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We show how to optically connect guiding layers at different elevations in a 3-D integrated pho-
tonic circuit. Transfer of optical power carried by planar, semi-guided waves is possible without
reflections, without radiation losses, and over large vertical distances. This functionality is re-
alized through simple step-like folds of high-contrast dielectric slab waveguides, in combination
with oblique wave incidence, and fulfilling a resonance condition. Radiation losses vanish, and
polarization conversion is being suppressed, for TE wave incidence beyond certain critical angles.
This can be understood by fundamental arguments resting on a version of Snell’s law. The two
90-degree corners of a step act as identical partial reflectors in a Fabry-Perot-like resonator setup.
By selecting the step height, i.e. the distance between the reflectors, one realizes resonant states
with full transmission. Rigorous quasi-analytical simulations for typical silicon/silica parameters
demonstrate the functioning. Combinations of several step junctions can lead to other types of
optical on-chip connects, e.g. u-turn- or bridge-like configurations.

The field of silicon photonics [1, 2] holds promise for 3-D integration [3, 4] with compact, high-contrast di-
electric optical waveguides at different levels of photonic chips. This might concern small vertical distances,
such that evanescent coupling between overlapping components becomes possible, but just as well optically
well separated waveguides at larger vertical separations. The latter scenario then raises the question of how to
transfer optical power between these distant layers. Conventional evanescent wave coupling [5] either leads
to devices measured in centimeters, for vertical distances still below a few hundreds of nanometers [5], or to
shorter devices, but then for a separation of not more than a few tens of nanometers [6]. More involved concepts
for vertical coupling include waveguides with specifically tapered cores [7, 8], radiative power transfer through
grating couplers [9], or even resonant interaction through vertically stacked microrings [10].
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Figure 1: Oblique incidence of semi-guided waves on a step configuration at angle θ: schematic (a), and cross-section
views of the optical electric field (absolute value |E|, contour at 10% of the maximum field, the colorbar of Figure 2(e)
applies), for normal incidence (b), and at angle θ = 64◦ (c). Parameters: refractive indices ng = 3.45 (slab cores) :
nb = 1.45 (cladding), slab thickness d = 220 nm, vertical slab distance h = 1.868µm, incidence of TE polarized waves
at vacuum wavelength λ = 1.55µm.

Suppose that, given the task to connect guiding layers at different distant levels in this context of 3-D silicon
photonics, and being lured by the strong confinement properties of the high-contrast waveguides, one comes up
with the — at a first glance perhaps slightly “naive” — approach of preparing a step-like structure as shown in
Figure 1(a), consisting of two sharp 90◦-corners with a vertical slab segment in-between. As indicated in the
schematic, the structure is assumed to be constant along the y-axis, with half infinite slabs parallel to the y-z
plane. If operated in a standard 2-D setting with incidence of vertically (x-) guided, laterally (y-) non-guided
plane waves propagating in the positive z-direction normal to the interfaces, this structure clearly fails in view
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of the aforementioned task. Our simulation predicts a transmittance of merely T = 3% and a reflectance of
R = 11%. Most of the power is lost to radiation, and thus must be suspected as a potential source of unwanted
crosstalk. Figure 1(b) shows the pronounced radiation losses.

It might thus come as a surprise that the same step structure transfers all of the incident optical power to the
upper level, if only the in-plane angle of incidence θ is set to 64◦. A respective simulation predicts the profile
of Figure 1(c), with all fields nicely confined around the cores, and numerically perfect values of reflectance
R < 1% and transmittance T > 99%. It is the purpose of this letter to highlight this effect, and to provide a
basic physical explanation. We refer to a more technical account [11] for details on the theoretical description
and related studies. For all simulations in this paper we could rely on a rigorous, semi-analytical solver (vec-
torial quadridirectional eigenmode propagation, vQUEP) [12, 13, 14] for the vectorial 2-D problems. Figure 1
introduces parameters typical for a silicon photonics platform [15].

For a clarification of the full transmission effect it is instrumental to look at a single corner first, as in Figure 2(a).
One notices that the structure is constant along the y-axis. We assume that the slabs are single mode, supporting
fundamental guided modes TE0, TM0 of both polarizations. For the parameters of Figure 1, these are slab
modes with effective mode indices NTE0 = 2.823, NTM0 = 2.040.
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Figure 2: A linear 90◦ waveguide corner at oblique incidence: (a) schematic, (b) modal reflectances RTE, RTM and
transmittances TTE, TTM versus the angle of incidence θ (TE0 and TM0 modes), and field profiles (absolute value |E| of
the electric field, contour at 10% of the field maximum) for angles of incidence θ = 0◦ (c), θ = 36.5◦ (d), and θ = 64◦

(e). See the caption of Figure 1 for parameters.

The TE0 mode is being sent towards the corner at angle θ. The incoming field thus exhibits an exponential
dependence ∼ exp(−iky y) with given wavenumber ky = kNTE0 sin θ for vacuum wavenumber k. Aiming at
a solution of the homogeneous Maxwell equations in the frequency domain, we may restrict the y-dependence
of all fields to this single spatial Fourier component. Consequently, any outgoing mode, with effective index
Nout and travelling at angle θout versus the x-z-plane, also shares this y-dependence. This can be stated in the
form of Snell’s law:

Nout sin θout = NTE0 sin θ. (1)

We look at outgoing TE0 waves with Nout = NTE0 first. For the reflected wave Eq. (1) simply gives the law of
reflection. The transmitted wave travels upward in the x-y-plane, guided by the vertical slab, at an angle θ. For
outgoing TM0 waves with Nout = NTM0 < NTE0, one needs to distinguish between two cases. Eq. (1) defines
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an angle θout only if sin θ NTE0/NTM0 ≤ 1, i.e. for small angles of incidence θ ≤ θm below a critical angle
θm with sin θm = NTM0/NTE0, here θm = 46.27◦. Reflected and transmitted TM0 waves then leave the corner
region at angles θout given by Eq. (1).

For excitation at higher angles θ > θm, however, Eq. (1) does not apply. Any TM wave excited in the vicinity
of the corner has to satisfy the local wave equation [16] with the externally enforced y-dependence. It does so
by compensating the too-large wavenumber ky by an imaginary wavenumber in the direction of the outward
axis (−z for the reflected wave, x for the transmitted wave), i.e. the wave becomes evanescent, what concerns
propagation in the x-z-plane. For θ > θm one observes only outgoing TE waves “far away” from the corner.

Apart from the two guided modes, a continuum of nonguided modes with oscillatory behaviour in the cladding
region, and with effective mode indices Nout ≤ nb below the upper limit of the background refractive index
nb (“cladding modes”), can be associated with the horizontal and vertical slabs. Applying the former argu-
ments to the modes of this radiation continuum, one finds that all of these modes become x-z-evanescent,
if sin θ NTE0/nb ≥ 1. Consequently, all radiation losses vanish for θ > θb with sin θb = nb/NTE0, here
θb = 30.91◦. Note that the reasoning on the critical angles (cf. Ref. [11] for a more formal and more general
account) depends on the properties of the outgoing slab waveguides only, irrespectively of e.g. the corner shape
(rounding), or of the corner angle.

Similar arguments apply for plane-wave scattering from cylinders at oblique incidence [17, 18], for slab
waveguides with straight discontinuities, typically end facets, with oblique incidence of guided modes,
[19, 20, 21, 16], and for slab waveguides with periodic corrugations at oblique incidence [22, 23]. So far,
however, we’ve not encountered this reasoning in case of non-coplanar slabs. When adapted to the present
configurations, the frequency-domain Maxwell equations coincide formally with the equations that govern the
modes of 3-D channel waveguides, where the present wavenumber ky takes the role of the propagation con-
stant; the problems differ with respect to boundary conditions [16]. The suppression of radiation losses can
then be understood in terms of an angle-dependent, negative effective permittivity [11, 16]. The same effect
enables the formation of guided modes in channel waveguides with 2-D confinement.

Figure 2(b) shows the power transmission properties of the corner structure, concerning the fundamental guided
modes, as a function of the angle of incidence. The critical angles θb and θm are indicated. At normal incidence
θ = 0, the otherwise vectorial equations split into the standard scalar 2-D Helmholtz problems for TE and
TM waves; there is thus no polarization conversion. The moderate transmittance and reflectance levels of
TTE = 14%, RTE = 13%, TTM = RTM = 0 relate to pronounced radiation losses, clearly evident in the field
profile in Figure 2(c).

Radiation losses, and thus all fields outside the evanescent tails around the slab cores, vanish for wave incidence
at angles beyond θb. Strong polarization conversion is observed, with an extremal value of TM transmission
at θ = 36.5◦ with transmittance and reflectance levels of TTE = 10%, RTE = 26%, TTM = 63%, and
RTM = 1%. The reflected guided waves of both polarizations lead to a slightly irregular beating pattern of the
partly standing, partly traveling waves in the horizontal slab (cf. Figure 2(d) ). In the vertical slab, the strong
TM contribution manifests in the large electric fields immediately outside the core (the absolute value |E| of
the electric field vector is shown). Upward traveling TE and TM waves, with unequal amplitudes, cause a weak
beating pattern, barely visible in the figure.

The polarization conversion is suppressed at even higher angles of incidence for θ > θm. The field profile in
panel (e) of Figure 2, for incidence at θ = 64◦ with extremal levels TTE = 32%,RTE = 68%, TTM = RTM = 0,
shows a tight field confinement around the slab cores. Note that this is still a vectorial problem where TM waves
play a role in the solution; their contribution, however, remains restricted to the immediate vicinity of the corner,
here at the origin, due to their x-z-evanescent behaviour.

Having thus clarified some properties of the constituting corners, we now resume the discussion of the step
structure. With a view to the aim of large power transfer, we select the angle of incidence θ = 64◦ that leads
to the TE transmission maximum of the separate corners. All former arguments on suppression of radiation
losses, and on suppression of polarization conversion, rely on the properties of the outgoing slabs only, without
any reference to the particular shape of the structure that connects these outlets. We can thus expect, at this
angle of incidence, and for identical slab properties, that neither radiation losses nor conversion to TM occur
when the step is being excited by the TE0 wave.

Further we assume that the intermediate vertical segment is of sufficient height h, such that any x-z-evanescent
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fields (of either TE or TM polarization), that are being excited at one of the corner points, are negligible in the
region around the respective other corner. Then only the upward and downward travelling TE0 waves remain
that mediate between the corners. These waves and the incoming, reflected, and transmitted TE0-waves in
the horizontal slabs all propagate at the same angle θ with respect to the x-z-plane. They share the uniform
harmonic y-dependence, which can then be disregarded for the discussion of the propagation along the slab
cores.

Consequently, we may view the step as a system of two identical partial reflectors, the corners, with counter-
propagating waves of a single polarization in between, i.e. as a system akin to a Fabry-Perot-interferometer
[24]. Here the step height h plays the role of the distance between the two reflectors. Accordingly, the scan
over h in Figure 3 reveals a regular series of resonances. One of the extremal states with full transmission has
been selected for the example in Figure 1(c).
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Figure 3: For the step configuration of
Figure 1(a): transmittance TTE and reflectance
RTE as a function of the step height h. The in-
dicated level h = 1.868µm relates to Figure 1(b,
c).

For sufficiently large h, say for h > 0.75µm, maxima in TTE with unit transmittance appear regularly at
distances of ∆h = λ/(2NTE0 cos θ) = 626 nm. Here kNTE0 cos θ is the wavenumber component relevant for
the propagation in the ±x direction. Originating from a resonance effect, these states depend more or less
critically on all parameters that enter. Concerning the step height h, in Figure 3 one observes levels TTE >
99% | 90% | 75% | 50% for intervals of full width ∆h = 8 nm | 25 nm | 44 nm | 77 nm around the peak centers.
Considering the operation wavelength as a further example, respective simulations show transmittance levels
TTE > 99% | 90% | 75% | 50% for spectral intervals of widths ∆λ = 4 nm | 13 nm | 23 nm | 40 nm, centered
around the design wavelength λ = 1.55µm. The 50%-transmittance window thus covers the entire C-band of
infrared optical communications. Note that radiation losses and polarization conversion are fully suppressed
within the given intervals; the non-transmitted part of the incident power is reflected as a semi-guided TE0-
wave.

Beyond the selection of a corner configuration with high transmission, and the height scan in Figure 3, no
particular optimization has been necessary to identify step configurations with good performance. Within
certain limits, this procedure can be reversed into an approach of fixing a step height first, followed by an
angular scan. Nevertheless, there is plenty of room left for further optimization, aiming e.g. at lossless corner
configurations with higher transmittance. This should lead to steps with less critical resonance conditions, i.e.
with improved spectral tolerances, and generally relaxed tolerance requirements. Further studies could also
investigate the incidence of TM waves, and thus configurations where both propagating TE and TM waves
connect the corners, in detail. While so far these are evidently quasi 3-D concepts at best, the effect can be
transferred to “real” 3-D by considering oblique incidence of laterally wide semi-guided beams with narrow
angular spectrum [11].

In conclusion, we have shown that semi-guided planar optical waves can be made to climb steps, without radi-
ation losses, polarization conversion, or reflections. This is achieved for simple dielectric slabs, with relatively
modest means of oblique incidence, combined with a Fabry-Perot-like resonance effect. One might compare
with concepts relying on line defects in photonic crystals [25], on various types of (lossy) plasmonic wave
confinement [26], or on specific corner geometries [27] in conventional high-contrast dielectric waveguides.

Extension to some other, perhaps even more intriguing examples is obvious. For sufficient step height, one
of the corners in a step can be mirrored without affecting the transmission. Steps can be concatenated, with
intermediate slab segments of arbitrary length. Our simulations predict modal transmittance values TTE > 99%
for both structures in Figure 4.
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Figure 4: U-turn (a) and bridge configurations (b) with full transmission of semi-guided TE waves at oblique incidence;
absolute value |E| of the optical electric field, contour at 5% of the maximum level, cf. the colorbar of Figure 2(e).
Parameters are as in Figure 1(c), with a 3µm slab segment as the upper level of the bridge (b).
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