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1 A guided-wave-variant of an anti-reflection coating

Guided waves traversing an abrupt interface between different slab waveguides typ-

ically generate pronounced reflections and scattering losses. The conventional 2-D

framework corresponds to normal incidence of the laterally infinite waves on the inter-

face. Applying a semi-analytical vectorial mode expansion solver [1, 2] for the effective

2-D problems, we investigate, for high-contrast silicon slabs, what happens when the

waves come in at oblique angles. Arguments based on a variant of Snell’s law, adapted

to the present case of polarized semi-guided waves, predict critical angles of incidence,

beyond which all scattering losses are suppressed. In that regime, for our particular

parameters with TE-incidence, the transmittance is already raised to about 95%. The

waves, however, are still partly reflected, mainly into the backwards TM mode.
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Motivated by the traditional technique of reflection suppression, we introduce a short

waveguide segment of intermediate thickness at the former interface. Optimization

of the transmittance through varying the height and width of that segment leads to

a configuration with a guided-wave TE-to-TE transmittance above 99.5%. Rigorous

finite-element simulations (COMSOL, [3]) confirm these findings.

2 Abrupt junction, transmittance
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3 Parameters

refractive index, cladding: nb = 1.45,

refractive index, cores: ng = 3.45,

larger core thickness: d = 0.22µm,

lower core thickness: r = 0.05µm,

vacuum wavelength: λ = 1.55µm,

excitation: TE0,

angle of incidence: θ,

thickness, coating segment: h = 0.16µm ∗,

width, coating segment: w = 0.40µm ∗,

critical angles:

θb = 30.9◦,

θT,TM = 31.2◦,

θT,TE = 37.7◦,

θR,TM = 46.3◦.

∗ optimized for θ = 33◦.

4 Critical angles

Uniform ky = kNin sin θ,

related to incoming mode (Nin)

& incidence angle θ:
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Outgoing modes (Nout) leave at angles θout with ky = kNout sin θout,

different for every outgoing mode;

generalized Snell’s law: Nout sin θout = Nin sin θ,

applicable to all (reflected, transmitted, up- or downwards scattered) outgoing

propagating modes.

Outgoing modes with Nout ≤ Ncrit become evanescent for incidence angles

θ ≥ θcrit with sin θcrit = Ncrit/Nin, i.e. these modes do not carry power away.

Relevant values for the present examples:

• sin θb = nb/NTE0, no forward / backward power loss into the cladding for θ ≥ θb.

• sin θT,TM = NT,TM0/NTE0, no power transmitted to the TM0 mode for θ ≥ θT,TM.

• sin θT,TE = NT,TE0/NTE0, no power transmitted to the TE0 mode for θ ≥ θT,TE.

• sin θR,TM = NR,TM0/NTE0, no power reflected into the TM0 mode for θ ≥ θR,TM.

5 Abrupt junction, fields
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6 Anti-reflection coating
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7 Semi-guided wave packets

Superimpose the former 2-D solutions for

a range of ky-values / a range of angles θ,

such that the input field resembles a verti-

cally (x) guided, laterally (y, z) localized

Gaussian beam.

Parameters:

focus (y0, z0) at the origin,

primary angle θ0,

full 1/e-width along y, at focus:

W = 10µm.
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8 Coated junction, transmittance
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9 Propagation of semi-guided Gaussian beams
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10 Numerical benchmark

TTE RTE TTM RTM

[C0] θ = 0◦, bare
0.760 0.087 0 0 vQUEP [1]

0.769 0.084 0 0 COMSOL [3]

[C1] θ = 33◦, bare
0.945 0.001 0 0.053 vQUEP [1]

0.946 0.001 0 0.054 COMSOL [3]

[C2] θ = 33◦, coated
0.996 0.003 0 0.001 vQUEP [1]

0.996 0.003 0 0.001 COMSOL [3]
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