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Abstract. Slow light (SL) states corresponding to wavelength regions near the bandgap 
edge of grated structures are known to show strong field enhancement. Such states may 
be excited efficiently by well-optimised adiabatic transitions in grated structures, e.g., by 
slowly turning on the modulation depth. To study adiabatic excitations, a detailed 
research in 1D is performed to obtain insight into the relation between the device 
parameters and properties like enhancement and modal reflection. The results enable the 
design of an adiabatic device for efficient excitation of SL states in 1D. The effect of small 
wavelength variations as well as small fluctuations in the modulation depth of the grating 
has been investigated. 
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1. Introduction 
 
Recently, periodic dielectric structures (i.e. photonic crystals (PCs)) have attracted much 
interest by a large number of researchers. The main reason for that is due to the fact that 
materials with a photonic band gap can be realised by means of a proper choice of both 
lattice structure and index contrast. This phenomenon leads to variety of (possible) 
applications such as the inhibition of spontaneous emission (Yablonovitch 1987), low 
loss waveguides with sharp bends (Mekis et al. 1996), narrow-band filters, and strong 
field enhancement related to low group velocity, i.e. slow light (SL), modes propagating 
at state near the band edge (Sakoda et al. 1996; Notomi et al. 2001; Povinelli et al. 2005).      
Due to the mismatch of both modal profiles and phase velocities between the incoming 
propagating wave the modes in SL devices (e.g. grating), direct excitation of SL mode 
will cause high losses (Notomi et al. 2001). One promising technique that has been 
introduced in several papers to overcome this problem is so-called adiabatic excitation 
(Povinelli et al. 2005; Johnson et al. 2002). By means of gradually changing index or 
geometry of the gratings, it is possible to change the profile of an incoming wave 
gradually into that of the SL mode. Thus, the effects of profile mismatch and so of losses 
can be minimised. Even tough a topic about gratings with slowly varying index or 
geometry is rather old and it has been subjected to research by many researches 
(Matuschek et al. 1997; Sipe et al. 1994;  Spielmann et al. 1994). However, from the 
author’s knowledge, there is no paper specifically covered an issue about the application 
such gratings for SL excitation.  
In this paper, we will present a theory for SL excitation in 1D. In particular, we discuss 
the relation between device parameters, like modulation depth, and modal properties, like 
power enhancement and modal reflection. A structure for the adiabatic excitation of SL 
mode in 1D gratings is proposed. We also investigate the effect of small wavelength 



variations as well as index fluctuations, on the excitation efficiency of SL modes in 
proposed adiabatic structure. The rest of the paper is organized as follows: In the Section 
2, we will present theory of uniform 1D grating. The relation between modal and 
structural parameters is treated in Section 3. The study of adiabatic excitation is given in 
Section 4 and in Section 5 the effects of small wavelength and fluctuations are discussed. 
We end this paper with conclusion given in section 6.  
 
 
2. Basic theory  
 
In this section we will consider basic equations for optical fields propagating through 
uniform and modulated 1D grating, consisting of two different layers (index and 
thickness, qn  and qd , respectively, 1,2q = ), in a direction perpendicular to the interfaces 

(see Fig. (1)). A time dependence i teω  is assumed but suppressed. In addition, a coupled 
mode (CM) model is introduced for the description of light in a 1D grating with a slowly 
varying modulation depth, mn . The field equation to be solved is:  

 2 2
0[ ( )] ( ) 0zz k n z E z∂ + = ,        (1) 

where 0k  is the wavenumber and n is the refractive index. The field solutions to Equation 

(1) in each layer p can be written as the sum of right and left running plane waves:  
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For a uniform grating it follows from the Floquet-Bloch theorem that there exist modes 
for which ( ) ( )iE z e E zβ− Λ+ Λ = , with Λ  the grating period. If we consider a symmetric 

unit cell (with 1 1/ 2 / 2d z d− < < Λ − , see Fig. (2)) it follows:  
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Here r and t are the reflection and transmission coefficients for the considered unit cell, 
the asterisk (*) denotes the complex conjugate and we have used the general properties of 
the scattering matrix (Haus 1982), leading to 2 2| | | | 1r t+ =  and 0r t t r∗ ∗+ = . The 
eigenvalues of matrix M are:  
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with 21 1
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corresponding to 2 1R ≤ . The corresponding eigenvectors are:  
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It can be shown from the above relations between r and t that 1γ γ+ − = , both γ ±  are real, 

and that Re(1/ ) 1 or 1rγ ± = = + −  at the band edge (transition between running and 

evanescent modes, corresponding to2 1R = ). We choose | | | |γ γ+ −≤ , so that for 2 1R ≤  the 

subscripts + (-) correspond to right (left) running modal waves.  
The normalized eigenvectors at positions 1 / 2z m d= Λ −  are given by: 
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whereby the following holds for the modal power:  
2 2(| | | | ) 1pP v wα± ± ±= − = ± .        (7) 

The latter is defined by:  
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Note that (modal) cross product is zero, which follows from Equation (6) and the 
property 1γ γ+ − = . The latter holds for all positions in all layers and the modal power is a 

conserved quantity in a uniform grating.  
The modal propagation in layers of type p is given by:  
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The modal transfer from layer 1 to layer 2 (at z m= Λ ) can be calculated to be given by:  

1 2 2 1
12 12

2 1 1 22

1
;

2
p p

v v n n n n
T T

w w n n n nn+ −

± ±

± ±Λ Λ

+ −     
= ≡     − +     

.   (10) 

Here the superscript + (-) (in p +Λ ) indicates a z value just right (left) of the indicated 
interface. A similar expression as above holds for the modal transfer from layer 2 to 1. 
With Equations (8-10) it is easy to show that the power in a uniform grating is constant 
along z, as it should. The field in a grating can be expressed by:  
 ( ) ( ) ( )E z a v w b v w+ + − −= + + + ,       (11) 

with a and b constants, and the net power along z is given by 2 2| | | |P a b= − .  
As a measure for the power enhancement for a certain set of grating parameters we 
define:  
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being the ratio of the total power (sum of power of left and right going modes) and the 
net power of a certain mode. The quantity is position dependent (constant within each 
layer), but not in a critical way, as follows from numerical calculations. In this paper we 
will evaluate it at positions 1 / 2z m d= Λ − , leading to (see Equation (6)): 
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Numerical results indicate that ~ 1/ gvη ∝ , with ( / )gv ω β≡ ∂ ∂  the group velocity. In the 

below a 1D grating is considered with a slowly varying modulation dept, mn , in the 

region [0, ]z L∈ . The modulation depth changes from unit cell to unit cell (see Fig. (1)). 
The total field is given by equation 11, but now modal amplitudes a and b (still constant 
within a unit cell) vary from unit cell to unit cell, and  and v w± ±  correspond to the 

considered unit cell, with  
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Here, ,m pn  is the modulation depth in the pth unit cell and we dropped the subscript + in 

β . Note that the fields  and v w± ±  at other positions in the unit cell than p +Λ  can be 

calculated with the transfer matrix method, similarly as in Equations (9) and (10).  
At a step in the modulation depth the modal transmission is no longer unity, and modal 
reflection will occur. The scatter process may be described by: 
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with S the scattering matrix. Note that the above (matrix transfer) treatment is still exact, 
unlike the CM theory given below. 
In a CM picture the behavior of light in the smoothly varying grating can be described by 
(Kogelnik et al. 1971) the following CM equations (CMEs): 
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where a, b and the coefficients κ  vary slowly as a function of z. Form conservation of 
energy ( 2 2(| | | | ) 0z a b∂ − = ) it can be derived that: 

 Re,aa bb ab baκ κ κ κ ∗= ∈ = ,        (17) 

whereby the first equality follows from symmetry considerations. Integration of  
Equation (16) over one unit cell leads to: 
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whereby relations equivalent to Equation (17) hold for the elements of pKɶ . These can be 

calculated for a certain parameter set, by comparing Equations (15) and (18). First, the 
elements of S have to be calculated. Considering an incoming field from the left (see Fig. 
(3)) at the interface at z p= Λ , with amplitude 1pa = , it can be derived from the above 

that (see also Equation (10)): 
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Here the prime indicates that the two involved unit cells differ in modulation depth. From 
Equation (19) one can calculate the values of rr , t and ( / )l rr r t t∗ ∗= − , where the latter 

equality follows from the general properties of the scattering matrix, S. The fields 

 and v w± ±  can be calculated using Equations (5-6) including the phase term exp( )piϕ∓  

defined in Equation (14). 
Next, rewriting Equation (15) as 
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and comparing the result with Equation (18) it follows: 
 ln /p pK i M= − Λɶ .        (21) 

From the properties of pM  (eigenvalues and eigenvectors of the form exp( )piθ±  and 

( )(1 ) , 1
ttd d∗ , respectively) the relations Equation (17) can easily be derived.  

The most relevant elements of matrix pKɶ  are the off-diagonal elements, which describe 

modal reflection at steps in the modulation depth. The diagonal terms only introduce a 
modal phase shift, which is relatively small as it appears from numerical calculations that 
| | | |aa abκ κɶ ɶ≪ , and so | | | |aa abκ κ≪ . For these reasons we will concentrate in the below 

mainly on the coupling parameter ( | |)abκ κ≡ ɶ .  

 
 
3 Relations between modal and structural parameters 
 
In this section, numerically calculated approximate relations, including their wavelength 
dependence, between modal parameters (power enhancement, η , and coupling 
parameter, κ ) and structural parameters will be presented. For this purpose, a model 
structure is considered with the following parameters: layer thicknesses 

1 2 0.1613d d mµ= = , indices 1/ 2 /av mn n n= + − , with an average index of 1.55avn = . The 

parameters correspond to a bandgap at 1mλ µ=  for 0mn → . The structural parameters to 

be varied are the modulation depth, mn , and its rate of change at interfaces between two 

unit cells, mn∆  ( z mn≈ Λ∂ , in a CM picture, where variations are assumed to be smooth).  

We have studied the above relations for a not too large modulations depth, 0 0.3mn< ≤ , 

and a wavelength region corresponding to ,0 0.3m edgen< ≤ , where ,m edgen  depends linearly 

on the wavelength (see Fig. (4)). Here ,m edgen  is defined as the modulation depth 

corresponding to the band-edge for a given wavelength. In the below we will use the 
parameter ,m edgen  to indicate the wavelength in order to obtain more transparent 

expressions. 
Careful fitting of numerical results in the region 0 0.3mn< ≤ , at wavelengths for which 

,m m edgen n< , leads to the following results:  

 2 2
, ,/ , , 0.52,m edge z m m edge mCn n h h n n Cκ ≈ ∂ ≡ − =      

 (22) 
and  

 , /m edgen hη ≈ .          

 (23) 
Figures (5a) and (5b) show a few graphs illustrating Equations (22) and (23), 
respectively.  
 
 
 



4. Adiabatic excitation 
 
In adiabatically varying structures (see Fig. (6)) the changes are that slow that only little 
mode conversion takes place. Form CM theory it can be shown that two modes show 
little interaction if the ratio of phase-mismatch and coupling constant is small. As a 
tapered 1D grating we consider a structure with a modulation depth as a function of z 
such that the coupling parameter, κ , defined above, is a (not too large) constant. This 
choice is probably not the most efficient one for adiabatic excitation, but it enables 
analytical expressions for quantities like modulation depth distribution (see below), 
unlike more sophisticated structures (e.g., see (Povinelli et al. 2005)), resulting from 
more complicated procedures.  
The above choice of constant κ  is a reasonable one, as can be seen from Equation (16). 
Assuming that mode coupling is indeed small, such that 0( )a z a≈  (i.e., is approximately 

constant), and that β  variations and  the term with bbκ  may be neglected, it follows from 

Equation (16), with baκ κ≈ :  

 0( ) exp( ) sinc( )b z ia i z z zβ κ β≈ .       (24) 

From Equation (24) it can be seen that 
 2 2

0| ( ) | | / |b z aκ β<
ɶ

,         (25) 

so that no coherent build up of amplitude b will occur if κ  is sufficiently small.  
With the assumed constant κ  it follows by integration from Equation (22)  
 ,( ) tanh( / )m m edgen z n z Cκ≈ .        (26) 

From the above the following relations can be derived: 
 1

, ,/ tanh ( / )m L m edgeL C n nκ −≈ ,       

 (27) 
and  
 cosh( / ) exp( / ) / 2L L C L Cη κ κ≈ ≈ ,       (28) 

where we also used Equation (23) and (for the second equality in Equation (28)) that in 
most cases of practical interest 1Lη ≫ .  

As an illustration to the above we have plotted in Fig. (7a) modulation depth profiles, the 
transmission, 2( | ( ) / (0) |T a L a≡  and the enhancement for a structure with a length of 

1L mm= , a coupling constant such that the enhancement according to Equation (28) is 
100Lη =  ( 2.76 / mκ µ= ) at wavelengths corresponding to , 0.1, 0.2, 0.3m edgen =  

( 0.9608,λ =  0.9256, 0.8954 mµ ). The numerical calculations presented in Fig. (7b) are 
on the basis of the transfer matrix method, starting at z L=  with ( ) 1a L =  and ( ) 0b L = .  
For comparison also different taper profiles have been considered. In Fig. (8) the modal 
power is depicted for the profile given by Equation (26), a Gaussian profile 

2
,max( ) exp{ [2( ) / ] }m mn z n z L L= − −  and a linear profile ,max( ) /m mn z n z L= . The results 

have been scaled such that the input power at the left is unity. In all cases the considered 
parameters are 100Lη = and 1L mm= . 

It can clearly be seen that the profile Equation (26) by far outperforms the others.  
 
 



5. Discussion 
 
In this section we will discuss the potential of tapered 1D gratings to obtain in practice 
large field enhancements, at low modal reflection. The effects of wavelength variation 
and fluctuations in structural are taken considered. Fig. (9) (left) shows the transmission 
curves as a function of the wavelength variation, δλ , for structures designed with the 
above procedure at wavelengths, 0λ ,  ( 0δλ = ), corresponding to , 0.1 and 0.3m edgen = . 

The power enhancement, Lη , indicated in the graphs correspond to 0λ  

( , 0.1 and 0.3m edgen = ). The sharp drop in transmission is due to the fact that at the 

corresponding wavelength the band edge is reached. The corresponding wavelength can 
be calculated to be (using 1 , ,( )m edge m Lc n nδλ = − ): : 

 2
1 , 1/(4 ), 0.35m edge Lc n c mδλ η µ≈ = ,       (29) 

where we used Equation (23), rewritten as  

 , ,/[2( )]m edge m edge mn n nη ≈ − ,        (30) 

(using ,m m edgen n≈ ) and the approximate relation between wavelength and ,m edgen  

( 1 ,1 m edgem c nλ µ= − ) following from a fit of the curve given in Fig. (5). From Equation 

(29) it can be seen that the demands on wavelength accuracy (and equivalently on 
thickness and index accuracy) are relatively high. E.g., for 100Lη =  it follows that 

5/ 0.5 10δλ λ −≈ ⋅ . For smaller values of the enhancement a more practical value can be 
obtained, e.g. 3/ 0.5 10δλ λ −≈ ⋅  if 10Lη = . Note that the requirements on wavelength 

accuracy relax somewhat for larger values of ,m edgen , according to Equation (29).  

Equation 28 shows that for fixed wavelength in principle any value of Lη  can be reached 

simply by increasing the product Lκ  (and so, decreasing , ,m edge m Ln n− , see Equations (23) 

and (26)). However, the requirements on index accuracy increase (as on wavelength 
accuracy) proportional to 21/ Lη . From Equation (30) it can be seen that  

 2
, ,( ) /(4 )m edge m m edge Ln n n nδ η− ≈≪ ,       

 (31)  
where we made the seemingly reasonable assumption that the error in refractive indices, 

nδ , should be smaller than the difference between applied modulation depth and that 
corresponding to the band edge. For unit cells with values of ,( )m edge mn n nδ > −  modal 

reflection will occur, as then the field solutions are evanescent corresponding to states 
within the band gap. Equation (31) leads to similar demands on the index accuracy as for 

/δλ λ . E.g. for 10Lη =  it follows from (31) that 310nδ −
≪ , assuming , 0.4m edgen ≈ . The 

above may hold for fabrication errors which extend over a longer range, including a large 
number of unit cells. A different requirement on index accuracy is obtained if a random 
fluctuation in modulation index, differing from unit cell to unit cell, is considered as 
discussed below.  
As a final topic we consider random fluctuations, with a normal distribution with 

probability function 2( ) exp( / 2) / 2P n nδ δ π= − , with a width of 3| | 10nδ −≤ , of the 



modulation depth in each unit cell. In order to obtain transmission (T) curves which are 
not too heavily fluctuating, all calculations presented in Fig. (10) are averaged over ten 

such calculations (implying a reduction in ‘noise’ by a factor of 10∼ ). The length of 
the structure is 1mm, the coupling constant, κ , is such that the indicated value of Lη  is 

attained at 0nδ = , at wavelengths corresponding to , 0.1 and 0.3m edgen = . From the 

graphs the following approximate relation can be obtained  
 2

1/ 2| | 4 10 / Lnδ η−≈ ⋅ ,         (32) 

where 1/ 2nδ  indicates values corresponding to half of the maximum transmission. Note 

that the curves show only minor dependence on ,m edgen , and that 1/ 2| | 1/ Lnδ η∝ . If we 

assume a value of 3
1/ 2| | 10nδ −≈  is practically feasible it follows for the corresponding 

enhancement 40Lη ≈ . Considering the ‘noise’ in the curves of Fig. (10) this means that a 

reasonable yield (of structures with not too large modal reflection, e.g. 0.5T >
ɶ

) can be 

expected if devices aiming for values of ~ 40Lη  are fabricated under such practical 

conditions.  
 
 
6. Conclusions 
 
The paper presents results of calculations on 1D gratings with a varying modulation 
depth. Using a model structure approximate relation between power enhancement, the 
most relevant modal coupling parameter and structural parameters have been attained. A 
method for adiabatic tapering of 1D gratings was proposed, allowing for analytical 
expressions of among others the corresponding tapering profile. On the basis of the 
obtained expressions the practical feasibility of 1D gratings with large power 
enhancement, η , (and so with low group velocity) was discussed. It was found that, 
depending on the type of structural inaccuracies, a moderate enhancement of ~ 10 40η −  
seems possible, with not too low modal losses (<

ɶ
50%) at relative errors in the refractive 

indices, and also in the wavelength, of 3~ 10− . The requirements on structural 
inaccuracies may relax somewhat in structures with larger index contrast than the 
assumed values (~0.3).  
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Captions:  
 
Fig. 1. Refractive index distribution as a function of z for a 1D tapered grating.  
Fig. 2. Symmetric unit cell of a1D uniform grating. The arrows indicate incoming and 
outgoing plane waves.  
Fig. 3. Transition between two unit cells with a different modulation depth. The arrows 
indicate incoming and outgoing modes.  
Fig. 4. Relation between wavelength λ  defining the band edge and the corresponding 
modulation depth, ,m edgen .  

Fig. 5. Numerically calculated curves (dashed) and curves according to Equations (22) 

and (23) (solid) of the quantities 1 / z mh nκΩ ≡ ∂  (a) and 2 hηΩ =  (b) as a function of 

mn  and ,m edgen .  

Fig. 6. Dispersion curves for the considered model structure for 0mn =  (dotted curve) 

and 0.01, 0.05, 0.1 and 0.3. The dashed arrow indicates the trajectory for adiabatic 
excitation.  
Fig. 7. (a) Index profile ( )mn z  and 10log ( )z mnΛ∂  as a function of z. (b) The 

corresponding power enhancement, Lη , according to Equation (28) (squares) and 

obtained with the transfer matrix method (solid line). The transmission, T, according to 
the latter is also given. Note that the quantity z mnΛ∂ is the change in modulation depth 

per unit cell.  
Fig. 8. Dependence on z of modal power for structures with the indicated type of tapering 
(see text). The wavelength corresponds to , 0.3m edgen = .  

Fig. 9. Calculated dependence on small wavelength variations of transmission, T, and 
enhancement Lη  for adiabatic structures designed to have the indicated enhancement at 

wavelengths 0λ ( 0δλ = ).  At the right hand side of the right figures Lη  blows up (not 

shown here). 



Fig. 10. Relation between modal transmission, T, and random variations with a normal 
distribution (half width nδ ) in the modulation depth for two different wavelengths 
(corresponding to , 0.1m edgen =  and 0.3).  
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