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Boundary Conditions for the Finite Difference
Beam Propagation Method based on Plane Wave
Solutions of the Fresnel Equation

M. Lohmeyer, M. Shamonin and P. Hertel

Abstract— Each particular implementation of the beam
propagation method (BPM) requires a special procedure
allowing for radiation to leave the computational window.
We propose a new approach to constructing the finite dif-
ference schemes of the BPM at the boundary of the com-
putational window. These schemes are independent of the
computed fields and allow for a similar treatment of both
interior and boundary points. The new approach can be fur-
ther improved by correcting the field values at the boundary
points according to Hadleys method. The algorithm is easy
to implement for both two- and three-dimensional struc-
tures. The new method considerably reduces computation
times because the propagation matrices remain constant in
longitudinally invariant sections, thus avoiding repeated LU-
decompositions. The basic idea — establishing the finite dif-
ference scheme such that locally exact, approximate or plau-
sible solutions are recovered — may be of interest for other
efforts to solve partial differential equations by the finite
difference method.

Keywords— integrated optics, beam propagation method,
transparent boundary conditions, finite differences

I. INTRODUCTION

ITHIN the framework of the beam propagation

method (BPM) [1] standard boundary conditions do
not provide satisfactory results. The power on the trans-
verse computational window is conserved if the field or the
derivative in the normal direction on the boundary are pre-
scribed. A method is required which models an unbounded
computational domain. Several possibilities have been pro-
posed:

« Absorbing boundary conditions [2], [3]: A refactive in-
dex with an imaginary part is used close to the bound-
ary. One has to choose the shape of these absorbing
zones carefully. A considerable part of the discretiza-
tion points is wasted for the boundary, especially in
3-D simulations.

o Integration methods [4], [5], [6]: They are based on the
description of the boundary fields in terms of Greens
functions. For each propagation step integrations over
the computed fields at the boundary are necessary.
Formulas are available only for 2-D simulations.

o Transparent Boundary Conditions TBC [7], [8]: The
field next to the boundary is assumed to depend ex-
ponentially on the transverse coordinate. After each
propagation step the outermost field values and some
entries in the propagation matrices are corrected ac-
cording to this assumption. The method is easily im-
plemented and works well (however, see Ref. [6] for
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precautions).

« A hybrid method [9]: The absorber technique and the
TBC are implemented simultaneously, with a field de-
pendent shape of the absorber profile.

FD-BPM indicates beam propagation calculations based
on the approximation of derivatives by finite differences.
In most cases the propagation equation is developed from
Maxwell’s equations in paraxial approximation. For each
propagation step, a system of linear equations has to be
solved. The corresponding large matrices are sparse, but
not necessarily tridiagonal [10], [11], [12].

The paraxial approximation is valid only for structures
which are varying but slowly in the direction of propaga-
tion. They can be divided into longitudinally invariant sec-
tions. Usually, for each section, several or many steps are
required. For calculations reported in this paper the rou-
tines of the SPARSE package [13] were employed to solve
the linear system of equations. First the propagation ma-
trix is decomposed into two triangular matrices, then the
new field values are evaluated by backsubstitution. For
a 3-D vectorial simulation, decomposition is typically 100
times as expensive (in time) than backsubstitution. It is
therefore highly desirable to work with constant propaga-
tion matrices whenever possible. Recall that the method of
transparent boundary conditions (TBC) modifies the prop-
agation matrix after each step, even if the structure is ho-
mogeneous.

II. WAVE EQUATION AND FINITE DIFFERENCES

We choose a Cartesian coordinate system z,y,z where
z,y denote the transverse and z the longitudinal (propaga-
tion) coordinates. All field components are of the form

V(t,z,y,2) = Y(x,y,2) expi(wt —knp2), (1)

where w is the angular frequency of light, & = 27/) the
vacuum wavenumber and n, a reference refractive index.

On the boundary of the transverse computational win-
dow a piecewise constant and diagonal permittivity with
local refractive index n is assumed. Then, in the paraxial
approximation, the slowly varying amplitudes ¢ obey the
Fresnel equation

oY ik 5 5 i 0? 0?

h N - (=Y. (2

oz 2n, (nr " )¢ 2kn, \ Oz2 + Oy? v 2)
Many BPM algorithms rely on the finite-difference approx-
imation of this equation. Discretization of Eq. (2) with re-

spect to the transverse coordinates in a conventional way
leads to the following finite difference scheme:
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A subscript (a,b) denotes values at the point (z,y) =
(aAz,bAy), a = 1,...,Ng, b = 1,..., N, of a rectangu-
lar computational window. Obviously, the scheme (3) can
be used only at interior points 1 < a < N, 1 < b < N,.
At a boundary point Eq. (3) has to be supplemented by an
expression for the longitudinal derivative in terms of field
values in its neighbourhood. In Section IV this problem is
tackled by a procedure based on paraxial plane wave so-
lutions of the Fresnel equation (2). The idea behind this
approach can be explained best by a simple example pre-
sented in the following Section.
Equation (3) may be written in matrix form

oY

¥ — sy, @
where the vector 4 is built from the N, x N, functions
Yo p(2). Further discretization in the longitudinal direc-
tion results in a system of linear equations connecting the
discretized fields at planes z = sAz and z = (s + 1)Az:

Az Az

The scheme is stable only for 1/2 < a < 1[10]. Fora =1/2
(5) is the Crank Nicolson scheme.

Note that we allow for matrix A to differ from the unity
matrix. This situation occurs for certain fully vectorial
calculations, in anisotropic media [12], or if alternative for-
mulations are employed [14], [15].

In alongitudinally homogeneous structure the permittiv-
ities incorporated in (3) remain constant, a longitudinally
varying structure will be approximated by z-invariant sec-
tions. Therefore the matrices A and B do not depend on
the 2z discretization index.

(A-e8)w = (gA+a-aB)y. )

III. DIFFERENCE SCHEMES FROM SOLUTIONS: AN
EXAMPLE

We look for the discrete values uy = u(kAt) of the solu-
tion u of the harmonic equation

8%u
e +w?u=0 (6)
with given consecutive values ug, u;. Conventional dis-
cretization (i.e. replacing u} by (upt1 — 2uy +ug—1)/At?)
leads to an approximate formula which expresses wgy1
as a linear combination of uy and ug_1: ugr1 = (2 —
w2 At?)up — up_1 - The differential equation has become a
recursion relation.

Motivated by this result, we assume a recursion relation
of second order:

Uk4+1 = CLUE + CoUp_1.

The coefficients c;, ¢y are to be determined. We de-
mand that the known solutions of our differential equa-
tion, namely v(t) = exp(—iwt) and w(t) = exp(iwt), must
be reproduced by the difference scheme. v and w are called
generating functions because they will be used to generate
optimal coefficients ¢; and cz. We introduce a function
D to measure the deviation between the exact values of
the generating functions from values calculated with the
guessed scheme:

D(c1ye2) = |vg1r — (crve + CZ’Uk—l)|2
+ [wig1 — (1w + cowg_1)|
1 + ¢z exp(iwAt) — exp(—iwAt)|”

+|e1 + ¢z exp(—iwAt) — exp(iwAt)[?

The minimum of D provides optimal coefficients ¢; =
2 coswAt and ¢ = —1. This finite difference scheme,

U1 = (2 coswAt)uk — Up—1,

results in exact solutions of equation (6).

Note that for At — 0 we obtain the conventional finite
difference scheme which gives only an approximation to
the exact solution. To summarize: exact, approximate or
plausible solutions of a particular differential equation may
serve to obtain the finite difference scheme for solving it.

IV. DIFFERENCE SCHEMES AT THE BOUNDARY

The least-squares procedure sketched in the preceding
Section can be used to generate the difference schemes for
the boundary of the computational window. As in Eq. (3)
the longitudinal derivative shall depend linearly on the field
values at neighbouring points:

oY B J |
(E)a b - ]:21 C1¢a+aj,b+bj (7)

)

The form of the mesh stencils is determined by the index
differences a;, b;, j = 1,...J. Fig. 1 shows plausible sten-
cils while Tab. I gives the corresponding index differences.
It is seen that the usual five-, four- and three-point stencils
have been used at interior, boundary, and corner points,
respectively.

Eq. (7) must be able to model paraxial solutions of
Maxwell’s equations in an isotropic, homogeneous and lin-
ear medium. Furthermore, the generating functions should
represent outgoing radiation. Therefore a set of properly
selected plane waves is the natural choice:

2

Ny n

> " om, cosf;)z (8)

F'™(z,y,2) = exp (ik‘ ((
— (% sin 0; cos Y., )T — (% sin 6, singom)y)) ,

where the two superscripts [,m correspond to the polar
angle 6; and the azimuthal angle ,, with respect to the
z—coordinate. The functions F'™ satisfy Eq. (2) for small
0; up to the third order in 6;. Moreover, it turns out that
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Fig. 1. Possible stencils for the 3-D case. Joined points belong to the
same scheme. The numbers indicate the type of boundary point,
0 denotes an interior point.

TABLE I
INDEX DIFFERENCES FOR THE STENCILS OF FiG. 1.
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Fig. 2. Imaginary parts of the coefficients cl/k,...,c5/k versus the
reciprocal polar angle m/6op: as calculated from Eq. (12). The
real parts of all coefficients were smaller than 10~ 14, Lines show
the values of Eq. (3). Parameters: n = 1, n, = 2, Az = 0.3/k,
Ay = 0.5/k, Omaz = /4, 6 = ®/60, Ng = 100, ©pmin = O,
Ymaz = 27, Ny, = 80.

0 5] 0,0 0,1 0,1 1,0 1,0
1 7] 0,0 0,1 0,1 | 1,0

2 3 0,0 0,1 | 1,0

3 2 0,0 1,0 1,0 | 0,1

1 3| 0,0 0,1 1,0

5 4 0,0 0,1 0,1 1,0

6 3| 0,0 1,0 0,1

7 7 0,0 1,0 1,0 0,1

8 3 0,0 1,0 0,1

with such a choice the deviation function D defined below
is independent of the coordinates. A finite set of Ng x N,
generating functions is given by

0; =10pmaz/No, 1=0,..., Ny, 9)
(Pm:wmin'i'm(ﬁpmaw_wmin)/]vcpa m=0,...,N¢,.
We define the deviation function as

2

, | (OF'™ N
Dlesvser) = St | (%) = 2o |
1,m a,b j=1

)

(10)
where the weights g;,,, are given by

gim = €Xp (—(01 - eopt)z/efu) . (11)

Oopt and 0,, are additional parameters to be adjusted. Gen-
erating functions with a polar angle close to 8,,: contribute
strongly to D. Guidelines how to select these parameters
are discussed in Section V.

The coefficients c¢; have to minimize D:

oD
ORec;

oD

Olmc;

0, (12)

or

J
> Lijker=Rj, j=1,...,J
k=1

TABLE II
SECTIONS OF THE AZIMUTHAL ANGLE ¢ FOR THE GENERATING
FUNCTIONS.
[ Typ O] 1 [ 2 3] 4] 5 [ 6 [7] 8
Prmin 0 | —m/2 0 0| n/2| w/2 s w | 3m/2
Ymaz || 2 | w/2 | ®w/2 | 7 ™ 3r/2 | 37/2 | 2¢ 2m
where

i i
ij = Z glzm (FG.TG]' ,b+b; )*(FaTak,b“rbk)’

lym

2 Im * aFlm
R; = Zglm(Fa—{—aj,b—}-bj) "0z :
I,m ab

Let us first consider an interior point (type 0 in Tab. I).
In the limit 6,,; — 0 Eq. (12) leads to the usual finite dif-
ference scheme Eq. (3) as can easily be seen from Fig. 2.
Our method of minimizing the error (10) is capable of re-
producing the conventional finite difference scheme for the
Fresnel equation in a homogeneous medium.

The coefficients c; for the boundary points can be calcu-
lated similarly. To forbid reflection at the boundary one has
to consider only such waves that do not propagate towards
the interior of the computational window [8]. In the frame-
work of our method this can be achieved easily by setting
parameters Qiin, Pmaz as shown in Tab. II. For boundary
points, the missing equations of the form (3) are obtained
as solutions of Eq. (12), seperately for each boundary point
type and for each refractive index.

It is usually sufficient to work with scalar difference
schemes even if there are refractive index discontinuities
along the boundary. For fully vectorial computations, the
field components are usually uncoupled in the boundary
region. All components satisfy the same wave equation.
Therefore, one scalar difference scheme is built into the
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Fig. 3. Stencils in the 2-D case.

TABLE 111
INDEX DIFFERENCES FOR THE STENCILS OF FIG. 3.

[(Typ || J [[ a1 [ a2 | as]
0 [[3] 011
T 3012
7 (3012

propagation matrices for each field component at each
boundary point.

With a properly modified set of generating functions (8)
our approach can easily be applied to the two-dimensional
case (i.e. one transversal coordinate). The second super-
script is to be dropped, ¢ is set to zero and 8,4, and 0,y
get a sign depending on the boundary point. It turns out
that the stencils connecting the boundary points with the
two neighbouring grid points (see Fig. 3) provide better
boundary transparency.

We have found out that the reflectivity of the new bound-
ary conditions is further reduced if fields are corrected ac-
cording to steps 1) and 2) of Hadleys TBC-algorithm, see
Section II.C in Ref. [8]. This correction takes place be-
tween two propagation steps. In the 3-D case, the rules for
planar simulations are applied along the boundary normal,
in the corners along the 45° direction between the edges of
the computational window. However, all potential pitfalls
of TBC (see e.g. Ref. [6]) are inherited. The calculations
presented below use the more robust STBC field correction
described in Ref. [8].

For some structures computational instabilities have
been observed if the original corrections [8] were used.
These instabilities vanished if the field correction procedure
was switched off. They can be reduced or avoided with one
or both of the following modifications (cf. Ref. [9]):

e« More than two points in the neigbourhood of
the boundary are used to determine the factor
exp(—ik,Az) [8]. Each pair of neighbouring points
gives different ratios exp(—ik,;Az). The field at the
boundary is reset by applying the average of these fac-
tors.

o The factor exp(—ik;Az) is normalized before the field
is corrected:
exp(—iky Az) — exp(—ik; Az)/| exp(—ik, Az)|.

Both modifications result in a slightly reduced trans-
parency in test calculations with Gaussian beams, but they
guarantee a stable algorithm.

Note that stability is a property of the entire numerical
procedure. It also depends on the structure of interest, the
operation wavelength, the mesh stepsizes and the parame-
ter a in Eq. (5).

In the following text we denote by WFBC the Wave

Fitted Boundary conditions as described above. WFBC*
indicates that the field correction procedure between two
propagation steps has been switched off.

Very recently a somewhat similar method (Uniform Ab-
sorbing Boundary Conditions UABC) has been published
[16]. It is based on an ansatz like Eq. (7) for the sec-
ond transverse derivative 927 only. The unknown coef-
ficients are determined to model a few suitably selected
outgoing plane waves exactly. However, the discussion re-
mains restricted to two dimensional problems in homoge-
neous space.

V. NUMERICAL RESULTS

A few simple examples are presented in order to justify
some rather arbitrary assumptions of the previous Section.

A. 2-D Gaussian Beams

Properly adjusted boundary conditions should not have
any effect on light beams propagating at small angles to-
wards the boundary. The power on the computational win-
dow should vanish after a sufficiently large propagation dis-
tance N,Az and there should be no distortion of the field
profile when the beam is leaving the domain. With the
initialisation

¥(z,0) = exp (—(z — z5)?/22) exp (—i(knsin B)z) (13)

a Gaussian beam of width 2z,, centered at z is launched,
which propagates at an angle § with respect to the z-
direction. In the following the reflection coefficient R =
PN: /PO with P* = Y Ne |22 is used to measure the
transparency of the boundary.

Parameters for the first test simulation are similar to
Ref. [8]: A = 2n/k = 0.828 ym, n = n, = 1.0, computa-
tional window: [—25.0 um, 25.0 um] with 256 discretization
points, Az = Az = 0.2 um, N, = 5000 corresponding to a
distance of 1000 ym for beams with z,, = 10.0 yum, z, = 0
and B8 > 5°. Concerning the undetermined parameters in
Eq. (9) and (11) the following results have been obtained
(note that ¢ does not appear in the 2-D case):

o G4, enters through the density of the 6; values. It has
only a small influence on the reflection coefficients. We
have set Ny = 100, 0,4, = 30°.

¢ 0, has only a marginal influence on R as well. For a
properly choosen 6,,; a small angle works best: 8,, =
2°,

e O,pt is the crucial parameter in this list. The value has
to be set up in such a way that low reflection coeffi-
cients are obtained for paraxial angles 8 between 0°
and 12°, say. This dependence is shown in Fig. 4. For
each angle (3, the boundary conditions fitted to a G
close to B work best, for small angles even better than
the TBC. The following planar waveguide simulations
use the value 0,,; = 7.5°.

However, for a given value of 6,,; there are always prop-
agation angles for which the reflection coeffient of the
WFBC* is much larger than that of the TBC. The values
are lowered to the TBC level if the TBC field correction
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Fig. 4. Reflection coefficients R for WFBC* (a) or WFBC (b) and
TBC versus the propagation angle 5. Parameter is op:. The
curves start with 8 = 5° because beams at smaller angles do not
pass the boundary within the given propagation distance.
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Fig. 5. Contour plots for [¢|2. Gaussian beams with angles 5.7° (a)
and 8.5° (b) are launched at z = 0. The reflection coefficients
correspond to a distance of 1000 pm.

[8] is switched on (see Fig. 4). In particular, the strong
dependence on 0,,; vanishes and the adaptive character of
the TBC is transferred to the WFBC. The new boundary
conditions may be used for arbitrary fields without special
adjustment. Fig. 5 shows some field profiles computed with
different boundary types and beam angles.

B. Planar Waveguides

When a Gaussian beam is launched into a guiding struc-
ture, a certain amount of power is radiated away and should
leave the computational window. This situation may serve
to compare the effect of the WFBC and TBC when em-
ployed for waveguide simulations. Fig. 6 sketches the struc-
ture under consideration. The WFBC use a modification
in the field corrections: The factors exp(—ik;Az) are av-
eraged over two pairs of field values next to the boundary
points.

AI
.’Etf 777777777777777777
Ne
I29IIY, G PP I
{077 .
0 Ng z
Ibf 777777777777777777

Fig. 6. Planar waveguide used for the simulations in Section 5.B.
Parameters are: refractive indices n. = 1.0, ny = 2.3, ns = 1.95,
thickness d = 0.6 um, wavelength A = 1.3 um; computational
window zp = —1.975 um, z¢ = 1.975 um; mesh N, = 80, Az =
0.05 um, Az = 0.05pm, o = 0.51. n, = 2.141 is set to the
effective refractive index of the single TM-polarized Mode.

2z [pm]
2 [pm]

@ [pm] (b)

Fig. 7. Contours of |Hy| for the waveguide of Fig. 6, calculated with
the WFBC method (a) and the TBC algorithm (b). A Gaussian
profile (13) with parameters z, = 0.6 pm, zs = 0.3 ym, 8 = 0°
is used as an initial field at z = 0.

Fig. 7 illustrates the computed fields if excitation by a
Gaussian beam is modeled. Only marginal differences be-
tween the contours generated with TBC and WFBC are
visible.

If the input field is varied, different amounts of power
must cross the boundary of the computational window.
Fig. 8 shows the remaining (relative) power, it contains
curves for both boundary procedures. The results obtained
with TBC and WFBC agree very well, differences remain
below 2-10~3. Both algorithms are fast, the new one being
four times faster.

If the computational window is enlarged (at constant
transverse stepsize), the field and therefore the power on
the original window should remain unaltered. For a WFBC
computation similar to Fig. 7, but with 240 mesh points
instead of 80, the power within the old window deviates by
less than 2 - 1073 — a remarkable result.

C. 3-D Calculations
The initial field

P(z,y,0) = exp(—(a®+y?)/2}) (14)
-exp (—ikn((sin B)z + (cos Bsin~y)y))

launches a Gaussian beam with radius z,, at angles 8 and
~ with respect to the the z axis. It propagates in free space.
According to investigations comparable to Section 5.A the
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Fig. 8. Power within the computational window versus the propaga-
tion distance z for the waveguide of Fig. 6. Gaussian profiles (13)
of varying shapes are launched. Parameters are z,, = 0.6 ym,
B =0° (a) and z; = 0.2pum, B = 0° (b). The curves belong to
different values of z, [um] (a) and zy [ pum] (b).

new boundary conditions work properly with the following
parameters:
Oopt = 10.5°, 8y, = 5.0°, Oz = 30.0°, N9 = N, = 80.
Fig. 9 exhibits practically no distortion of the Gaussian
profile where the beam crosses the boundary of the compu-
tational window. A reflexion coefficient of 4.1 x 10~ is ob-
tained, for a propagation distance of N,Az = 400 um. The
program consumes 14 min CPU-time (HP-715/50 worksta-
tion), 4 min are spent with the LU-decomposition of the
propagation matrix. If the LU-decomposition were neces-
sary after every step, the program would have to run for
more than two days.

The new boundary conditions have been developed in the
context of heavy requirements: fully vectorial, magnetoop-
tic (gyrotropic) material, lack of supercomputers. Three
complex components of the magnetic field have been prop-
agated in longitudinally homogeneous rib waveguide struc-
tures, such as nonreciprocal phase shifters or nonreciprocal
couplers [17]. In a typical situation (60 x 70 x 3 = 12600

z = 0.0 pm = 50.0 gm z = 100.0 gm

z = 200.0 pm

@

z = 250.0 pm z = 300.0 ygm z = 350.0 pm

Fig. 9. Propagation of a Gaussian beam (14). Lines with constant ||
are shown. The frames of each picture indicate the boundary of
the computational window. Parameters are: ,, = 9 um, 8 = 5°,
v = 8%, A = 0.825um, n = n, = 1.0; computational window
50 um x 50 um, N; = Ny = 100, Az = Ay = 0.5051 um, Az =
0.5 pm.

field variables, 63708 propagation matrix entries) the ra-
tio of LU-decomposition to backsubstitution is 400 (CPU-
time). Runtimes of hours with our new boundary con-
ditions would have required fortnights with TBC, on the
same computer. However, this advantage may become less
impressive if other specialized equation solvers and cor-
responding approximations (e.g. splitting the transverse
Laplacian to obtain tridiagonal matrices) can be employed
[18], [19].

VI. CONCLUSIONS

We propose a new approach to implementing transparent
boundary conditions for finite difference beam propagation
simulations. Our method provides difference schemes for
boundary points which leave the propagation matrices un-
changed within longitudinally homogeneous sections. The
boundary conditions do not require tedious adjustments
since refractive indices and mesh parameters are involved
only. No additional resources of runtime and memory are
spent for dealing with the boundary of the computational
window. In most cases, runtimes are reduced considerably.
Our method comes close to or draws up with the perfor-
mance of Hadleys transparent boundary conditions without
the drawback of having to modify the propagation matrix
after every propagation step. In contrast to some other
procedures the new method is applicable to fully vectorial
three-dimensional simulations without the need to split the
transverse Laplacian.

Maybe the basic idea — to adjust the finite difference
scheme such that plausible generating functions are repro-
duced — may be of interest to other efforts to solve partial
differential equations by the finite difference method.
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