Oblique quasi-lossless excitation of a thin silicon slab waveguide

Manfred Hammer*, Lena Ebers, Jens Förstner

Theoretical Electrical Engineering, Paderborn University, Paderborn, Germany

1 A guided-wave-variant of an anti-reflection coating

Guided waves traversing an abrupt interface between different slab waveguides typ Guided waves traversing an abrupt interface between different slab waveguides typ-ically generate pronounced reflections and scattering losses. The conventional 2-D framework corresponds to normal incidence of the laterally infinite waves on the inter-face. Applying a semi-analytical vectorial mode expansion solver [1, 2] for the effective 2-D problems, we investigate, for high-contrast silicon slabs, what happens when the waves come in at oblique angles. Arguments based on a variant of Snell's law, adapted to the present case of polarized semi-guided waves, predict critical angles of incidence, beyond which all scattering losses are suppressed. In that regime, for our particular parameters with TE-incidence, the transmittance is already raised to about 95%. The waves, however, are still partly reflected, mainly into the backwards TM mode.

Motivated by the traditional technique of reflection suppression, we intro luce a short waveguide segment of intermediate thickness at the former interface. Optimization of the transmittance through varying the height and width of that segment leads to a configuration with a guided-wave TE-to-TE transmittance above 99.5%. Rigorous finite-element simulations (COMSOL, [3]) confirm these findings.

2 Abrupt junction, transmittance

3 Parameters

refractive index, cladding:	$n_b = 1.45$,
refractive index, cores:	$n_g = 3.45$,
larger core thickness:	$d = 0.22 \mu m$,
lower core thickness:	$r = 0.05 \mu m$,
vacuum wavelength:	$\lambda = 1.55 \mu\text{m},$
excitation:	TE ₀ ,
angle of incidence:	θ,
thickness, coating segment:	$h = 0.16 \mu m^*$,
width, coating segment:	$w = 0.40 \mu { m m}^{*},$

 $\theta_{b} = 30.9^{\circ},$ $\theta_{T,TM} = 31.2^{\circ},$ $\theta_{T,TE} = 37.7^{\circ},$ $\theta_{R,TM} = 46.3^{\circ}.$ * optimized for $\theta = 33^{\circ}$

kN

critical angles:

Uniform $k_y = kN_{in}\sin\theta$, related to incoming mode (N_{in}) & incidence angle θ :

Generation Outgoing modes (N_{out}) leave at angles θ_{out} with $k_y = kN_{out}\sin\theta_{out}$ nt for every outgo ing mode

generalized Snell's law: $N_{out} \sin \theta_{out} = N_{in} \sin \theta$, applicable to all (reflected, transmitted, up- or downwards scattered) outgoing propagating modes.

6 Outgoing modes with $N_{\text{out}} \leq N_{\text{crit}}$ become evanescent for incidence angles $\theta \geq \theta_{\text{crit}}$ with $\sin \theta_{\text{crit}} = N_{\text{crit}}/N_{\text{in}}$, i.e. these modes do not carry power away.

 $\begin{array}{l} \mbox{Relevant values for the present examples:} \\ & \sin \theta_0 = n_b/N_{\rm TED}, no forward/backward power loss into the clading for <math display="inline">\theta \geq \theta_b. \\ & \sin \theta_{\rm TIM} = N_{\rm TIM0}/N_{\rm TED}, no power transmitted to the TM_0 mode for <math display="inline">\theta \geq \theta_{\rm TIM}. \\ & \sin \theta_{\rm TIT} = N_{\rm TEM0}/N_{\rm ED}, no power ransmitted to the TE_0 mode for <math display="inline">\theta \geq \theta_{\rm CIM}. \\ & \sin \theta_{\rm RTM} = N_{\rm RTM0}/N_{\rm TED}, no power reflected into the TM_0 mode for <math display="inline">\theta \geq \theta_{\rm RTM}. \end{array}$

7 Semi-guided wave packets

0.5

0.08

0.06

Superimpose the former 2-D solutions for a range of k_y -values / a range of angles θ , such that the input field resembles a vertically (x) guided, laterally (y,z) localized Ga sian beam Parameters focus (y_0, z_0) at the origin primary angle θ_0 , full 1/e-width along y, at focus: $W = 10 \,\mu$ m.

2

1.5

1 w [μm]

1 85

R $n_{\rm b}$ w $n_{\rm b}$ $\theta_{\rm b}^{},\,\theta_{\rm T,TM}^{}$ $\boldsymbol{\theta}_{\text{T,TE}}$ $\theta_{R,TM}$ 0.8 T_{TE} 0.6 0. 0. T_{TM} Pout 0.8 0.6 0.4 0.2 R R_{TM} 0 10 30 40 50 20 A/°

8 Coated junction, transmittance

9 Propagation of semi-guided Gaussian beams

10 Numerical benchmark

	TTE	R _{TE}	T_{TM}	R _{TM}	
[C0] $\theta = 0^{\circ}$, bare	0.760	0.087	0	0	vQUEP[1]
	0.769	0.084	0	0	COMSOL [3]
[C1] $\theta = 33^{\circ}$, bare	0.945	0.001	0	0.053	vQUEP[1]
	0.946	0.001	0	0.054	COMSOL [3]
[C2] $\theta = 33^{\circ}$, coated	0.996	0.003	0	0.001	vQUEP[1]
	0.996	0.003	0	0.001	COMSOL [3]

References

- M. Hammer. Oblique incidence of semi-guided waves on rectangular slab waveguities: A vectorial QUEP solver. Optics Communications, 338:447–456, 2015.
 M. Hammer. Quadrifurctional eigenmode expansion scheme for 2-D modeling of ion in integrated optics. Optics Communications, 253(4–6):285–303, 2004.
 Consol Multiphysics GmbH, Göttingen, Germany: http://www.consol.com.

- [2] Culture manapsystes county changes, cornary, importworkedmotical, [4] L. Ebers, M. Bammer, and J. Fostene. Spiral modes supported by circular dielectric tubes and tube segments. *Optical and Quantum Electronica*, 49(4):176, 2017.
 [5] M. Hammer, A. Hildbernah, and J. Fostene. Full resonant transmission of semi-guided pla-nar waves through slab waveguide steps at oblique incidence. *Journal of Lightware Technology*, 34(3):997–1005, 2016.
- Styly D. 1005, 2010.
 M. Hammer, A. Hildebrandt, and J. Förstner. How planar optical waves can be made to climb dielectric steps. Optics Letters, 40(16):3711–3714, 2015.
 F. Çivitci, M. Hammer, and H. J. W. M. Hoekstra. Semi-guided plane wave reflection by thin-film transitions for angled incidence. Optical and Quantum Electronics, 46(3):477–490, 2014.

Acknowledgements

upport by the Deutsche Forschungsgemeinschaft (DFG, Transregional Collaborative esearch Center TRR 142, and project HA7314/1) is gratefully acknowledged.

PADERBORN UNIVERSITY

