Oblique quasi-lossless excitation of a thin silicon slab waveguide
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1 A guided-wave-variant of an anti-reflection coating

Guided waves traversing an abrupt interface between different slab waveguides typ-
ically generate pronounced reflections and scattering losses. The conventional 2-D
framework corresponds to normal incidence of the laterally infinite waves on the inter-
face. Applying a semi-analytical vectorial mode expansion solver [1, 2] for the
2-D problems, we investigate, for high-contrast silicon slabs, what happens when the
waves come in at oblique angles. Arguments based on a variant of Snell’s law, adapted
to the present case of polarized semi-guided waves, predict critical angles of incidence,
beyond which all scattering losses are suppressed. In that regime, for our particular

with TE-incidence, the is already raised to about 95%. The
waves, however, are still partly reflected, mainly into the backwards TM mode.

ctive

Motivated by the traditional technique of reflection suppression, we introduce a short
waveguide segment of intermediate thickness at the former interface. Optimization
of the transmittance through varying the height and width of that segment leads to
a g with a ded-wave TE-to-TE above 99.:

finite-clement simulations (COMSOL, [3]) confirm these findings.
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2 Abrupt junction, transmittance

3 Parameters

critical angles
O = 30.9

refractive index, cladding:  np = 1.45,

refractive index, core: 3

ng =3

larger core thickne: d=0. [ —
lower core thickn r = 0.05pum, Orre = 37.7°,

vacuum wavelength: A= 1.55um, Oprm = 46.3
excitation: TE,,

angle of incidence: 0,

thickness, coating segment: 5 = 0.16 im*,

width, coating segment:  w = 0.40 im*, * optimized for 6 = 33°.

4 Critical angles

Uniform k, = kNiy sin 6,
related to incoming mode (NV;y)
& incidence angle 0:

G Outgoing modes (Now) leave at angles fou With k, = kNou Sin o,
different for every outgoing mode;

generalized Snell’s law:  Noysin fou = Nig sin 6,

applicable to all (reflected, transmitted, up- or downwards scattered) outgoing
propagating modes.

G- Outgoing modes With Now < Nax become evanescent for incidence angles
6 > Ocie With sin Oy = Nerig/Nin. i.€. these modes do not carry power away.

Relevant values for the present examples:

 sinfh = ny/Nrgo, no forward/backward power loss into the cladding for 0 > 6,
o sinfrmm = Nrmwio/Nreo, 1o power transmitted to the TM, mode for 6 > fpy.
‘rri0/N1eo, no power transmitted to the TEy mode for 6 > fpg.

© sinOrv = Nerwio/Nrgo, 10 power reflected into the TM mode for 6 > O .

o sinfrp =

5 Abrupt junction, fields
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7 Semi-guided wave packets

Superimpose the former 2-D solutions for
a range of k,-values / a range of angles 0,
such that the input field resembles a verti-
cally () guided, laterally (y, =) localized
Gaussian beam.

Parameters:

focus (yo. z0) at the origin,

primary angle 6y,
full 1/e-width along y, at focus:

W =10 pum.
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8 Coated junction, transmittance
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10 Numerical benchmark

T | R | Tiw ‘ Ry
0.760 0.087 0 0 vQUEP [1
[CO] 6 = 0°, bare v ! VQUEP 1]
0.760 0.084 0 ‘ 0 COMSOL [3]
0.945 0.001 0 0.053 vQUEP [1
[C1] 6 = 33, bare ! 5 QUEP]
0.946 0.001 0 ‘ 0.054 COMSOL [3]
0.996 0.003 0 0.001 UEP [1
[C2] 6 = 3%, coated VQUEP [1]
0.996 0.003 0 | 0.001 COMSOL [3]
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