $s = 0.5 \,\mu\mathrm{m}$

Cavity disk: three TE-like bend modes,

	$n_{ m eff}$
b0, TE ₀	$1.503778 - i \ 1.35 \cdot 10^{-9}$
b1, TE $_1$	$1.474931 - \mathrm{i} \ 1.77 \cdot 10^{-6}$
b2, TE_2	$1.451487 - \mathrm{i}\ 5.05\cdot 10^{-5}$

Bus waveguides: one TE-like mode, s, $n_{\text{eff}} = 1.48229$.

 $S_{\rm s\,b2}$ $A_{\rm s}$ $S_{b0 b2}$ $a_{
m b0}$ $S_{b1 b2}$ a_{b1} $S_{b2 b2}$

 $\langle a_{b2} \rangle$ $z_{
m i}$

Vertical straight-disk-coupler, scattering matrices

9

Vertical straight-disk-coupler, field examples

 $s = 0.5 \,\mu\text{m}, \ g = -1.0 \,\mu\text{m};$ excitation in the bus waveguide.

Vertical straight-disk-coupler, field examples

 $s = 0.5 \,\mu\text{m}, \ g = -1.0 \,\mu\text{m};$ excitation in the bus waveguide.

Vertical straight-disk-coupler, field examples

 $s = 0.5 \,\mu\text{m}, \ g = -1.0 \,\mu\text{m};$ excitation in the bus waveguide.

Multimode microdisk-resonator, spectra

Multimode microdisk-resonator, spectra

Multimode microdisk-resonator, spectra

Resonator with hybrid ring cavity

Resonator with hybrid ring cavity

$$\begin{split} n_{\rm f} &= 2.009, \, h_{\rm s} = 0.27 \, \mu {\rm m}, \, w_{\rm s} = 2.5 \, \mu {\rm m}, \\ n_{\rm s} &= 1.45, \, u = 0.9 \, \mu {\rm m} \\ n_{\rm r} &= 1.6275, \, w_{\rm r} = 2.0 \, \mu {\rm m}, \, h_{\rm r} = 1.0 \, \mu {\rm m}, \\ R &= 100 \, \mu {\rm m}, \, \alpha = 48^{\circ}. \\ s &= 1.0 \, \mu {\rm m}, \, g = -2.25 \, \mu {\rm m}, \, n_{\rm c} = 1.412. \\ \text{Target wavelength: } \lambda = 1.55 \, \mu {\rm m}. \end{split}$$

CMT computational window: $[x_i, x_o] = [-12, 4] \mu m,$ $[y_b, y_t] = [-3.7, 4.4] \mu m,$ $[z_i, z_o] = [-35, 35] \mu m.$

12

Hybrid coupler, CMT basis fields & scattering matrix

	$n_{ m eff}$
$S-TE_0$	1.625326
$S-TE_1$	1.553733
S-TM	1.511020
R_0	$1.490975 - i \ 2.7 \cdot 10^{-7}$
R_1	$1.483477 - i \ 1.2 \cdot 10^{-7}$

Hybrid coupler, CMT basis fields & scattering matrix

$S-TE_0$	1.625326		S-TE ₀	100.0	≈ 0	≈ 0	≈ 0
$S-TE_1$	1.553733	CMT	$S-TE_1$	≈ 0	97.8	≈ 0	1.9
S-TM	1.511020	~~	S-TM	≈ 0	≈ 0	26.2	6.3
R_0	$1.490975 - i \ 2.7 \cdot 10^{-7}$		R_0	≈ 0	2.1	6.7	86.2
R_1	$1.483477 - i \ 1.2 \cdot 10^{-7}$		R_1	≈ 0	0.1	67.5	5.2

 $\begin{array}{c} 0.1\\ 67.0\\ 5.5\end{array}$

27.3

 \sqrt{z}

 \sqrt{z}

Resonator with hybrid ring cavity, spectrum

%	S-TE ₀	S-TE ₁ S-TM		R_0	R_1
S-TE ₀	100.0	-	_	_	_
$S-TE_1$	_	97.8	_	1.9	0.1
S-TM	-	_	26.2	6.3	67.0
R ₀	-	2.1	6.7	86.2	5.5
R_1	—	0.1	67.5	5.2	27.3

Resonator with hybrid ring cavity, spectrum

%	$S-TE_0$	$S-TE_1$	S-TM	R_0	R_1
S-TE ₀	100.0	-	-	_	_
$S-TE_1$	-	97.8	-	1.9	0.1
S-TM	-	-	26.2	6.3	67.0
R ₀	-	2.1	6.7	86.2	5.5
R_1	_	0.1	67.5	5.2	27.3

Resonator with hybrid ring cavity, spectrum

3-D Microresonator Simulator

