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We analyze coupled optical defect cavities realized in finite one-dimensional Photonic-Crystals. Viewing these as open systems where waves are permitted to leave the structures, one obtains eigenvalue

problems for complex frequencies (eigenvalues) and Quasi-Normal-Modes (eigenfunctions) [1]. Single defect structures (Photonic Crystal Atoms) can be viewed as elementary building blocks for

multiple-defect structures (Photonic Crystal Molecules) with more complex functionality. The QNM description links the resonant behavior of individual PC atoms to the properties of the PC molecules

via eigenfrequency splitting. Our approximation using variational principle enables approximations of both eigenfrequencies and QNMs of the complex structure. When subjected to external excitation

these structures exhibit resonant responses in transmission. We employ the QNMs to approximate transmission resonances and the related fields in 1D optical defect cavities under external excitation. A

combination of the bandgap (mirror) field of the periodic structure (without defect) and only one/few relevant QNM(s) are used as a field template for the variational form of the transmission problem

[2]. The restriction of the functional yields an excellent field representation, together with a reasonable approximation of the spectral transmission.

The (defect) grating is a finite periodic structure consisting of two materi-
als with high index nH and low index nL. The layer thicknesses LH , LL are
quarter-wavelength for the target wavelength. Optical defects are intro-
duced as changes of layer thicknesses. The grating is surrounded by two
semi-infinite media of indices nin and nout.

Quasi-normal modes

Optical field with harmonic time dependence Q(x, t) = Q(x)e−iωt. The
modal profiles satisfy the Helmholtz equation:
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with outgoing wave boundary conditions
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where ω ∈ C is the complex frequency,the eigenvalue and eigenfunction
Q(x) , the Quasi-Normal Mode. .
Solution: analytical continuation of a transfer matrix method in the com-
plex plane.

Transmittance problem

The response under external excitation is described by:

• influx Einc = Aince
i

ninω

c
x with ω ∈ R and Ainc given,

• the Helmholtz equation
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)

E(x) = 0, (3)

• transparent (influx) boundary conditions
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E|x=0 = 2ikinAinc,
(
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)

E|x=L = 0 (4)

Exact solution obtained via a standard transfer matrix method (reference).

Variational formulation of the
transmittance problem
Consider the functional:

L(E) =
1

2

∫ L

0
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ninω

c
AincE|x=0.

If the first variation δL(E; δE) vanishes for arbitrary δE, then E satisfies
(3), (4).
Field template:

E(x, ω) ≃ Emf(x, ω) +
M

∑

p=1

αp(ω)Qp(x) (6)

• Emf : mirror field; solution of the transmittance problem for the struc-
ture without defects.

• Qp: QNMs supported by the defect structure with
Re(ωp) ∈ relevant range, bandgap of the original structure.

• a: decomposition coefficients.

Variational restriction: L(E) → L(a1, ..., aM).
The conditions for stationarity

∂L(a1, ..., aM)

∂aq

= 0, q = 1, ..., M, (7)

lead to a system of linear equations A · a = −b for unknown coefficients
a = [a1, a2, ...ap...haM ]T

Transmittance:
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Single cavity structure
(HL)4H(HL)4H , nH = 3.42 ,nL = 1.45, nin(out) = 1.0 nH(L)LH(L) = λ0/4, for
λ0 = 1.55 [µm]

0 0.5 1 1.5 2
−10

0

−10
−3

−10
−5

A)

Re(ω/ω
0
)

Im
 (

ω
/ω

0)

 

 

0 1 2
0

0.5

1

ω/ω
0

T
ra

ns
m

itt
an

ce

B)

0 2 4

−20

0

20

x[µm]]

R
e,

Im

C)

0 2 4

−20

0

20

x [µm]

R
e,

Im

D)

0 0.1 0.3
−2

0

2

x[µm]

R
e,

Im

E) 

0 2 4
−4
−2

0
2
4

x[µm]

R
e,

Im

 F)

−1 0 1 2 3 4

−20

0

20

x[µm]

R
e,

Im

G)

Defect
Periodicω

M

TMM ref.
Approx.

A) Complex frequencies (eigenvalues) for periodic and single cavity struc-
ture B) Transmittance for periodic (dashed) and single cavity structure
(continuous) C) Quasi normal mode corresponding to the complex eigen-
frequency ωM D) Field pattern for a (defect) frequency at the center of the
bandgap, real and imaginary parts E) Comparison of the QNM for ωM

(solid line) and the transmission (defect) field (dotted line) in the region
around x = 0 where the incoming field is present. F) Mirror field for the
(periodic) structure without defect for ω = Re(ωM) G) Field associated with
the transmission resonance in the defect structure obtained via variational
approximation.

Coupled cavities

Resonances of the multiple defect structure A) can be expected to be well
described by QNMs of simpler structures B) and C) with single defects.
Variational formulation of the QNM problem for multiple defect structure:
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Field template: superposition of the QNMs associated with single cavities

Qs =
N

∑

p=1

cpQp. (10)

Stationarity of the restricted functional: Lωs
(Qs) =⇒ Lωs

(c1, ...cp..., cN)

∂Lωs
(c1, ...cp..., cN)

∂cp

= 0, for p = 1, ..., N (11)

Quadratic eigenvalue problem for the complex eigenfrequency ωs and
eigenvectors c = [c1, ..., cN ]T (unknown expansion coefficients).

(

ω2
sM + ωsN + P

)

· c = 0 (12)

Double cavity: eigenfrequency splitting

(HL)4D(LH)M2LD(LH)4, nH = 3.42, nL = 1, nin(out) = 1,
nH(L)LH(L) = λ0/4, for λ0 = 1.55 [µm]
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Complex eigenfrequencies for double cavity structure, direct computations
and approximations for different length of the separation region A) and
transmittance (8) B). QNMs (supermodes) for the double cavity structure
with M2 = 5, direct computation (continuous) and approximation (dashed)
C), D).
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Double cavity: strong coupling
(HL)4D(LH)2LD(LH)4, nH = 3.42, nL = 1.45, nin(out) = 1,
nH(L)LH(L) = λ0/4, for λ0 = 1.55 [µm]
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A) QNM spectrum B) Transmittance for periodic and double cavity struc-
ture; QNMs corresponding to complex frequencies in the bandgap region
QNMs (supermodes) C) for ωL D) ωR.
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A) Decomposition coefficients. B) Transmittance obtained from the field
representation using QNMs (dashed) and TMM reference (continuous). C)
and D): approximated field (marker) and TMM reference for the frequency
of transmission resonance (solid line) for ω = Re(ωL) and) ω = Re(ωR).

Triple cavity structure with weak cou-
pling and transmission pass-band
(HL)4L(HL)9L(HL)9L(HL)4, nH = 2.1, nL = 1.45, nin(out) = 1.52,
nH(L)LH(L) = λ0/4, for λ0 = 1.55 [µm].
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A) Defect induced eigenfrequencies and corresponding QNMs B-D) .
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Decomposition coefficients corresponding to the QNMs (supermodes) as-
sociated with ωL, ωM , ωR. Transmittance (8) and TMM reference.
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