Mode expansion modeling of rectangular integrated optical microresonators
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Abstract: Two dielectric waveguides that are evanescently coupled to a square or rectangular re-
gion of increased refractive index can serve as a very compact integrated optical microresonator.
We consider these devices in a spatial two-dimensional setting, where a rigorous mode expan-
sion technique enables accurate and quite efficient numerical simulations of these configurations.
The paper is concerned with single resonator units as well as with an add-drop filter constructed
by cascading two square cavities. Besides calculating the power transmission spectra, we try to
document as far as possible the characteristic electric field patterns that occur at major and minor
resonance wavelengths. The influence of the various geometrical parameters on the resonator
performance is investigated in detail.
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1 Introduction

Compact integrated optical microresonator devices are currently discussed as one of the most promising con-
cepts for applications in optical wavelength division multiplexing. A typical resonator element includes two
parallel dielectric waveguides, serving as input- and output ports, which are connected by a small optical cavity
in between. Depending on the precise configuration, the resonator can exhibit excellent wavelength add-drop
characteristics. A technique that employs microresonators for wavelength demultiplexing in an integrated opti-
cal setting could eventually constitute an alternative to well established conventional approaches such as arrayed
waveguide gratings, where the typical device dimensions are considerably larger.

Traditionally [1] the majority of microresonator proposals deals with smooth cylindrical or spherical geometries
(see e.g. [2, 3, 4, 5, 6] and references cited therein), where recently the optical properties of elliptical cavities
have attracted some attention [7, 8]. Alternatively, coupling the port waveguides by small square or rectangular
cavities can also lead to resonator devices that show the desired filter functionality. Such a configuration has
been proposed in Ref. [9]; Ref. [10] collects some experimental results regarding the spectral properties of
rectangular cavities.

Apart from proper performance and extreme compactness, a square resonator unit as considered in Figure 1
has the nice property that it can be simulated quite efficiently by well established mode decomposition tech-
niques [11, 12, 13], provided that these are adapted to the specific properties of the resonator. We consider the
structure as being composed of three longitudinally homogeneous waveguide segments. For fixed frequency,
the electromagnetic field is expanded into the local modes of the segments, including propagating and evanes-
cent, forwards and backwards directed terms. Matching adjacent fields at the segment boundaries yields the
transmission characteristics of the device.

Section 2 briefly surveys the mode expansion approach. Subsequently, Section 3 gives a detailed account of
the simulation results for single rectangular resonators, including several illustrations of the standing wave field
patterns for some of the resonant configurations. The section closes with a few remarks on the convergence
behaviour of the simulation technique. While a single almost square unit drops equal amounts of power into all
four ports at the resonance wavelength, proper add-drop filter performance can be achieved by employing two
equal cavities at a specific distance [9]. Section 4 reports on our simulations of the filter device.
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b Figure 1: The microresonator configuration. z and
©) (D 3 (2) x are the Cartesian coordinate axes parallel and per-

; pendicular to the waveguides. The geometry is fixed

D L iw S in terms of the width w of the waveguides, the gap
tg width g, and the width W and length L of the cav-

o TW ity. np, and ng are the refractive indices of the back-

= ground and the guiding regions (n, < ng), where

% o i i the latter are indicated by darker shading. The let-

ters A, B, C, and D denote the input and output ports,
where the light is assumed to enter the structure via
the guided mode of port A. The numbers (0) to (2)
identify three longitudinally (z-) homogeneous sec-
tions, separated by the two junctions at zg = 0 and
z1 = L. Artificial boundaries are placed at x = =+b.

2 Rigorous mode expansion modeling

The microresonator configuration of Figure 1 is to be investigated, in a two-dimensional setting of spatial
coordinates = and z, with the structure meant to be symmetric with respect to the lines z = 0 and z = L/2.
The fixed angular light frequency w will be specified in terms of the vacuum wavelength \ = 27/k = 27c/w,
where k£ and c are the vacuum wavenumber and the vacuum speed of light. Evaluating the spectral response of
the device requires a sequence of calculations for varying vacuum wavelength.

The mode expansion simulation starts with a division of the structure into NV + 2 segments with longitudinally
homogeneous permittivity profile, identified by a cipher in parentheses. N is the number of inner segments,
N =1 for the example of Figure 1. The segment junctions are located at zg, ..., 2N

We introduce artificial boundaries at positions x = b, where the basic components of all involved mode
fields are assumed to vanish. b is understood to be large when compared to the x-dimensions of the resonator
structure. These boundaries lead to a discretization of the mode spectra of the waveguide segments; the mode
sets become numerically manageable. At the same time, the hard boundary conditions cause radiated parts of
the electromagnetic field to be backreflected at the lines x = %b into the computational domain. Nevertheless
we regard this procedure to be admissible for the present problems. The structures are to be excited by a well
localized input in one of the port waveguides, and the scattering part of the devices is relatively short (this refers
to the z-extension) when compared to the width 2b of the computational window, such that the optical power
radiated at one of the junctions is unlikely to reenter the structure within an inner segment. Apart from the
port waveguides, we are interested in the electromagnetic field only in a small region around the cavity. Hence
the approximation caused by the artificial boundaries should be admissible, if the walls are placed far enough
away from the resonator region. This also implies that b is large when compared to the extension of the guided
input/output mode profile.

Separately for each segment (s), the total electromagnetic field £, # (in common complex notation) is then
expanded into a mode superposition of the form

(i)?x’zat)=Zf;¢iaf(w)eiwt‘iﬂfn(z‘zS1) + Y @t T A

Here ¢f,’ld combines the electric and magnetic parts of the forwards (d = f) and backwards (d = b) traveling
versions of the profile of mode m on segment (s); 33, are the corresponding propagation constants. The
constant mode amplitudes f,;, b}, include the mode normalization. The junction positions were introduced as
local coordinate offsets (with z_1 = 2p).

For the simulation of the resonator structures, the set of basis modes has to consist of forwards and back-
wards traveling, propagating and evanescent terms. While a detailed account on the notation used here, on the
properties of the mode fields, and on the relevant orthogonality relations can be found elsewhere [13], special



attention has to be paid to the composition of the mode set e.g. on the entry and exit segments (0) and (2) in
Figure 1, where two distant parallel single mode waveguides are present. The two lowest order modes of this
bounded refractive index profile correspond to the symmetric and antisymmetric superposition (‘‘supermodes”)
of the guided fields of the two separate waveguides. Due to the large waveguide separation, these modes are
numerically exactly degenerate, thus not directly identifiable by a mode solver that relies on a propagation con-
stant search procedure. Here one might think of splitting the computational window at £ = 0 and introducing
boundary conditions that enforce separately modal solutions with either even or odd symmetry. In both — then
decoupled — sets of modes one solution should show up that corresponds to the confined fields of the port
waveguides, thus enabling the assembly of the supermodes with both symmetries.

Alternatively, we have constructed the mode set by using the modes of the bound structure with propagation
constants below kny, up to a certain order, together with two times the guided mode profile of an open single
waveguide configuration, shifted to the actual positions of the waveguides. Provided that the waveguide sepa-
ration and the computational window are large when compared to the width of the guided fields, this procedure
results in a numerically exactly orthogonal basis set. After reserving the index 0 for the mode corresponding to
the guided field of the lower waveguide and the index 1 for the upper one, this formulation allows to directly
access the optical input power as P, = | f§|2P{, and the power dropped into ports A to D as

Py =0PPY, Po=|fN PPN, Po=|fNTIPPNYY, By = BYPPY. )

Here P, is the mode power assigned to basis field m on segment s (see [13]).

The local mode amplitudes at the left end (z5—1, index 1) and at the right end (25, index r) of segment (s) are
combined into amplitude vectors
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Now by bidirectional projection of the adjacent fields at the junctions onto the orthogonal basis sets one finds
the amplitude vectors on either side of the junction at z; 1 connected as
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The matrices M, j = 1,..., N + 1, collect the mode overlaps at the segment junctions, see Ref. [13] for
the precise definition. While necessarily the entries of M7~ and M7 are related, these relations need not to be
used when deriving the algorithm given by Egs. (6)—(8) below. The light propagation inside the segments (s)

is described by matrices T3, s = 1,..., N, that include the phase velocities respectively attenuation factors of
the involved modes:

F=T5f,  bI=TOH, eFiBn(2s — 25-1) | if1=m,

where (T? = 5
fi=T.f1, P =T50b;, (T )im { 0 otherwise. ©)

The system of Egs. (4), (5) is twofold overdetermined. Assuming that for a large number of terms in the mode
expansions the two matrices in Eq. (4) become equivalent, appropriate equations may be selected. Here we
have to observe a numerical constraint: Due to the exponential z-dependence of the evanescent modes in the
basis set (with imaginary propagation constants 5 = —ia, « > 0), one should avoid the direct application of
T% in the numerical implementation. The following recipe complies to that requirement.

Given f0 = ((P,/P9)'2,0,...,0) and b¥ ! = 0 as a right hand side, Egs. (4), (5) are to be solved for all
other unknown mode amplitudes. Starting with defining RY as

-1
RN — (1 _ Mg+1,foJ§+1,+) Mg“’*Mﬁfv“’*, 6)
a sequence of reflection matrices R’ can be built iteratively
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that relate forward and backward mode amplitudes on the left side of the corresponding junctions. Arriving at
R, the field amplitudes are readily obtained by subsequent backsubstitution:

0 _ RO 0
br - R ro
F=My ft FMpTe
fi=T5f, b =R°f], b =T5b7,
N+1 _ ppN+1,4+ N N+1,+pN
I = Mg fi + Mg b .

fors=1,...,N, )

Applied to the microresonator configurations with one (Section 3) and three (Section 4) inner segments, the
above procedure appeared to be unconditionally stable. In principle, the equations allow for different numbers
of terms in the mode basis sets on different segments. As in [13], the given formulation of the mode expansion
algorithm is independent of the light polarization.

3 Simulations of single cavity resonators

For reasons of comparability, all simulations in this paper employ a set of material and geometrical parameters
as proposed in Ref. [9], with a background refractive index of ny = 1.0, a refractive index of n, = 3.2 for
the waveguide cores and the cavity, a gap of g = 0.29 pm between the waveguides of width w = 0.2 ym and
the square cavity with a sidelength of W = L = 1.54 um. The calculations are meant for TE polarized light
(referring to the naming convention for waveguides with a 1-D cross section) with the single component of
the electric field being oriented in the y-direction. For the transmission spectra given below, the wavelength
interval was restricted to a region where the waveguides are single mode, and where the exciting guided field
is confined sufficiently, such that the coupling between the waveguides and the cavity remains weak.

3.1 Frequency response

The most noticeable feature in the transmission spectrum is the pronounced resonance, that the mode expansion
simulations predict at a wavelength of A = 1.532 um. Figure 2 shows the spectral response of the microres-
onator device in a narrow wavelength interval around this point, and illustrates the electric field pattern at the
resonance wavelength.
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Figure 2: Top: Relative power transmission Pj to Pp versus the vacuum wavelength, for a resonator as specified by
Figure 1 and the parameters given in the text. The curves for Ps, Pc, and Pp are almost superimposed. Bottom:
Snapshots of the electric field at selected timesteps, equidistantly distributed over one time period of T' = 5.11 fs, for the
resonance wavelength A = 1.532 um. The gray scale levels correspond to the y-component of the electric field at the time
given in each plot, with the white lines indicating the positions of the waveguide and the cavity in the x-z-plane.



One can distinguish different contributions to the total electric field. There are outwards traveling waves in the
ports C and D of the upper waveguide, and an outwards traveling wave with a slightly larger amplitude in the
throughput port B. The electric field in port A is a superposition of the inwards traveling exciting field, and a
wave with smaller amplitude that is reflected into the port, hence an inwards traveling wave with a pulsating
amplitude. In contrast to the traveling wave patterns that are observed for disk- or ring shaped resonators,
the present device shows a standing wave resonance field inside the cavity. This pulsating field pattern does
not prefer a direction of propagation, therefore the amounts of power that are dropped into ports C and D
and reflected into port A are equal. In the resonant configuration, the cavity region accumulates a maximum
electromagnetic energy density which is about 22 times as high as the maximum value in an isolated, equally
excited port waveguide.

Given the considerable refractive index contrast, one might try to approximate the field in the cavity by a
resonant field on a square domain, enclosed by Dirichlet boundary conditions [10]. Requiring a zero field on
the boundary of the square 0 < z < S, 0 < z < S, the Helmholtz equation 82E + 02 F + kzngE = 0 permits
a nonvanishing solution E(z,z) = Fy(sin(4rz/S) sin(67z/S) — sin(67z/S) sin(4wz/S)) that qualitatively
matches the field inside the cavity in Figure 1, if accompanied by the appropriate time dependence. However,
for the resonance to be positioned at A = 1.532 um, one would have to assume a side length of the “hard”
cavity of § = (42 + 62)'/2)/ 2ny = 1.726 pm, which is considerably larger than the actual dimension of the
“soft” cavity of W = 1.54 um. Probably a theory that tries to assess the spectral properties of isolated dielectric
rectangular cavities would have to consider the open boundary conditions explicitly, at least for the low order
resonances which are of interest for the microresonator devices. Here the present mode expansion simulations
could serve for benchmarking purposes.
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Figure 3: Spectral response of the square resonator on a wider wavelength interval. The central inset shows the relative
power transmission P, to Pp versus the vacuum wavelength. The upper and lower rows of plots illustrate the stationary
electric field at selected time steps, such that the structure of the resonant field becomes visible. The plot parameter is the
vacuum wavelength X of the incoming light.



Figure 3 shows the power transmission and the electric field patterns for several other, less pronounced reso-
nances. All of these exhibit a more or less well defined standing wave pattern inside the cavity. Apart from the
resonance at 1.691 pym, there is hardly any power dropped into the upper waveguide.

3.2 Influence of parameter shifts

Apart from the estimation of fabrication tolerances, for applications such as the modulation, switching, or
routing of a signal, detailed knowledge about the response of the resonator to changes in the material and
geometrical parameters is desirable. Figure 4 summarizes our results for the square cavity.
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Figure 4: Relative power transmission P to Pp versus the vacuum wavelength A, for detuned single-cavity resonator
configurations. Keeping all other parameters at the values specified in the text, for each plot one quantity q (two in (a)) is
changed by small amounts, with the differences dq given as the curve parameters. The altered quantities are the length L
and width W of the cavity simultaneously (a), the width W of the cavity (b), the length L of the cavity (c), the refractive
index ng of the guiding regions (d), the width w of the waveguides (e), and the gap g between the waveguides and the
cavity (f). The central gray patch indicates the half width of the original resonance curve.

An alteration of the cavity area (Figure 4 (a)) has only a minor influence on the shape of the resonance, but a
strong influence on its position. A change of 1 nm in the sidelength of the square cavity shifts the resonance
by approximately the same amount. A similar effect can be achieved by modifying the wavelength of the
light inside the cavity, i.e. by changing the refractive index of the cavity material (Figure 4 (d)). Detuning the
resonance position by 1 nm requires to raise or lower n by about 2 - 1073,

A change in either W or L while keeping the other length fixed (Figure 4 (b+c)) effects not only a change in
the area, but also in the shape of the cavity, with a smaller effect on the resonance position, but a larger effect
on the depth of the dip in Pg, when compared to a change in the cavity area. The curves in Figure 4 (c) suggest
that for optimum resonator performance the cavity should be slightly longer than wide (L > W), perhaps to
compensate for the perturbation of the square symmetry caused by the presence of the waveguides.



Decreasing either the width w of the waveguides (i.e. spreading the guided mode profile), or the gap width
g (Figure 4 (e+f)) strengthens the coupling between the three elements. This has only a small impact on the
resonance position, but a pronounced effect on the width and depth of the resonance peak. A stronger coupling
improves the peak resonance level, but at the same time widens the resonance curve.

The finite-difference time-domain simulations of Ref. [9] locate the resonance at a wavelength of 1.545 ym,
which deviates from the present results by an amount that is much larger than the width of the resonance
peak. The FDTD results were calculated with a step size of the finite-difference mesh of 20 nm. According to
Figure 4 (a), assuming an uncertainty of this order e.g. for the cavity dimensions W and L could well explain
the discrepancy in the resonance position.

3.3 Some remarks on the convergence of the mode expansion approximation

The results shown in the previous and in the following sections were computed uniformly on a 10 gm wide
computational window, with mode basis sets on all segments that were restricted to 100 terms.

With respect to the width of the computational window, we have checked the convergence of the method for
some more pronounced resonances. Doubling simultaneously the window width and the number of terms in
the mode expansion, to keep the spectral range of the basis sets, did not lead to any noticeable change of the
results on the scale of the given spectra. This indicates that the window width of 10 gm should be adequate for
the present structures, despite the sometimes quite pronouncedly radiating cavities.
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Figure 5 shows the wavelength response of the resonator that is predicted by mode expansion simulations with
different numbers of terms in the basis sets. If the spectral range of the mode basis is too low, the resonance
does not show up at all (20 terms) or it appears to be only shallow and to be located at a wrong position (40
terms). If the number of terms is larger than a certain limit (say 80 terms), a stable convergence establishes; the
curves related to 100, 120, and 140 terms are indistinguishable on the scale of the figure.

On the fixed 10 m computational window, the cavity segment (1) supports 18 propagating modes; on segments
(0) and (2) only 12 modes are non-evanescent. Obviously including the evanescent modes is essential for
correct simulation results. When looking e.g. at the relative amplitudes |f.} |2, |bL,|? of the normalized mode
fields in the cavity segment, one finds that the evanescent modes receive only small weights. But with a
growing number of evanescent terms included, the large amplitudes are shifted among the propagating modes
in the cavity segment. In this respect the present simulations differ from investigations of directional couplers or
multimode-interference devices by mode expansion techniques, where apparently adequate simulation results
can be expected with only a few guided modes included in the basis sets (cf. e.g. Ref. [13]).

4 Filter simulations

With equal amounts of power transferred into both ports of the drop waveguide, the single cavity resonator
is not directly suitable for an application as an add-drop filter. This section contains an assessment of a filter
device as proposed in Ref. [9], by means of the mode expansion technique. Figure 6 sketches the relevant
geometry, where the two port waveguides are now coupled by two square cavities, spaced by a distance d of
0.72 pm.
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4.1 Frequency response

The spectral response of the filter device in Figure 7 shows a resonance at the position A = 1.532 ym that
was observed also for the single cavity resonator. But in contrast to the simpler device, at that wavelength
the throughput port B of the filter receives a relative power of only 3%. Equally low power levels of 2% are
reflected into ports A and D, while 68% of the input power is dropped into port C. The resonance has a full
width at half maximum (FWHM) of about 1 nm.
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Figure 7: Top: Relative power transmission P4 to Pp versus the vacuum wavelength, for a filter device as specified by
Figure 6 and the parameters given in the text. The curves for P4 and Pp are almost superimposed. Bottom: Snapshots
of the stationary electric field at selected timesteps, nonequidistantly distributed over one period of T' = 5.11 fs, for the
resonance wavelength A = 1.532 pm. The gray scale levels correspond to the y-component of the electric field at the time
given in each plot, with the white lines indicating the positions of the waveguide and the cavities in the z-z-plane.

The bottom part of Figure 7 illustrates the electric field pattern at the resonance wavelength. The plots show
the electric field at eight nonequidistant points in time, distributed over one period T'. The snapshots have been
selected to show extremal shapes, where the field either almost cancels in one of the cavities, or where the
maximum field levels in the two cavities are approximately equal.

Apparently, the electric field pattern in the cavities can be regarded to be composed of the resonant fields of the
single cavities at the same frequency. Assuming that two “time-domain modes” with opposite symmetry with
respect to the line z = L + d/2 are excited, each one — apart from signs — with the single cavity field shape



inside the squares, one expects a time dependence like

(gl) = Ey <(1) cos(w(t —tp)) +a (_11> cos(w(t —tg) + <p)> )

for the electric field Ej, E; in all pairs of corresponding points in the left (1) and right (r) cavity. Here the real
quantities a and ¢ specify the relative complex amplitude of the antisymmetric time-domain mode with respect
to the symmetric one, Fy is a global amplitude and ¢( is a time offset. The observation that approximately
equal maximum field levels are reached in both cavities fixes the relative phase of the two modes to ¢ ~ 7/2.
Then one obtains the expression At = T arctan(1/a)/m for the shorter time interval between zeroes in E and
E); according to Figure 7 this is a time of At = 0.18T". Hence, apart from proper selection of the time offset,
with the assumption of an unequal weighting of the two time-domain modes with a = 1.6, Eq. (9) reflects
qualitatively the time dependence of the electric field inside the filter cavities.

While all resonances of the single cavity resonator show up again in the spectrum of the filter device, these
are usually more pronounced, they appear at slightly shifted positions, and they come accompanied by a few
additional peaks, which seem to be built from closely neighboured resonances of the single cavities. Figure 8
is meant to illustrate these observations. Among the resonances the peak at 1.532 ym is the only one, where
a pronounced beating pattern with alternate zeroes in the cavity regions appears, and where channels C and D
receive significantly differing amounts of optical power.

The filter performance is to be assessed in terms of the finesse, given by the free spectral range (FSR), divided
by the width of the relevant resonance peak. While the FWHM of the resonance at 1.532 ym was found to be
about 1 nm, the FSR depends on whether one accepts the peak at 1.571 um or that at 1.684 ym as the “next”
relevant resonance, leading to finesse values of either 39 or 152.

4.2 Influence of parameter shifts

The effect of deviations in the geometrical and material parameters on the filter performance is quite similar
to the effect observed for the single cavity resonator. According to Figure 9, a shift of 1 nm of the resonance
position can be achieved alternatively by a change of about 1 nm in the side lengths W and L of the cavities
(a), or by altering the cavity refractive index ng (b) by about 2 - 10~3. The effect of changes in the parameters
w and g, which do not affect the cavities directly, but the strength of the coupling between the cavities and the
waveguides, appears to be somewhat puzzling. At least the trend coincides with the single cavity resonator: A
weakened coupling, caused either by an enlarged waveguide width or gap width, sharpens the resonance, but
also renders it less pronounced.

Similar curve patterns appear, if the spacing d between the cavities is varied, which is probably the most
interesting parameter for the filter structure. Figure 10 shows the results. Apparently, for a properly performing
filter a specific phase relation between the waves arriving at the left and at the right cavity is essential, as
predicted by the time domain coupled mode theory in Ref. [14, 9]. Perturbing this phase relation either by
changing the distance between the cavities or by altering the phase velocities of the mediating modes in the
waveguides seems to have similar effects.

For given parameters w, g, W, L, np, and ng, we selected the distance d such that a minimum throughput
power Pg and a maximum drop level Pc were achieved at the resonance wavelength. This led to the distance
d = 0.72 pm, which is significantly smaller than the value of 0.815 ym that was used in the reference FDTD
calculations of Ref. [9]. Apart from uncertainties related to the finite difference mesh, the difference of 95 nm
in d could explain the discrepancy between the shapes of the filter curves in Figure 7 and the reference data of
Ref. [9], where the spectrum appears like Figure 10 (d).
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Figure 8: Spectral response of the filter on a wider wavelength interval. The central inset shows the relative power
transmission Py to Pp versus the vacuum wavelength. The upper and lower rows of plots illustrate the stationary electric
field at selected time steps, such that the structure of the resonant field becomes visible. The plot parameter is the vacuum
wavelength A of the incoming light.
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Figure 9: Relative power transmission P, to Pp versus the vacuum wavelength A, for detuned filter configurations.

Keeping all other parameters at the values specified in the text, for each plot one quantity q (two in (a)) is changed by

small amounts, with the differences dq given as the curve parameters. The altered quantities are (cf. Figure 6) the width

W and length L of the cavity simultaneously (a), the refractive index ng of the guiding regions (b), the width w of the

waveguides (c), and the gap g between the waveguides and the cavities (d).
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Figure 10: Relative power transmission P4 to Pp versus the vacuum wavelength A, for filter devices according to Figure 6
with differing distances d between the cavity. The curve parameter states the deviation dd from the original value d =
0.72 pm; inset (c) shows the original filter curves.

5 Conclusions

Mode expansion simulations allow for a convenient numerical assessment of rectangular integrated optical
microresonator devices in two space dimensions. Our calculations confirm the results of the investigations in
Ref. [9] up to the expectable accuracy limits. Being only modestly demanding in terms of computational time
and memory consumption, the mode expansion ansatz can replace the involved finite difference time domain
calculations, which are usually employed as a reference simulation tool [15, 3, 9].

The technique enables quite rigorous investigations of the spectral response of the resonator units to changes in
the various geometrical and material parameters, and it allows for a straightforward extension to the modeling
of a sequence of cavities, as it is required for the realization of add-drop-filters.
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Considering only 2D structures with somewhat extreme requirements in terms of refractive index contrast and
fabrication tolerances, the simulations may be of only small immediate practical interest, although the 2D model
could be viewed as a reduction of a realistic device with 3D light confinement by means of effective indices.
However, the simulations constitute an efficient numerical complement to a general theory of “localized states”
[14, 9] in the framework of conventional dielectric waveguides.
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