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1 Chains of square 2D microcavities

Coupled-resonator optical waveguides (CROWs) have been discussed already for some
years [1] as a means to realize waveguiding along paths with small-size bends. Con-
cepts based on series of microring resonators or sequences of defects in photonic crystal
slabs [2] exist. As an alternative, we consider chains of simple square dielectric cav-
ities, that support a single specific standing wave resonance [3, 4] in the wavelength
region of interest. In line with the fourfold symmetry of their resonant field pattern,
the individual cavities are arranged sequentially on a discrete rectangular mesh, with
guided-wave excitation at one end of the chain. Rigorous semianalytical simulations
based on quadridirectional eigenmode propagation (QUEP) [5, 6] enable convenient
numerical experiments on these rectangular, piecewise constant configurations.
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As some step towards an interpretation of the spectral features we look at an intuitive
coupled mode theory (CMT) model for the resonator chains. The overall field in the
chain is assumed to consist of bidirectional versions of theguided mode of the bus core,
with variable local amplitudes, together with the identical, properly positioned resonant
field patterns of the individual cavities, each multiplied by a single scalar coefficient.
These latter fields can be approximated quite well by a superposition of suitable slab
mode profiles, oriented along the two coordinate axes [7]. Then one proceeds along
the hybrid CMT approach (HCMT) of Ref. [8]: By variational means [9, 10, 11] one
extracts a linear system of equations for the coefficients ofthe resonator fields, and
for the amplitude functions of the bus modes, discretized interms of finite elements, as
unknowns. Note that no free parameters are introduced; the model, however, disregards
any radiative losses (so far), and thus cannot be more than anapproximation of the
resonator chain in a kind of high-Q limit.

2 Spectral response, resonant fields
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Parameters, sections 2–6:
nb = 1.45, ng = 3.40, t = 0.073 µm, w = 1.451 µm,
gw = gr = 0.4 µm; 2-D, TE, principal electric componentEy.
Spectra:
guided reflectionR and transmissionT , local intensities
A0–A8, maximized over 8 observation points per cavity.
Fields:
physical time snapshotsEy and moduli|Ey|.
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3 QUEP simulations
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• 2-D Helmholtz problems, TE / TM.

• Piecewise constant, rectangular refrac-
tive index; linear, lossless materials.

• Fixed frequencyω = k c,
vacuum wavelengthλ = 2π/k.

• Rectangular interior domain, influx &
outflux across all four boundaries, out-
wards homogeneous external regions.

• AssumptionEy = 0 (Hy = 0) on the external border lines must be reasonable for the
problems at hand.

• Division into layers and slices.

• Expansion basis: 1-D modes associated with layersand slices;
discretization:Ey = 0 (TE) at x = xb, xt, z = zl, zr.

• Bidirectional projection on all interfaces
solution procedure:

& &

“QUadridirectional Eigenmode Propagation method” (QUEP)
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5 Shape
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6 Two bus waveguides
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7 HCMT model
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TE, nb = 1.0, ng = 3.2, w = 1.54 µm, gr = 0.39 µm, gw = 0.3 µm, t = 0.2 µm; λ0 = 1.532 µm.

• Assumption: the optical electromagnetic field is well represented by the template
(

E
H

)

(x, z) = u(x)φu(x, z) + d(x)φd(x, z) +

8
∑

j=0

rj ψj(x, z)

φu, φd: guided bus modes, upward and downward traveling,
ψj: resonant field pattern of cavityj, here a slab mode superposition,
r0 – r8, u, d: unknown amplitudes / functions.

• Discretizeu → {ul} andd → {dl} by 1-D linear finite elements
(

E
H

)

(x, z) =
∑

k

ak χk(x, z), χk: modal elements,ak ∈ {ul, dl, rj}.

• Variational representation of the Helmholtz problem onΩ with transparent-influx-
boundary conditions onS in terms of the functional (here 3-D)

F(E,H) =

∫∫∫

Ω

{

E · (∇ ×H) +H · (∇ ×E) − iωǫ0ǫE
2 + iωµ0H

2
}

dx dy dz

−
∑

m

2Fm

{

〈Ẽm,H〉 − 〈E, H̃m〉
}

+
∑

m

1

2Nm

{

〈Ẽm,H〉2 − 〈E, H̃m〉
2
}

,

Ω

z

x, y

S

0

◦ complete set of modes onS, profiles(Ẽm,±H̃m)(x, y)

propagation along±z, toward the interior / exterior ofΩ,

◦ 〈A,B〉 =

∫∫

S

(A×B) · ez dx dy ,

◦ Fm: influx, given coefficients of incoming waves.

• Restrict F(E,H) → Fr(ak) to the template, requireδak
Fr = 0

system of linear equations inak, numerical solution.

8 HCMT, results
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