
Total multimode reflection at facets of planar high contrast optical waveguides

M. Hammer
�
, E. van Groesen

MESA
�

Research Institute, University of Twente, Enschede, The Netherlands

Abstract: Based on rigorous mode expansion simulations, we consider the problem of guided
light reflection at rectangular end facets of planar dielectric waveguides. Emphasis is on mul-
timode structures with high refractive index contrast and on configurations that show a high
reflectivity. Given the matrix of reflection coefficients for the guided fields, one can compute the
maximum power reflectance for an incident mode superposition. While even for a substantial
refractive index contrast across the facet the maximum reflected power for a single incoming
mode is always moderate, the reflectivity may rise to a level that justifies the attribute total, if
one considers specific superpositions of at least two guided modes. The paper shows the results
of numerical experiments for two series of symmetrical and nonsymmetrical waveguides and
identifies conditions on the facet geometry and the exciting field, which are prerequisites for the
full reflection effect.
Keywords: integrated optics, numerical modeling, dielectric waveguide facet, total reflection,
microresonator cavities
PACS codes: 42.82.–m 42.82.Et

1 Introduction

At the end facet of a dielectric waveguide an incoming confined light wave is partly transmitted and partly
reflected, where the guided backwards traveling fraction of the optical power depends strongly on the waveguide
geometry and the refractive index contrast. Although the facet problem has been widely investigated [1] in
various settings, with techniques either of a more semianalytical [2, 3, 4, 5, 6, 7, 8] or a more rigorous numerical
nature [9, 10], these studies mostly focus on minimizing the loss of optical power to radiation and reflection at
the transition from the waveguide to the adjacent homogeneous space. Frequently coated [4, 6, 7] and/or angled
[2, 5] facets are simulated and optimized for extremely low reflectivity.

So far apparently only minor attention has been paid to configurations where the ended waveguide supports
more than one mode per polarization, and where the interest is in highly reflecting structures. It will turn out
in Section 4 that these two features are closely related: The relative reflected guided power can reach a level
very close to unity for multimode input fields with specific relative amplitudes. These observations provide at
least a starting point to a quantitative understanding of the pronounced resonance phenomena in some recently
discussed microresonator devices [11, 12], where segments of such wide high contrast waveguides serve as
cavities.

The investigation of multimode waveguide facets in this paper relies on a bidirectional mode expansion tech-
nique as described in Refs. [1, 13]. Section 2 merely introduces the notation; details of the present implemen-
tation can be found in Refs. [12, 14]. The subsequent reasoning is then based on the numerically computed
matrix of reflection coefficients. The reflection levels observed for single mode excitations in Section 3 change
drastically, if one sends in at least two guided fields simultaneously. This is the subject of Section 4, where we
try to illustrate the underlying interference mechanism. The section includes detailed multimode reflectivity
curves as well as a few examples of characteristic field patterns. While the previous parts are concerned with
symmetric waveguides, the last Section 5 assesses the influence of a nonsymmetric layering.�
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2 Multimode facet reflectivity

Figure 1 introduces the facet geometry and the relevant setting of coordinates. We restrict the problem to two
spatial dimensions and to TE polarization, where only the single component

���
of the electric field is present.

Where no other values are given, the simulations in this paper are meant for symmetric waveguides with a
substrate and cover refractive index � s � � c �	��
��� , a refractive index � a �	��
�� of the homogeneous half
space beyond the facet, and for a constant angular frequency � ��� c ����� c ��� , given in terms of the vacuum
wavenumber � , vacuum speed of light c, and the vacuum wavelength � ����
������ m.
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Figure 1: The waveguide facet. ' and ( denote the Cartesian coordinate axes
parallel and perpendicular to the film plane. The geometry is specified in
terms of the film thickness ) and the refractive indices * s, * f, * c, and * a of the
substrate, the film, the cladding material, and the medium adjacent to the facet.
A mode angle + is assigned to each guided field with propagation constant , .

In common complex notation, the guided part of the optical electrical field at time - in the waveguide region.0/ � can be written as� �214365 . 5 -87 �:9<;	= ; �> ? ;A@ �CB ; 143 7 ei �D-FE i G ; .IH 9<; J69�KML ; K = KCN �> ? ;O@ �CB ; 143 7 ei �D- H i G ; . 5 (1)

where the first term represents the incident field, the second term is the reflected part (expression (1) is not
intended to cover the total electric field, see the remarks in the following paragraph). @ �CB ; and G ; are the
real planar guided mode profiles and the corresponding positive propagation constants. With each mode a
normalizing power

? ;
is associated, such that

?
in �QP ;SR = ; R T is the optical input power for amplitudes = ;

of the incident modes. Then the total relative guided reflected power U reads

U � �?
in
9 ;WVVV 9�K L ; K = K VVV

T � �?
in

RYX[Z\R T � �?
in

Z6]^X[]_X[Z
(2)

where
Z � 1 = K 7 collects the input mode amplitudes,

X � 1 L ; K 7 is the matrix of reflection coefficients of the
facet for guided fields, and

]
denotes the adjoint. Besides U and its restrictions to smaller mode sets, individual

mode reflectivities will play a role below: If only mode ` has a nonvanishing input amplitude, the relative
power reflected into that particular mode is directly

R L ;a; R T . Motivated by the prospective relevance of these
considerations for the formation of optical cavities, in this paper the term ”reflectivity” is always used to indicate
the relative optical power that is received by the backwards traveling versions of a specific input mode set.

The following discussion assumes that the reflectivity matrix
X

is accessible for each facet, computed numer-
ically with sufficient accuracy. For this purpose we employed rigorous bidirectional eigenmode propagation
simulations as formulated in Refs. [12, 14]. The continuous part of the mode spectrum on the longitudinally
homogeneous segments .b/ � and .bc � is discretized by placing artificial boundaries suitably far apart from
the waveguide core, where

�d�
is required to vanish. Separately on both sides of the junctions, the optical field

is expanded into series like Eq. (1), including a fixed number of forward and backward traveling, propagating
and evanescent terms. Then bidirectional projection onto the elements of the modal basis sets yields a linear
relation between the expansion coefficients on the adjacent segments;

X
is the restriction to the confined fields

of the waveguide segment. Hence the transmitted and backwards radiated, nonguided parts of the optical field
are taken fully into account, although they do not show up explicitely in Eq. (1).

All simulations below use a �Ce�� m computational window, centered around the symmetry plane
3 �gf � � ,

and the ���C� lowest order expansion terms on both segments. While the hard boundary conditions are not
undisputed in the present context [1, 10, 8], at least on the scale of Figures 3–8 we found the results to be
converged with respect to the width of the computational window and with respect to the number of expansion
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terms. More specifically, varying the width of the domain in the range between �_�h� m and �Ci�� m and adjusting
independently the number of mode basis elements between �^��� and �Cj�� produced hardly any visible effects
on the reflectivity levels displayed e.g. in Figure 5. Apparently, the computational window is wide enough to
sufficiently suppress the oscillatory behaviour of the simulation results as observed for specific configurations in
Refs. [1, 10, 8]. Being interested in reflectivity levels on a scale between � and � with an indeterminacy of about
one percent only, we may thus disregard the influence of the artificial boundary conditions for the problems
considered in this paper. Note that the computational window is substantially larger that the

3
-intervals shown

in Figures 4, 7, and 9; perturbations of the field in the displayed domains by waves that originate from the facet
and are reflected by the artificial boundaries can be expected to be insignificant.

3 Single mode input

To supplement the numerical computations, occasionally a reasoning based on the ray model for guided fields
is helpful. For each mode ` an angle k ; is defined via the relation l_mon8k ; � G ; � 1 � � f 7 . This angle may be
interpreted alternatively as the angle of incidence at the facet of the plane waves that constitute the guided field
in the core, see Figure 1.
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Figure 2: Angles + associated with guided mode propagation constants versus the waveguide thickness, for symmetrical
planar waveguides as specified by Figure 1 with core refractive indices * f p:qor s (a) and * f p:tor u (b); see the text for
other parameter values. The lower horizontal lines indicate the critical incidence angles + crit pvqwtor xzy (a) and + crit p|{^}�rY{~y
(b) for total plane wave reflection at an interface between two media with refractive indices * f and * a, the upper lines are
placed at the cutoff angles + max p�s^u2r szy (a) and + max p�xwu�r �zy (b) for guided wave propagation in the ended waveguides.

In the framework of the ray model one might then expect that an input mode encounters a high reflection, if its
mode angle exceeds the critical angle k crit for total reflection at the facet interface, given by n�����k crit � � a �z� f.
According to Figure 2, the condition G�� � / 1 � Tf E�� Ta 7��<� T is satisfied for the high order modes in the structures
of this paper. The requirement G c � � s for guided fields in the core imposes an upper limit k max to the mode
angles, where n�����k max � 1 � E�� Ts �z� Tf 7��<� T . Consequently, only facet configurations with

� Tf c � Ts H � Ta (3)

may be subject to a pronounced reflectivity.

Figure 3 gives some evidence for this simplified reasoning. The two waveguides support modes up to order
8 (a) and 12 (b). In both cases the four lowest order fields have mode angles below the critical values k crit,
the reflectivity remains small. For the higher order modes above the level k crit, the single mode reflectivity is
significantly higher, with a smooth transition at k crit. Nevertheless, large amounts of power still pass the facet,
are radiated, or reflected into other modes. The plane waves that form the field in the core are bounded, with a
certain amount of the mode power traveling in the substrate and cover regions, hence the ray model fails in this
respect.

The first two columns of Figure 4 illustrate the field patterns in the structures of Figure 3, when single high
order modes are launched. Apart from small contributions from other modes, the checkerboard like pattern in
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Figure 3: Modal reflectivities � versus the (discrete) mode angle, for a facet according to Figure 1 with waveguide
thickness ) p�torY{~s�� m and film refractive indices * f p�q�rs (a) and * f p�tor u (b). Dots denote the relative guided power� ������� �

that is reflected if a single guided field with the proper mode angle is launched. Horizontal bars mark the guided
reflection, if the facet is excited by a superposition Eq. (4) of the two modes with angles at the bar end points. The
vertical lines correspond to the critical incidence angles + crit and the maximum mode angles + max as given in the caption
of Figure 2.

the core region is constituted by the forward and backward versions of the input mode with different amplitudes;
one observes a partly standing, partly traveling field in the core.

For single mode input, the radiated field in the homogeneous region .�c � appears as a superposition of two
cylindrical waves, originating from the edges of the core at the facet, where the cylindrical form is disturbed by
the facet discontinuity in the substrate and cover regions. Apart from the edges, almost no traveling fields seem
to traverse the facet plane in the region � / 3 / f , where similar to the film/substrate and film/cover interfaces
only exponential tails are visible. Here the ray model is correct.
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Figure 4: Snapshots of the electric field ��� at selected times for facets as sketched in Figure 1, ) p�t�r�{_s�� m, * f p�qor s
(a, top row) and * f p�tor u (b, bottom row). For the lower index core (a), the 5th and 7th order modes are first launched
separately (left and center), then simultaneously with a specific relative amplitude according to Eq. (4) (right). For the
higher index film (b), the 8th and 10th order modes and their superposition were considered. White and black regions
mean positive and negative field strength, the gray background (the surrounding in the lower right inset) indicates the zero
level. The reflectivities corresponding to these plots are

� �^����� � pv or �o{ , � ��¡�¡�� � p� or�}Cs , � �\¢  or £w£w  (a), and
� �~¤�¤�� � pv or �w£ ,� �_¥&¦2¥&¦�� � p� �r �zx , � ��¢  �r £z£w� (b).
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Figure 5 displays further results for the reflection of single input modes, reflectivity values as a function of
waveguide thickness. The shape of these curves is found to be quite uniform for all modes. At small thick-
nesses, close to cutoff, the almost flat mode profile spreads wide into the cover and substrate regions. Hence
the curves start at a level that is given by the plane wave reflectivity for perpendicular incidence on an interface
between the substrate and background materials. With growing f , the modes become more and more confined
in the core region, with a still large mode angle, resulting in an increase of the reflectivity. For very thick films,
the field strengths at the upper and lower core interfaces become negligible, while the mode angles and conse-
quently the

3
-derivatives of the mode profiles tend to zero. This is again the situtation of perpendicular plane

wave incidence on a dielectric interface, now with the higher refractive index contrast � f
R � a. All reflectivities

approach the corresponding level for large f asymptotically according to the Fresnel formula for perpendicular
polarization, with the mode angle used as the incidence angle.
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Figure 5: Mode reflectivities � versus the film thickness ) , for facet configurations according to Figure 1 with film
refractive indices * f p�qor s (a) and * f p�t�r u (b). The thin curves indicate the reflectivities of individual modes, where
continuous and dashed lines correspond to even respectively odd input fields. The thicker continuous curve marks the
highest reflectivity level � max that can be reached by any incoming guided field superposition, the dashed line � � is
meant for a bimodal input with relative amplitudes according to Eq. (4). Horizontal lines are the reflectivities predicted
by the Fresnel equations for perpendicular incidence of plane waves on dielectric interfaces with refractive indices * f

� * a
(upper line) and * s

� * a (lower line).

If one accepts a guided wave viewpoint for the resonator devices considered in Refs. [11, 12] the moderate
single mode reflectivities of Figures 3–5 are not sufficient to explain the quality of some of the resonances that
are observed in the rectangular cavity waveguide segments. While some of the minor resonances show indeed
single mode standing waves, the most pronounced resonances always include more than one modal basis field
(cf. the plots in [12]). This led to the investigation of the reflection phenomena related to multimode excitations
in the following section.

4 Multimode excitations

Aiming at specific input fields with high reflectivity, one could try to suppress the sources of transmission and
radiation that are visible in the left and center plots of Figure 4. The cylindrical waves should vanish, if one
launches two modes simultaneously such that the total electric field is zero at the facet edges. This will only be
possible for fields that share the same symmetry; Figure 6 shows examples.

Assume that indices � and � are assigned to these two modes, with the input amplitudes = � and = T �§=¨= �
connected by the relative amplitude = . Then the total field

�h�
vanishes at the origin, if

=©� E 1 � H L �2� 7 @ �CB � 1 � 7ª� > ? � H L T � @ �wB T 1 � 7ª� > ? TL � T @ �CB � 1 � 7ª� > ? � H 1 � H L T�T 7 @ �wB T 1 � 7ª� > ? T�« (4)
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Figure 6: Normalized guided mode profiles that constitute the basis for the high reflection configurations of Figures 3, 4.
The mode angles associated with these profiles are tztor  �y (TE

�
) and u�xor  zy (TE

¡
) for the lower index core * f p�qor s (a), andtz�orY{~y (TE

¤
) and u��or�}Cy (TE

¥&¦
) for the high contrast configuration * f pSt�r u (b). The waveguide thickness is ) p¬torY{~s�� m

in both cases.

the mode symmetry implies
�d� 1 f 5 � 5 -87 ��� . This choice of input amplitudes results in the two-mode reflectivity

U T � R L ��� H L � T = R T H R L T � H L T�T = R T� H R = R T 
 (5)

For the two configurations of Figure 4 we indeed obtained very high reflection levels of U T c �
�®�® , where the
difference to unity is well below the accuracy limit that can be expected for the numerical simulations (although
here the artificial boundaries should have only minor influence). The third column of Figure 4 contains plots
of the corresponding field patterns. One observes almost purely standing waves inside the core and evanescent
tails outside.

The U T data of Figure 5 proves that this is not a singular incidence. The curves show the maximum of the
reflectivity over all pairs of modes at the particular thickness. Levels of almost one can be achieved, provided
that at least two modes of equal symmetry exist with mode angles above the critical level k crit, and with a
sufficiently high single mode reflectivity (compare Figures 2, 5).

The recipe Eq. (4) for a high reflectivity obviously fails for lower order modes at small waveguide thicknesses.
Figure 7 addresses such a configuration, where one of the above conditions is not satisfied. At f¯�°��
���� m
in Figure 5(a), the fundamental and second order modes make up the only mode pair with equal symmetry,
where the TE ± mode angle is much smaller than k crit. Significant traveling parts of the field cross the facet
plane in the central core region for TE ± input, there is no possibility for destructive interference with the
cylindrical waves originating from the core edges for TE T input. In this case the field at the core center should
be diminished to maximize the reflectivity. Consequently the third inset of Figure 7, a field snapshot for the
TE ± H TE T -superposition with the highest reflectivity, shows nonzero field amplitudes at the core edges. The
reflectivity value would be below the single mode level for the TE T mode, if the relative amplitude would have
been according to Eq. (4), see Figure 5.
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Figure 7: Electric field patterns for a facet excitation by low order modes, the fundamental field (left), the second order
mode (center), and the superpostion of the two that leads to the maximum guided reflected power (right); here the relative
amplitude does not satisfy Eq. (4). The configuration is one of the structures of Figure 5(a): * f p�qor s , ) p�{wr  [� m.
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Finally, one might be interested in the maximum reflectivity value with respect to arbitrary superpositions of
guided input fields. The task to find the normalized amplitude vector

Z
with the largest relative reflected power

(2) amounts to solve an eigenvalue problem
X ] X[Z ��² Z for the reflectivity matrix, where the largest eigenvalue² gives directly the maximum reflectivity U max. Figure 5 includes corresponding curves.

As long as only one or two modes are guided for thin waveguides, U max necessarily coincides with the larger
one of the single mode reflectivities. Just as U T , the U max curves exhibit kinks where new modes appear with
growing f . As soon as two modes with equal symmetry come into play, U max is significantly higher than the
single mode levels. With f further increasing, the maximum reflectivity approaches unity more or less rapidly,
depending on the refractive index contrast. Even in this asymptotic region U max is always slightly higher than
the reflectivity U T for a bimodal input field: While the simple heuristic that led to Eq. (4) considers reflection
into the input modes only, these two fields couple to other guided modes and to the radiation field. Those
contributions to the field strength at the facet edges are not compensated by Eq. (4). Nevertheless, the extreme
levels in particular for the high contrast configuration (b) for both U T and U max seem to justify the term ”total
reflection” for this interference phenomenon.

5 Nonsymmetric waveguides

Although the previous reasoning relies crucially on symmetry arguments, Figures 8, 9 show that the observa-
tions remain valid for moderately nonsymmetric waveguides. For Figure 8 we consider facets with fixed large
waveguide thickness that allow configurations with complete reflection in the symmetric setting � s � � c. With
increasing substrate refractive index, the reflectivities U max and U T first stay on their high level. A pronounced
drop in the reflectivity occurs, when the relevant high order modes start to disappear due to the growing asym-
metry.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

0.2

0.4

0.6

0.8

1

n
s

R

n
f
 = 3.4

R
2

R
max

1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

n
s

R

n
f
 = 2.5

R
2

R
max

(a) (b)

Figure 8: Mode reflectivities � versus the substrate refractive index * s, for facets of nonsymmetric waveguides according
to Figure 1 with a core thickness ) p�u2r  ³� m and film refractive indices * f p´q�rs (a) and * f p�tor u (b). See the caption of
Figure 5 for the interpretation of the line styles.

Here Eq. (4) has been applied to pairs of modes that differ by 2 in order. Somewhat surprisingly, input fields
weighted in this way encounter a high reflectivity, even for quite unsymmetric waveguides. Seemingly the drop
in the modal field strength at the core/cover interface with growing � s compensates for the modal asymmetry,
when the fields are adjusted to a zero total field at the core/substrate interface. Figure 9 illustrates the total
reflection effect for a nonsymmetric facet. The higher substrate refractive index manifests itself by the more
pronounced radiation, the shorter wavelength, and by the slightly longer mode tails in the substrate, when
compared to the cover region.

7



z [µm]

x 
[µ

m
]

TE8 + TE10

−4 −2 0 2 4
−2

0

2

4

z [µm]

x 
[µ

m
]

TE10

−4 −2 0 2 4
−2

0

2

4

z [µm]

x 
[µ

m
]

TE8

−4 −2 0 2 4
−2

0

2

4

Figure 9: Analogue to Figure 4(b), for a nonsymmetric waveguide with thickness ) pµu2r  [� m, film refractive index* f p¶tor u³� m and a substrate refractive index of * s p�q�r u . The reflectivity values observed in the three simulations are� � ¤�¤ � � p� or £o{ , � � ¥·¦2¥&¦ � � p� or £w  , � � ¢  or £w£z� .
6 Conclusions

Rigorous numerical experiments on multimode reflection at rectangular facets of thick high contrast slab wave-
guides led to the following observations:

Single high order guided modes propagating towards the facet are subject to a large reflectivity, provided the
mode angles in the core material are larger than the critical angle for total reflectance at the facet. In that
case the transmitted field consists mainly of two cylindrical waves, originating from the edges of the core.
With the shape of the transmission being independent from the input mode, two modes with sufficiently large
propagation angle and a difference of two in the mode order can be launched such that the individual transmitted
fields interfere destructively; the optical power is then almost entirely reflected into the two input modes. We
observed reflectivity levels well above ®�®o¸ . The effect occurs for properly selected relative input amplitudes if
the optical field strength vanishes at the core edges.

While it may be impossible or irrelevant to realize such a configuration directly experimentally, the conditions
for full reflectivity, the properly selected relative mode amplitudes, are apparently established automatically at
resonance, if such a facet with large enough refractive index contrast is employed as a reflector in a suitably
dimensioned resonator. First evidence for this statement is found in the agreement between the field shapes
observed in the core regions next to the facets in Figures 4, 9 and the standing wave patterns that appear inside
the rectangular cavities of Refs. [11, 12].
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