Slow light excitation in tapered 1D photonic crystals: theory
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Abstract. Slow light (SL) states corresponding to wavelengtfions near the bandgap
edge of grated structures are known to show stiftegld enhancement. Such states may
be excited efficiently by well-optimised adiabatansitions in grated structures, e.g., by
slowly turning on the modulation depth. To studyabdtic excitations, a detailed
research in 1D is performed to obtain insight irttee relation between the device
parameters and properties like enhancement and freflaction. The results enable the
design of an adiabatic device for efficient exaitatof SL states in 1D. The effect of small
wavelength variations as well as small fluctuationthe modulation depth of the grating
has been investigated.
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1. Introduction

Recently, periodic dielectric structures (i.e. mmot crystals (PCs)) have attracted much
interest by a large number of researchers. The neaison for that is due to the fact that
materials with a photonic band gap can be realgetheans of a proper choice of both
lattice structure and index contrast. This phenaneleads to variety of (possible)
applications such as the inhibition of spontaneemmsssion (Yablonovitch 1987), low
loss waveguides with sharp bends (Medisal. 1996), narrow-band filters, and strong
field enhancement related to low group velocity, slew light (SL), modes propagating
at state near the band edge (Saketda. 1996; Notomiet al.2001; Povinelliet al. 2005).
Due to the mismatch of both modal profiles and phabecities between the incoming
propagating wave the modes in SL devices (e.gingpatdirect excitation of SL mode
will cause high losses (Notonat al. 2001). One promising technique that has been
introduced in several papers to overcome this probils so-called adiabatic excitation
(Povinelli et al. 2005; Johnsoret al. 2002). By means of gradually changing index or
geometry of the gratings, it is possible to chatige profile of an incoming wave
gradually into that of the SL mode. Thus, the dfeaf profile mismatch and so of losses
can be minimised. Even tough a topic about gratwgh slowly varying index or
geometry is rather old and it has been subjectedesearch by many researches
(Matuscheket al. 1997; Sipeet al. 1994; Spielmanret al. 1994). However, from the
author’s knowledge, there is no paper specificatlyered an issue about the application
such gratings for SL excitation.

In this paper, we will present a theory for SL éxiton in 1D. In particular, we discuss
the relation between device parameters, like madumaepth, and modal properties, like
power enhancement and modal reflection. A struduréhe adiabatic excitation of SL
mode in 1D gratings is proposed. We also investighe effect of small wavelength



variations as well as index fluctuations, on theitakon efficiency of SL modes in
proposed adiabatic structure. The rest of the pigparganized as follows: In the Section
2, we will present theory of uniform 1D grating. ellrelation between modal and
structural parameters is treated in Section 3. stbdy of adiabatic excitation is given in
Section 4 and in Section 5 the effects of smallel@vgth and fluctuations are discussed.
We end this paper with conclusion given in secéon

2. Basic theory

In this section we will consider basic equations dptical fields propagating through
uniform and modulated 1D grating, consisting of twdferent layers (index and
thickness,n, and d,, respectively,gq=1,2), in a direction perpendicular to the interfaces

(see Fig. (1)). A time dependene& is assumed but suppressed. In addition, a coupled
mode (CM) model is introduced for the descriptidright in a 1D grating with a slowly
varying modulation deptm,_ . The field equation to be solved is:

[0,,+k;n*(2] B =0, (1)
wherek, is the wavenumber andis the refractive index. The field solutions touatjon
() in each layep can be written as the sum of right and left rugrpfane waves:
E=v+w vO €™, wi €, a,= kp pl2 (2)
For a uniform grating it follows from the FloqueteBh theorem that there exist modes
for which E(z+A\) = €™ H 2, with A the grating period. If we consider a symmetric
unit cell (with-d,/2<z<A-d /2, see Fig. (2)) it follows:

O
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Herer andt are the reflection and transmission coefficientstfi@ considered unit cell,
the asterisk (*) denotes the complex conjugatevemthave used the general properties of
the scattering matrix (Haus 1982), leading |of + |t f=1 and r't+tT =0. The
eigenvalues of matrik are:

X. =R+R -1(= 64"), (4)
with RE%+% = Ré )/| tf. We will consider (in most cases) only running esv

corresponding tdR* <1. The corresponding eigenvectors are:
1 t 1
Ve E= X t—. 5
(yj V=Xt (5)
It can be shown from the above relations betweamdt that y, ). =1, both y, are real,
and thaty, = Re(1/r )=+1 or- :at the band edge (transition between running and
evanescent modes, correspondinBte1). We chooséy, K|y. |, so that forR* <1 the

subscripts + (-) correspond to right (left) runnmgdal waves.
The normalized eigenvectors at positiazrs m\ — d /2 are given by:
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= : (6)
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whereby the following holds for the modal power:

P.=a,(vf-Iwf)=+1 (7)
The latter is defined by:
1 0
P =a,(V wf)(o ) j[vvvj (8)

Note that (modal) cross product is zero, whichdie from Equation (6) and the
property y,y. =1. The latter holds for all positions in all layensd the modal power is a

conserved quantity in a uniform grating.
The modal propagation in layers of typés given by:

—ia Az
v, (e 0 V, ©)
Wi z+Az 0 eiapAZ Wi z.

The modal transfer from layer 1 to layer 2 ¢at n\ ) can be calculated to be given by:

V, V, 1 + -
( i :le[ _j ; lez_[q voh QJ- (10)
W, ) W, ) 2n,{n,-n n+n

Here the superscript + (-) (ipA") indicates & value just right (left) of the indicated
interface. A similar expression as above holdghHermodal transfer from layer 2 to 1.
With Equations (8-10) it is easy to show that tbever in a uniform grating is constant
alongz, as it should. The field in a grating can be egpeel by:

E(Q=av+w)+ vt w, (11)
with a andb constants, and the net power alarig given byP =|af - |b¥.

As a measure for the power enhancement for a nestt of grating parameters we
define:

v Prlw f >

TN f 42
being the ratio of the total power (sum of powelast and right going modes) and the
net power of a certain mode. The quantity is positiependent (constant within each
layer), but not in a critical way, as follows framumerical calculations. In this paper we
will evaluate it at positiong = M\ - d/2, leading to (see Equation (6)):

gLV _(Fr1
1-y2 \y*-1)
Numerical results indicate thgt~1/v,, with v, (= 0w/df3) the group velocity. In the

(13)

below a 1D grating is considered with a slowly wagymodulation deptn_, in the
region z[J[0, L]. The modulation depth changes from unit cell ta cell (see Fig. (1)).

The total field is given by equation 11, but nowdabamplitudes andb (still constant
within a unit cell) vary from unit cell to unit deland v, andw, correspond to the

considered unit cell, with



A vio [ Vo P
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Here, n__ is the modulation depth in thp¥" unit cell and we dropped the subscript + in

) myp
[. Note that the fields/, andw, at other positions in the unit cell thgom\" can be

calculated with the transfer matrix method, sinylas in Equations (9) and (10).
At a step in the modulation depth the modal trassmn is no longer unity, and modal
reflection will occur. The scatter process may bsadibed by:

B |_of Poa] oo T 15
b, )"\ & )’ _(t rlj, ()

with Sthe scattering matrix. Note that the above (matersfer) treatment is still exact,
unlike the CM theory given below.

In a CM picture the behavior of light in the smdgtharying grating can be described by
(Kogelnik et al. 1971) the following CM equations (CMES):

expa(’ pdz
az(aJZ—iK (aj' K = Kaa Z Ka eXp( ,[0'8 z ) , (16)
b o) | ~aexp@[ pdz ) Koy

wherea, band the coefficient vary slowly as a function af. Form conservation of
energy 0,(Jaf — b} )= 0) it can be derived that:

K, =k,ORe kK, =K", (17)
whereby the first equality follows from symmetry nstderations. Integration of
Equation (16) over one unit cell leads to:

a —iK a > kaa ka +
( j =e Kp’\( j K, 5( @ 2 J =£I(p " Kdz, (18)
b)) n b) K, —K,) N'o°

whereby relations equivalent to Equation (17) Holdthe elements oKp. These can be

calculated for a certain parameter set, by compatqguations (15) and (18). First, the
elements ofs have to be calculated. Considering an incomind fiemm the left (see Fig.
(3)) at the interface az = pA\, with amplitudea, =1, it can be derived from the above

that (see also Equation (10)):

’{(\hj (V_j:| (\Aj
T, 1 =t : (29)
W, W _ W, .

pA M, p PA ’nﬂvp*‘l

Here the prime indicates that the two involved geits differ in modulation depth. From
Equation (19) one can calculate the values, oft and r (= -t /t”), where the latter
equality follows from the general properties of theattering matrix,S. The fields
v, andw, can be calculated using Equations (5-6) includirg phase ternexp(rig, )

defined in Equation (14).
Next, rewriting Equation (15) as

a.) a, (7 it
=M , M = 20
[bpﬂ "lb, ) T e an )



and comparing the result with Equation (18) itdalk:

R,==iInM /A. (21)

S =-
From the properties oM, (eigenvalues and eigenvectors of the foempi6,) and

@ d), (dD 1)t, respectively) the relations Equation (17) canlgéae derived.

The most relevant elements of mat& are the off-diagonal elements, which describe

modal reflection at steps in the modulation depime diagonal terms only introduce a
modal phase shift, which is relatively small agppears from numerical calculations that
|k, K|k, |, and so|k,, K|k, | For these reasons we will concentrate in thevbelo

mainly on the coupling paramete(=| <, |).

3 Relations between modal and structural parameters

In this section, numerically calculated approximagkations, including their wavelength
dependence, between modal parameters (power emhantges, and coupling

parameter,x) and structural parameters will be presented. thisr purpose, a model
structure is considered with the following paramete layer thicknesses
d, =d,=0.1613/m, indicesn,,, = n,+/-n,, with an average index af,, =1.55. The

parameters correspond to a bandgap at #m for n_ - 0. The structural parameters to
be varied are the modulation depth),, and its rate of change at interfaces between two
unit cells,An_ (=Ad,n_, in a CM picture, where variations are assumdsetemooth).

We have studied the above relations for a not aogel modulations deptii<n_ < 0.3,

and a wavelength region correspondin@ton, .,..< 0.3, wheren depends linearly

on the wavelength (see Fig. (4)). Herg ., is defined as the modulation depth

corresponding to the band-edge for a given wavétherig the below we will use the
parametern_ ... to indicate the wavelength in order to obtain maransparent

expressions.
Careful fitting of numerical results in the regi@x n_ < 0.3, at wavelengths for which

n,<n

m, edge

n edge leads to the following results:

chnm,edgg pn/ h h= r'im edge ﬁm C=0.52,

(22)
and

,7 = nm, edge/\/E :

(23)
Figures (5a) and (5b) show a few graphs illustgptiBquations (22) and (23),
respectively.



4. Adiabatic excitation

In adiabatically varying structures (see Fig. (B changes are that slow that only little
mode conversion takes place. Form CM theory it lsarshown that two modes show
little interaction if the ratio of phase-mismatchdacoupling constant is small. As a
tapered 1D grating we consider a structure withaalutation depth as a function of
such that the coupling parametar, defined above, is a (not too large) constants Thi
choice is probably not the most efficient one faliabatic excitation, but it enables
analytical expressions for quantities like moduwlatidepth distribution (see below),
unlike more sophisticated structures (e.g., seeifleti et al. 2005)), resulting from
more complicated procedures.

The above choice of constaxt is a reasonable one, as can be seen from Equatyn

Assuming that mode coupling is indeed small, sheth &(2) = g (i.e., is approximately
constant), and thaf variations and the term witk, may be neglected, it follows from
Equation (16), withk,, =« :

b(2) = ig exp(iBzk zsincl z,. (24)
From Equation (24) it can be seen that
|b(2)F<lax IB T, (25)

so that no coherent build up of amplitudeill occur if « is sufficiently small.
With the assumed constasitit follows by integration from Equation (22)

N, (2 = N, gtanh z/ C). (26)
From the above the following relations can be detiv

L=C/ktanh™ @, /N, cage):

(27)
and

n,=coshkL IC )= expkL C )/ (28)
where we also used Equation (23) and (for the skeguality in Equation (28)) that in
most cases of practical interegt>>1.
As an illustration to the above we have plottedrig. (7a) modulation depth profiles, the
transmission,T (5] a(L)/ a(0) f and the enhancement for a structure with a lewdth
L =1Imm, a coupling constant such that the enhancememtrdiog to Equation (28) is
n, =100 (x=2.76/um) at wavelengths corresponding to,, .,.=0.1, 0.2, 0.
(A=0.9608 0.9256 0.8954um). The numerical calculations presented in Fig) @ite
on the basis of the transfer matrix method, stgrithz = L with a(L) =1 andb(L) =0.

For comparison also different taper profiles hagerbconsidered. In Fig. (8) the modal
power is depicted for the profile given by Equatiq@6), a Gaussian profile

NW(2) = Nymax €XP{2( 2= D/ 0’} and a linear profile (2 = Numeax 2 L. The results
have been scaled such that the input power aefheslunity. In all cases the considered
parameters arg, =100andL = Inm.

It can clearly be seen that the profile Equatid®) (2 far outperforms the others.



5. Discussion

In this section we will discuss the potential gbéeed 1D gratings to obtain in practice
large field enhancements, at low modal reflectibhe effects of wavelength variation
and fluctuations in structural are taken consideFag. (9) (left) shows the transmission
curves as a function of the wavelength variatiéa, for structures designed with the
above procedure at wavelengthg,, (A =0), corresponding ton =0.1and 0...

The power enhancementy; , indicated in the graphs correspond td,
(Npeage=0-1and 0.). The sharp drop in transmission is due to the fhat at the

corresponding wavelength the band edge is readresl corresponding wavelength can
be calculated to be (usindfl =¢ (N, cgpe™ N ) ):

m,edge

O = My, eqqel (477, G = 0.354m, (29)
where we used Equation (23), rewritten as
,7 = \/nm,edge/[z(nm edge_ n )] ! (30)

(using n,=n, .,) and the approximate relation between wavelengtd a .

(A =1um-gn, e following from a fit of the curve given in Fig5). From Equation

(29) it can be seen that the demands on waveleagthracy (and equivalently on
thickness and index accuracy) are relatively higrg., for /7, =100 it follows that

O /A=0.5010". For smaller values of the enhancement a mordipahwalue can be
obtained, e.9.01/A1=0.5[10° if 7, =10. Note that the requirements on wavelength

accuracy relax somewhat for larger values\pf,.., according to Equation (29).

Equation 28 shows that for fixed wavelength in pipfe any value of;, can be reached
simply by increasing the produget. (and so, decreasing, .,,.~ N, S€€ Equations (23)
and (26)). However, the requirements on index amurncrease (as on wavelength
accuracy) proportional tib/;7. From Equation (30) it can be seen that

O-n < (nm,edge_ rlrr) = r]m edgé(4’72)_’

(31)
where we made the seemingly reasonable assump@brihie error in refractive indices,
on, should be smaller than the difference betweerieppnodulation depth and that
corresponding to the band edge. For unit cells wéhies ofdn>(n, .4~ N,) modal
reflection will occur, as then the field solutioase evanescent corresponding to states
within the band gap. Equation (31) leads to simd@mands on the index accuracy as for
dIA. E.g. forn =10 it follows from (31) thatdh «10°, assumingn,, .,,.~0.4. The
above may hold for fabrication errors which extendr a longer range, including a large
number of unit cells. A different requirement onléx accuracy is obtained if a random
fluctuation in modulation index, differing from uncell to unit cell, is considered as
discussed below.
As a final topic we consider random fluctuationsithwa normal distribution with

probability functionP(dn) = expar? /2) A/ 2T, with a width of |dnfk 10°, of the



modulation depth in each unit cell. In order toadbttransmissionT)) curves which are
not too heavily fluctuating, all calculations preta in Fig. (10) are averaged over ten

such calculations (implying a reduction in ‘noiss/ a factor of~\/ﬁ). The length of
the structure is 1mm, the coupling constant,is such that the indicated value mf is
attained aton=0, at wavelengths corresponding @, .,.=0.1and 0.. From the
graphs the following approximate relation can bwated

|on,,, E 4010% Iy, (32)
where dn,,, indicates values corresponding to half of the mmaxn transmission. Note
that the curves show only minor dependencengn,.., and that|dn,, [11/7_. If we

assume a value dfon,, | 10° is practically feasible it follows for the corresmling
enhancemeny, =40. Considering the ‘noise’ in the curves of Fig. (1iis means that a
reasonable yield (of structures with not too langedal reflection, e.gT >0.5) can be
expected if devices aiming for values gf ~ 40 are fabricated under such practical
conditions.

6. Conclusions

The paper presents results of calculations on 1&irgs with a varying modulation
depth. Using a model structure approximate relabetween power enhancement, the
most relevant modal coupling parameter and stratparameters have been attained. A
method for adiabatic tapering of 1D gratings waeppsed, allowing for analytical
expressions of among others the corresponding itgp@rofile. On the basis of the
obtained expressions the practical feasibility dD Dratings with large power
enhancementy, (and so with low group velocity) was discussddwas found that,

depending on the type of structural inaccuracigapderate enhancement pf~ 10— 40
seems possible, with not too low modal losseSQ%) at relative errors in the refractive

indices, and also in the wavelength, ef10°. The requirements on structural
inaccuracies may relax somewhat in structures Watiger index contrast than the
assumed values (~0.3).
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Captions:

Fig. 1. Refractive index distribution as a functmirz for a 1D tapered grating.

Fig. 2. Symmetric unit cell of alD uniform gratinghe arrows indicate incoming and
outgoing plane waves.

Fig. 3. Transition between two unit cells with dfelient modulation depth. The arrows
indicate incoming and outgoing modes.

Fig. 4. Relation between wavelength defining the band edge and the corresponding
modulation depthn,, .-

Fig. 5. Numerically calculated curves (dashed) eand/es according to Equations (22)
and (23) (solid) of the quantitieQ, =«h/d,n, (a) andQ, =nvJh (b) as a function of

N, andn, ...

Fig. 6. Dispersion curves for the considered madelcture forn, =0 (dotted curve)
and 0.01, 0.05, 0.1 and 0.3. The dashed arrow atecthe trajectory for adiabatic
excitation.

Fig. 7. (a) Index profilen, (2 and log,,(Ad,n,) as a function ofz. (b) The
corresponding power enhancemem,, according to Equation (28) (squares) and

obtained with the transfer matrix method (solice)inThe transmission,, according to
the latter is also given. Note that the quantity,n_is the change in modulation depth

per unit cell.
Fig. 8. Dependence aof modal power for structures with the indicategeyof tapering
(see text). The wavelength correspondsi{,,.= 0.3.

Fig. 9. Calculated dependence on small wavelengtiations of transmissionl,, and
enhancementy, for adiabatic structures designed to have thecatdd enhancement at

wavelengthsA, (o4 =0). At the right hand side of the right figurggs blows up (not
shown here).



Fig. 10. Relation between modal transmissibnand random variations with a normal
distribution (half width on) in the modulation depth for two different wavejéms

(corresponding ta, 4= 0.1and 0.3).
Figures

nNZf1 2 1 271 2

Navi—

-—>
ode

incoming Wav ooe
uniform medium A~ tapering uniform grating

Figure 1



A—d,/2

—d./2 (O

Figure 2



(p—:l)A

Figure 3

p'"unit cell




0.95

0.a5| Linear part
0.3

M)

0.3

0.2 g3 04

0.6

Rm,edge

Figure 4



0.18

0.16

0.14

0.12

0.1

0.08

0.04

0.06 ,o*

Rip,edgeVAF, iy

0.1

Figure 5a

0.15

0.2 0.25
Ry Mmedge

0.3



Figure 5b

r

Nin,edgeVal, Ny — 0.1

0.15

0.2
Ry M edge

0.25

0.3



0.95¢

0.9}

0.85f
A(um)
0.8

0.75f N

07

Figure 6



0.3

0.2+

i (2)

0.1+ §

u 1 1 1 1 _a
0 200 400 600 800 1000
z(um

Figure 7a



105 1
10.98
10.96
10.94
93.1 U.:IE ﬂ':E ﬂ.:?ﬁ 013 ﬂ.ﬂqj'gz

”m,edge

Figure 7b



15
constant K
I e el E e e Lt TR R i
0.5F .
_____ |a|2
L] | _ .
0 200 400 600 800 1000
z(u m)
15
Gaussian
Il
1, _______________________________________________________________ »,/_/\‘/-"_ -
'
\
0.5, b
_____ |a|2
0 |b|2 | | | |
0 200 400 600 800 1000
z(um)
15
Linear
l*——————————————————————-————--—-'"*'\\.\A“T
|
J\q,
0.5r
_____ |a|2
0 |b|2 | | | |
0 200 400 600 800 1000

Figure 8

z(u m)



= 0.5 n =0.
m,edge
m,edge= !
0
-5
O A(L m) % 10°°
1
nL:ZOO
= 05
0
-5 5
x10°
1
nL=300
= 05 -
nm'e dge—O.S
nm,edge=0'1
0
-5 5
x107°
1
nL:4OO
= 05
0
-5 5
x10°

Figure 9

-6

x 10

nLZZOO




-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
dn -3
x 10
1 I
_ =0.3
0.8+ n =200 LT nm,edge |
y R a0
/Jﬁ ‘|‘| N Mm,edga Y-

0.6

0.4

0.2

Figure 10




