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Abstract: The modal properties of curved dielectric slab waveguides are investigated. We consider

quasi-confined, attenuated modes that propagate at oblique angles with respect to the axis through the

center of curvature. Our analytical model describes the transition from scalar 2-D TE/TM bend modes

to lossless spiral waves at near-axis propagation angles, with a continuum of vectorial attenuated

spiral modes in between. Modal solutions are characterized in terms of directional wavenumbers

and attenuation constants. Examples for vectorial mode profiles illustrate the effects of oblique wave

propagation along the curved slab segments. For the regime of lossless spiral waves, the relation with

the guided modes of corresponding dielectric tubes is demonstrated.
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1 Introduction

Bends in dielectric optical waveguides are basic building blocks for various kinds of integrated photonic cir-

cuitry. The accurate evaluation of modal propagation and attenuation constants, and of modal electromagnetic

field profiles, constitutes the essential theoretical task. Just as for straight waveguides, modal analysis of general

3-D bend channels is possible only by numerical means. The fundamental phenomena related to the waveguide

curvature, however, can be studied conveniently by looking at analytical 2-D models [1, 2] of bent slab wave-

guides with 1-D cross sections. These bent slab models correspond to physical configurations, where both the

structure under investigation and the electromagnetic field are constant along the axis through the center of the

curved structure. The solutions are quasi-guided attenuated waves that propagate along the curved slab, in a

direction perpendicular to the axis.

In this paper we reconsider the bent slab structures, but now look at quasi-guided waves that also have an

axial wavenumber component. Referring to the cylindrical coordinate system (r, θ, y) of Figure 1, these modes

propagate in a direction given by the azimuthal θ- and axial y-propagation constants, with profiles that are

quasi-confined in the radial r-direction. The curves given by these local wavenumbers describe spirals around

the central axis, hence we call these fields “spiral modes”.
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Figure 1: (a) Bent slab waveguide with outer

radius R, thickness d and refractive indices

ns, nf and nc in the interior, film, and ex-

terior regions. Cylindrical coordinates r, θ,

and y complement the Cartesian x-y-z coor-

dinates. The structure is constant along the

y- and θ-axes. (b) Imagined excitation of

the bent waveguide segment by a semi-guided

plane wave, propagating in the straight region

at angle ϕ with wavenumbers ky and kz . In

the curved region, this leads to a spiral wave

with wavenumbers ky and kθ, propagating at

an angle ϕ′ .

Besides the — for the most part academic — interest in these fields, the present study was motivated mainly by

our recent results on oblique waves in segmented slab waveguides [3] and dielectric steps [4, 5], which adopt

quite early concepts of integrated optics [6, 7]. One considers semi-guided, laterally plane waves supported

by a piece of slab waveguide, and the oblique incidence of such waves on nonuniformities in the slab. These

need to be constant along one axis, and can otherwise be of arbitrary shape. Examples are linear boundaries
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between slab regions of different thicknesses [3], or more involved linear corner-, step-, or even bridge- or

u-turn-like structures [5]. A critical angle of incidence can be identified, beyond which power transfer to non-

guided, radiative waves is forbidden. Depending on the particular geometry, oblique waves at higher angles of

incidence are partly reflected and partly transmitted, without any radiation losses.

In this context, as hinted at in Figure 1(b), one might consider a segment of a dielectric tube as a specific form of

a slab waveguide nonuniformity. The entire system is constant along the axis of curvature, here the y-direction.

A semi-guided wave, supported by the straight slab, and coming in at the interface with a specific angle of

incidence ϕ, requires a solution in the tube segment with a y-wavenumber ky that matches that of the incoming

wave. Note that here the particularities concerning the transition from the straight to the curved sections are

irrelevant; we do not look at the transition itself in this paper.

Still, when imagining a variation of this angle of incidence ϕ, translated to a variation of the wavenumber

parameter ky , one expects different scenarios. For normal incidence ϕ = 0, the familiar 2-D bend modes will

be exited in the tube segment, with fields that are constant along y. For near-grazing incidence, at ϕ close

to 90◦, lossless waves can be expected that, for specific angles, and envisioning a continuation of the curved

segment to a complete dielectric tube, form the guided modes supported by this tube-shaped optical fiber. In

between, there is a continuum of vectorial waves, that spiral around the tube axis at varying angles, with varying

levels of radiative losses that vanish beyond a certain critical angle of incidence. The full range of solutions

will be explored in this paper, where we (mostly) look at angular segments of curved slabs only, disregarding

any potential resonant properties.

Section 2 provides a detailed analysis of the vector spiral modes. Exploiting the facilities for Bessel- and Hankel

functions with complex order and argument built into the Maple computer algebra system [8], the results are

almost fully analytic. Besides the numerical solution of transcendental equations, no further approximations

enter. Section 3 summarizes results for a series of configurations with different levels of refractive index

contrast.

Spiral waves supported by infinite circular dielectric rods / circular fibers have been investigated both theoreti-

cally [9, 10, 11] and experimentally [12], with emphasis on resonant features (also as a means to approximate

the whispering gallery resonances of dielectric disks of finite thickness [9]), on far-field properties [11], and

considering excitation by external free-space plane waves, or by external focused Gaussian beams. These ex-

citation and readout schemes cannot reach spiral waves with parameters ky beyond the free space wavenumber

of the external medium, i.e. cannot reach the lossless spiral waves at high propagation angles (These should

become accessible through evanescent excitation by another waveguide [13], though). We shall see that there

is a smooth transition from lossy bend modes to lesser-attenuated spiral modes to lossless spiral waves that

constitute the guided modes of a dielectric tube. Note that most of our formalism, with small modifications,

applies to rod configurations (ns = nf) as well.

2 Theory

Figure 1(a) shows a curved slab waveguide with one inner layer. All regions are made of linear dielectric,

nonmagnetic, lossless, and isotropic material, with constant refractive indices ns, nf, and nc, in the interior,

film, and exterior regions, where we assume ns ≤ nf > nc. The waveguide is regularly bent around the y-axis

with outer radius R and thickness d. Because of this symmetry we adopt cylindrical coordinates r, θ, y, as

introduced in the figure. The structure is homogeneous along the angular coordinate θ.

The homogeneous Maxwells equations in the frequency domain [14] apply, here written for a time dependence

∼ exp(iωt) of all fields, with the angular frequency ω = k0c = 2πc/λ specified by the vacuum wavenumber

k0, or wavelength λ, respectively, for vacuum speed of light c, vacuum permittivity ǫ0 and permeability µ0:

curl Ẽ = −iωµ0H̃ , curl H̃ = iωǫ0ǫẼ. (1)

Local refractive indices n define the relative permittivity ǫ = n2.
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2.1 Oblique wave propagation along bent slab waveguides

Interest is in optical electric and magnetic fields Ẽ, H̃ that vary harmonically along y with wavenumber ky ,

with — at present unknown — cross sectional mode profiles E and H :

Ẽ(r, θ, y) = E(r, θ) e−ikyy, H̃(r, θ, y) = H(r, θ) e−ikyy. (2)

In the present context, ky is a given parameter. To render its values more accessible, we adopt the viewpoint of

external excitation of the field in the bend slab, as illustrated in Figure 1(b). Connection of a field supported by

the straight waveguide to the solution in the curved one requires that both share the same y-wavenumber [3]. A

semi-guided plane wave in the straight region, with effective mode index Neff, is associated with a dependence

exp(−ikyy), where ky = k0Neff sinϕ is then given by the angle of incidence ϕ of the wave with respect to

the propagation in the y-z-plane. Envisioning a direct linear joint between the straight and the bent waveguide

segments, it appears appropriate (and we will do so throughout this paper) to apply the layering of the bend also

in the straight segment. ThenNeff is the effective mode index of the — polarized — guided mode of the straight

slab waveguide of thickness d with refractive index profile ns : nf : nc at the relevant vacuum wavelength. We

shall see below that this choice also renders ϕ close to the actual propagation angle ϕ′ of the spiral mode inside

the bend.1 By varying ϕ ∈ [0, 90[◦, a range of wavenumbers ky ∈ [0, k0Neff[ can be scanned.

We are left with the task to determine the electric and magnetic parts E, H of the modal field. By inserting the

ansatz Eq. (2) into the governing Maxwell equations (1), we obtain the coupled equations

1

r
∂θEy + ikyEθ = −iωµ0Hr, −ikyEr − ∂rEy = −iωµ0Hθ,

1

r
∂r(rEθ)−

1

r
∂θEr = −iωµ0Hy,

(3)

1

r
∂θHy + ikyHθ = iωǫ0ǫEr, −ikyHr − ∂rHy = iωǫ0ǫEθ,

1

r
∂r(rHθ)−

1

r
∂θHr = iωǫ0ǫEy.

Restricting, for the moment, to positions with locally constant permittivity, Eqs. (3) can be combined into the

scalar second order equations

∂2rψ +
1

r
∂rψ +

1

r2
∂2θψ + (k20ǫ− k2y)ψ = 0, (4)

which hold for ψ = Ey and ψ = Hy in regions with constant refractive index. Once solutions for these

principal components are at hand, the other components can be calculated as

Er = − i

k20ǫ− k2y
(ky∂rEy +

ωµ0
r
∂θHy), Eθ = − i

k20ǫ− k2y
(
ky
r
∂θEy − ωµ0∂rHy),

Hr = − i

k20ǫ− k2y
(ky∂rHy −

ωǫ0ǫ

r
∂θEy), Hθ = − i

k20ǫ− k2y
(
ky
r
∂θHy + ωǫ0ǫ∂rEy).

(5)

2.1.1 Separable principal components

Local solutions of Eq. (4) are obtained by writing the principal fields in separable form ψ(r, θ) = f(r) g(θ).
Then Eq. (4) leads to the two equations

g′′ + αg = 0 and r2f ′′ + rf ′ + (r2χ2 − α)f = 0, (6)

for the radial and angular functions f , g, where the dashes denote derivatives, α ∈ C is a constant, and

χ2 = k20n
2 − k2y . Eq. (6) holds within regions with constant refractive index n.

Introducing the — at present unknown — angular mode order ν and angular propagation constant kθ by α = ν2

and ν = kθR, a solution g of Eq. (6) is readily written as2

g(θ) ∼ e−i
√
αθ = e−ikθRθ. (7)

1Other scenarios, like the evanescent excitation through a slab, with potentially different layering, placed “underneath” the bend at

a small distance, would lead to a different rule of translating ky to an angle of incidence.
2Note that the definition of kθ depends on the — arbitrary — definition of the bend radius R [2].
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We are interested in waves that propagate and decay in positive θ-direction. Therefore only values kθ with

positive real part and negative imaginary part are relevant here.

By now it is possible to define a propagation angle ϕ′ in the bent waveguide structure through the relation

tanϕ′ = ky/ℜ kθ . Note that, in general, ϕ′ differs from ϕ due to differing guidance properties of the bend and

straight slabs (even for identical layering).

We proceed with the equation for the radial function f , where a case distinction is required, depending on

the local refractive index value n. For k0n > ky, Eq. (6) is a standard Bessel differential equation, and its

elementary solutions are Bessel functions of the first kind J and of the second kind Y [15]. For k0n < ky, the

negative value for χ2 = k20n
2−k2y leads to a differential equation of modified Bessel type. Elementary solutions

are the modified Bessel functions of the first kind I and the second kind K [15], which can be expressed through

the Bessel functions J and the Hankel function H(2).

We are looking for spiral modes that are regular at the central axis r = 0 of the cylindrical coordinates, and that

relate to outwards traveling, or externally decaying, waves at large radial coordinates. These physical boundary

conditions are implemented by selecting appropriate elementary solutions, separately for the radial intervals

with constant refractive index. Considering the interior region with refractive index ns, the fields should be

regular at r = 0. So in case of k0ns > ky , the ansatz needs to be restricted to the Bessel function of the first

kind J, while for k0ns < ky the modified Bessel function of first kind I would be appropriate. Because of the

proportionality I(x) ∼ J(ix), we can write the solution in terms of the Bessel function J in both cases. Next

looking at the core layer with n = nf, the general solution for f(r) is given by a linear combination of the

Bessel functions J and Y. Assuming a core layer with the highest local refractive index nf ≥ ns, nc, such that

k0nf ≥ ky = k0Neff sinϕ, here a further differentiation is not necessary. Outside the core, for r > R, we need

to restrict to outgoing and/or decaying fields. In case of k0nc > ky, these are realized by a specific complex

linear combination of J and Y, i.e. by the Hankel function H(2), as can be verified by inspecting the asymptotic

expansion of H(2) for large arguments [15, 2]. For k0nc < ky , the modified Bessel functions K can also be

replaced by the Hankel function H(2), with negative, imaginary argument, to represent (outgoing) decaying

waves.

For the sake of clarity, we now specialize to “symmetric” configurations with equal refractive indices ns = nc

in the interior and exterior regions, with a core layer of higher refractive index nf in-between. These will be

selected as examples in Section 3. A global ansatz for the principal fields ψ = Ey and ψ = Hy can be stated as

ψ(r, θ) =



















A Jν(r
√

k20n
2
s − k2y ) e−iνθ, for 0 ≤ r ≤ R− d,

(

B Jν(r
√

k20n
2
f − k2y ) + C Yν(r

√

k20n
2
f − k2y )

)

e−iνθ, for R− d ≤ r ≤ R,

DH
(2)
ν (±r

√

k20n
2
c − k2y ) e−iνθ, for r ≥ R,

(8)

with Bessel- and Hankel-functions of — in general — complex order ν = kθR, and either real or imaginary

arguments. In the third case, the ±-sign applies for parameters ky ≶ k0nc. Note that separate expressions (8)

need to be written for Ey and Hy, with separate coefficients A, B, C , and D.

2.1.2 Transverse resonance

Using the relations (5), Eqs. (8) for the principal components can be extended towards expressions for the full

vectorial electromagnetic mode profile, including the in total eight unknown amplitudes, and depending on the

still unknown angular wavenumber kθ. These fields satisfy the Maxwell equations (1) everywhere, with the

exception of the interfaces at r = R and r = R− d. Standard expressions for the continuity of electromagnetic

fields at uncharged dielectric interfaces apply [14]. With the present cylindrical coordinates, continuity of the

tangential electric field components Ey , Eθ, of all magnetic field components Hy, Hθ, and Hr, and of the

normal component ∼ ǫEr of the dielectric displacement is required at r = R and r = R− d.

Taking into account redundancy, these interface conditions lead to a system of eight linear equations for the

local amplitudes. For purposes of reference, explicit expressions are given in Appendix A. These equations can

be written in the form of a nonlinear eigenvalue equation

M(kθ)A = 0, (9)
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where the matrix M depends on the unknown wavenumber kθ, and where the vector A collects the eight ampli-

tudes {A, . . . ,D}E,H introduced in Eq. (8). Interest is in nonzero solutions of Eq. (9). Valid angular wavenum-

bers are thus found by identifying values kθ where M(kθ) becomes singular, i.e. where the determinant of that

matrix vanishes. That condition represents the “transverse resonance condition” of the present spiral modes.

Note that, in general, Eq. (9) leads to vectorial solutions in the form (2), where all six electromagnetic mode

profile components are nonzero.

2.1.3 Computational procedure

The transverse resonance condition for the spiral modes does not permit an analytical solution. Roots kθ of

the transcendental equation det(M(kθ)) = 0 associated with Eq. (9) need to be found in the complex plane,

where, for physical reasons as given above, we can restrict to the quadrant ℜ kθ > 0, ℑ kθ < 0. The complex

secant method [16] was implemented in the Maple computer algebra system [8]. For the present equations, the

routine usually converges rapidly to the root positions, provided that a good initial guess is available for each

individual configuration. We thus applied a procedure to trace solutions for structures with close parameters in

the complex plane.

In the limit of vanishing curvature, one expects that the waveguiding properties of the present bent slabs become

those of straight slab waveguides with equivalent layering. Given a value ky, or an angle ϕ, respectively,

the wavenumber component kz = k0Neff cos(ϕ) associated with the oblique propagation (cf. Figure 1) in

the straight slab, together with an additional small imaginary part, can serve as a suitable initial guess when

searching for eigenvalues kθ of a bend configuration with “large” radius R. Solutions for stronger curvature

are found by proceeding along a series of decreasing radii, always using the root of the preceding step as initial

guess for the configurations with the next smaller radius.

2.2 Scalar 2-D bend modes

A vanishing axial wavenumber parameter ky = 0 relates to fields (2) that are constant along the y-axis. Accept-

ing the above viewpoint of excitation through a straight slab waveguide, this corresponds to a case of normal

incidence ϕ = 0 of the incoming semi-guided wave. Eqs. (3) then split into the two separate sets

1

r
∂θEy = −iωµ0Hr, −∂rEy = −iωµ0Hθ,

1

r
∂r(rHθ)−

1

r
∂θHr = iωǫ0ǫEy, (10)

and
1

r
∂θHy = iωǫ0ǫEr, −∂rHy = iωǫ0ǫEθ,

1

r
∂r(rEθ)−

1

r
∂θEr = −iωµ0Hy. (11)

of equations for the modes of 2-D bent slab waveguides [1, 2]. Solutions for transverse electric (TE-) bend

modes with nonzero Ey , Hr, and Hθ fields can be found by considering a scalar problem for their principal Ey

component. Transverse electric (TM-) bend modes with nonzero Hy, Er, and Eθ components are characterized

through a scalar equation for the principal component Hy. Our present formalism covers these cases as well;

respective results from Ref. [2] will serve as benchmarks.

2.3 Guided modes of full dielectric tubes

Following the reasoning of Ref. [5], and accepting the curved segment as a particular kind of linear “nonuni-

formity” in an otherwise straight slab, one concludes that any radiative losses caused by the curvature vanish, if

only the axial wavenumber ky is larger than the wavenumber k0nc of plane waves in the exterior region. In the

present setting, this translates to a critical angle of incidence ϕ̃ with sin ϕ̃ = nc/Neff. Spiral modes that relate

to incoming waves at angles ϕ > ϕ̃, i.e. that correspond to axial wavenumbers ky = k0Neff sinϕ > k0nc, are

lossless. In our previous formalism, this can be realized by inspecting the ansatz (8) for the principal mode

components: In the expression for the exterior region r > R, the argument of H
(2)
ν switches from real to

imaginary, and the behaviour of the profile components changes from oscillatory to decaying, at ky = k0nc.

Consequently, for large ky with ϕ > ϕ̃, real eigenvalues kθ are expected as solutions of Eq. (9). In case

these happen to coincide with an integer angular order ν = kθR ∈ Z, the respective spiral mode fields can be

continued to establish valid confined solutions of Eqs. (1) for an entire dielectric tube (cf. Figure 1 & Eq. (7)).
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We are thus led to the guided modes of circular dielectric fibers [17, 18], here with specific single-layer step-

index profiles. Owing to their resemblance to a dielectric tube, these solutions will be called “tube modes” in

the following sections.

When trying to identify these tube modes directly, the previous formalism can advantageously be reformulated

by exchanging the roles of ky and kθ . An integer angular order ν = kθR is selected as a given parameter, and ky
takes the role of the unknown eigenvalue (the matrix M in Eq. (9) is regarded as a function of ky). Propagation

constants ky of the tube modes are then searched on the real axis only, in the interval k0nc < ky < k0nf.

One thus recovers a standard guided wave eigenvalue problem. Respective comparisons will serve for further

benchmarks. Note that the tube modes are each twofold degenerate: Any eigenvalue ky corresponds to two

solutions for ±ν with opposite sense of rotation (rotational symmetry; ν appears merely quadratically in Eq. (6);

an ansatz in terms of sin and cos-functions could alternatively be chosen for the angular function g in Eq. (7)).

3 Examples

Table 1 collects structural and material parameters for the examples discussed in this section. A first set of

values concerns waveguides with low / moderate refractive contrast. Respective bend configurations have been

investigated in Ref. [2], such that a direct validation of our results for ϕ = 0 is possible. These waveguide bends

are comparably lossy, such that the vanishing of losses at larger angles of propagation can be highlighted.

However, any effects related to the vectorial character of the spiral modes at ϕ > 0 should become more

pronounced for higher refractive index contrast. We therefore adopt a second set of parameters, with a thinner

core layer. In the following sections we refer to these settings as “low” and “high refractive index contrast”, or

with the shorthands “(lc)” and “(hc)”, implying that the associated different core layer thicknesses are applied.

In both cases, the respective straight slab waveguides are single mode, per polarization. The effective indices

Neff of the polarized fundamental TE0 and TM0 slab modes, determined by the solver of Ref. [19], will be used

to characterize the ky parameter for the spiral mode analysis.

ns nf nc d/ µm λ/ µm R, ϕ
(lc) 1.6 1.7 1.6 1.0 1.3 varied [2]

(hc) 1.5 2.0 1.5 0.4 1.3 varied

Table 1: Parameters for the examples with lower (lc) and higher contrast (hc) in Sections 3.1 – 3.3. Bend slab waveguides

as in Figure 1 are considered, with refractive indices ns, nc, and nf, core thickness d, at vacuum wavelength λ, for varying

bend radius R and propagation angle ϕ.

Our computational procedure (cf. Section 2.1.3) establishes a link between any particular spiral mode, and the

polarized slab waveguide mode, the effective index Neff of which served as initial guess for the root-tracing

steps that led to the spiral mode solution. For lack of any better naming scheme, we thus adopt the terms

“TE / TM” also for the vectorial spiral modes identified in this way. The findings on the polarization character

of the hybrid spiral modes in Section 3.2 prove this scheme to be adequate.

3.1 Bend modes

We start with a brief look at “conventional” 2-D bend mode configurations. As discussed in Section 2.2, for

ky = 0, ϕ = 0, separate scalar equations determine the familiar TE- and TM-polarized modes of bent slab

waveguides. Figure 2 shows propagation and attenuation constants of polarized bend modes for the settings

with low and high refractive index contrast. Figure 3 illustrates a series of bend mode profiles.

According to Figure 2, for low curvature bends, the effective indices ℜ kθ/k0 of the bend modes approach

the levels of their straight waveguide counterparts, while the attenuation constants ℑ kθ tend to zero for large

bend radii R. More pronounced deviations in wavenumbers, and larger levels of loss, are observed for stronger

curvature at smaller radii R.3 Coincidence of the present wavenumber values with the data from Ref. [2]

validates this part of the theory and our implementation.

3Note that it depends on the (arbitrary) definition of the bend radius, whether, for large R, the curve ℜ kθ/k0 approaches the level

Neff from above, or from below [2].
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Figure 2: Wavenumbers kθ, real (top) and imaginary parts (bottom) of bent slab waveguides, depending on the core radius

R, for normal wave propagation ky = 0, ϕ = 0. Results for TE- (a) and TM-polarization (b) are compared, for structures

with low- and high contrast, as introduced in Table 1. The markers show reference data from [2]; horizontal lines indicate

effective indices Neff of the associated fundamental TE0, TM0 modes of straight waveguides [19].
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Figure 3: Radial profiles of TE-polarized bend modes, for different bend radii R, for 2-D bend waveguides (ky = 0,

ϕ = 0) with lower (a) and higher refractive index contrast (b); parameters as in Table 1. Curves for the absolute value |Ey |
(continuous), the real part ℜEy (dashed), and the imaginary part ℑEy (dotted) of the principal electric field component

are shown. The gray patches indicate the positions of the waveguide cores.

Figure 3 shows principal field components of the TE bend modes, for different bend radii, and for the low and

high refractive index contrast scenarios. The modes are normalized to unit power [2], using the expression

Pθ =
1

2

∫ ∞

0
ℜ{E ×H

∗} · eθ dr (12)

for the angular optical power flow per axial unit length, evaluated with fields (2), (8) at θ = 0. Here eθ is a unit

vector in the angular direction θ.

Radiative losses relate to mode profiles with pronounced oscillatory behaviour in the external region r > R. In

line with Figure 2, the strength of these oscillations decreases, and confinement of the mode to the core region

improves, with lower curvature at larger bend radii, and for stronger refractive index contrast. For the better

confined modes with lower losses, one also finds a more symmetric profile with the absolute profile maximum

close to the center of the core; the bend modes then resemble the symmetric modes of straight waveguides with

the same layering.
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3.2 Spiral modes

Accepting fixed layering and vacuum wavelength, two primary parameters determine the modal properties of

the tube segment. These are the radius of curvature R and the axial wavenumber ky , or the angle of incidence

ϕ, respectively. Figures 4–7 summarize our results for the influence of these two parameters on the complex

wavenumbers of spiral modes. In each of the figures, the wavenumber data is displayed twice: The left panels

show the dependence of the radius R of curvature, for a number of different angles of incidence ϕ; attenuation

constants are displayed on a logarithmic scale. The roles of R and ϕ are exchanged for the panels on the right

hand side; here we have chosen a linear scale for the attenuation constants. All curves in these figures for ϕ = 0
coincide with the data of Figure 2.
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Figure 4: Spiral mode wavenumbers kθ , real & imaginary parts, for low refractive index contrast (cf. Table 1) and TE-like

fields, as a function of bend radiusR and angle of incidenceϕ; critical angle ϕ̃ = 74.5◦. The markers in the region ϕ > ϕ̃
relate to tube modes, as discussed in Section 3.3 (see Figure 14).
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Figure 5: Spiral mode wavenumbers kθ, real & imaginary parts, for low refractive index contrast (cf. Table 1) and TM-like

fields, as a function of bend radius R and angle of incidence ϕ; critical angle ϕ̃ = 74.86◦.

First we look at the angular propagation constant ℜ kθ of the spiral modes, or their effective indices ℜ kθ/k0,

respectively. In the limit of low curvature, for large bend radii, one expects an angular behaviour as for oblique

wave propagation in a straight slab waveguide. For oblique propagation at angle ϕ, these waves with effective

index Neff propagate with a y-wavenumber ky = k0Neff sinϕ, such that a value kθ ≈ kz = k0Neff cosϕ can be

expected for the angular propagation constant (see Figure 1). This explains the limiting levels in the left panels
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Figure 6: Spiral mode wavenumbers kθ , real & imaginary parts, for high refractive index contrast (cf. Table 1) and TE-like

fields, as a function of bend radius R and angle of incidence ϕ; critical angle ϕ̃ = 56.54◦.
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Figure 7: Spiral mode wavenumberskθ , real & imaginary parts, for high refractive index contrast (cf. Table 1) and TM-like

fields, as a function of bend radius R and angle of incidence ϕ; critical angle ϕ̃ = 60.46◦.

of Figures 4–7, for large R, and the limiting cosine-shape of the ℜ kθ-curves in the panels on the right. On the

scale of the figures, only small deviations from these values for oblique waves in straight slabs are observed,

most pronounced for bends with strong curvature at small radii. For the purpose of a more intuitive discussion,

we thus accept the “auxiliary” angle ϕ, introduced to specify the axial wavenumber parameter ky , as a good

approximation of the actual propagation angle ϕ′ of the spiral modes, as defined in Section 2.1.1.

The negative imaginary parts of kθ represent the attenuation of the spiral modes. With the exception of the con-

figurations with the strongest curvature, at small R, we observe a logarithmic dependence of these attenuation

constants on the bend radius, just as for the former bend modes. The losses reduce drastically with increasing

propagation angle; this effect becomes more striking when considering the linear plots of attenuation constants

versus propagation angle: Attenuation may drop below some tiny admissible upper limit even at angles well

below the critical angle ϕ̃, introduced in Section 2.3. In line with the theory, radiative losses vanish entirely,

ℑ kθ = 0, for propagation at angles ϕ > ϕ̃. Gray markers in the respective region represent discrete solutions

for the guided modes of full tubes as introduced in Section 2.3; examples will be discussed in Section 3.3.

We observe the same qualitative behaviour for TE- and TM-like polarized waves, and for both our settings

with lower and higher refractive index contrast. While there are only minor differences, on the scale of the

figures, between waves of both polarizations for the low contrast configurations (Figures 4, 5), these are more
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pronounced for higher refractive index contrast (Figures 6, 7). Quantitatively, however, there is a pronounced

difference between the results for different refractive index contrasts, with substantially higher loss levels for

the (hc)-configurations,

A few examples for the radial profiles of spiral modes are shown in 8, for TE-like modes supported by our low-

contrast bends; the profiles are normalized according to Eq. (12). Note that the plots of Figure 3(a) could be

grouped into this series. Figures 9, 10 illustrate field pattern associated with the propagation of the spiral modes,

for small bend radii. The plots relate to the electric field component E⊥ = − sin(ϕ)Eθ + cos(ϕ)Ey that is

perpendicular to the local “in-plane” wavevector (kθ, ky), and to the energy density w = 1
4(ǫ0ǫ|E|2 +µ0|H |2)

associated with the spiral mode field.
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Figure 8: Normalized radial profiles of TE-like spiral modes, for configurations with lower refractive index contrast, for

a series of bend radii R and propagation angles ϕ, parameters as in Table 1. The curves correspond to the absolute value

(continuous line), the real part (dashed), and the imaginary part (dotted) of the in-plane electric field component E⊥ that

is perpendicular to the direction of propagation.

According to Figure 8, the previously observed lower losses for increased bend radius, or alternatively, for

increased angle of propagation, are accompanied by less pronounced external oscillatory tails of the mode

profiles. Simultaneously the mode profile maximum shifts inwards. For the lossless configurations, at ϕ = 80◦

(ϕ > ϕ̃), and irrespective of R, the profiles resemble (these are still Bessel functions, piecewise) the symmetric

shapes associated with the fundamental TE modes of straight slab waveguides. Apparently, spiral modes at

larger angles of propagation experience a lower “effective curvature”, and correspondingly show less of the

effects associated with waveguide bending.

This notion is also supported by the field pattern of Figures 9, 10. Note that among the configurations of Fig-

ures 4, 6, this concerns the bend slabs with the smallest radii. The plots show the wave propagation guided by

the bend core, with a gradual decay in field strength, and with radiated fields outside the bend. The propaga-
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spiral modes of a low-contrast bend with radius R = 5µm, at different angles of propagation ϕ, for the parameters of

Table 1.
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Figure 10: Snapshots of transverse electric fields ℜE⊥ (top) and pattern of optical energy density w (bottom) for TE-

like spiral modes supported by a high-contrast bend with radius R = 3µm, at different angles of propagation ϕ, for the

parameters of Table 1.

tion length, the angular distance before loosing specific amounts of power, increases with larger propagation

angles; simultaneously the field becomes more and more confined to the core. Spiral modes at angles beyond

ϕ̃ propagate along the curved slab with constant amplitude, without radiating optical power into the external

region.

While so far things appear, more or less, just as observed for the “standard”, scalar 2-D bend modes, we’d like

to point out that this concerns hybrid, vectorial modal fields. To characterize the polarization character of the

spiral modes, we consider the relative strength

ΓE =

∫ ∞

0
|E⊥|2dr

/
∫ ∞

0
|E|2dr (13)

of the in-plane electric field component E⊥ perpendicular to the local wavevector. In case of a straight slab

waveguide, the ratio (13) identifies the modal polarization through values of 1 for 2-D TE slab modes, and 0
for the TM modes. Figure 11 summarizes polarization ratios for our spiral modes.
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Figure 11: Polarization ratios ΓE, as defined in Eq. (13), for spiral modes with low (a) and high refractive index contrast

(b), for bends (cf. Table 1) with different radii R, as a function of the propagation angle ϕ.

At angle ϕ = 0, problems split exactly into scalar TE- and TM- bend modes, for arbitrary radii; one observes

values ΓE near to 1 and 0 also for spiral modes with close by parameters. For larger, intermediate angles the

modes become more hybrid. This feature is more pronounced for strong curvature bends with smaller radii. For

larger propagation angles, the reduced effective curvature experienced by the propagating waves leads again to

spiral modes with distinct polarization. Comparison of panels (a) and (b) of Figure 11 shows that the higher

refractive index contrast, with correspondingly stronger mode confinement, appears to suppress partly the large

hybridization, such that, at intermediate angles, the polarization character of the spiral modes remains even

closer to the states for ϕ = 0◦,≈ 90◦. With hindsight, these findings justify the classification of solutions into

TE- and TM-like spiral modes, as applied throughout this paper.

For specific configurations at intermediate propagation angles, and for high curvature, only the link through

continuous parameter changes to the respective structures at ϕ = 0 motivates the classification of the pro-

nouncedly hybrid spiral modes. We therefore take a closer look at a pair of such modes. Figure 12 compares

normalized vectorial electric field profiles of spiral modes at ϕ ≈ 45◦, for a low contrast bend at R = 10µm

radius.
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Figure 12: Electric profiles of TE- and TM-like hybrid spiral modes supported by a low-contrast bend (cf.Table 1) of

radius R = 10µm. These are modes with equal ky , given by angles ϕ = 45.0◦ (TE) and ϕ = 45.1◦ (TM). The curves

show the absolute value (continuous), the real part (dotted), and the imaginary part (dashed) of the electric components in

radial direction Er, and in-plane in directions perpendicularE⊥ and parallel E‖ to the direction of propagation.
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In addition to the radial component Er, and the in-plane transverse component E⊥, also the longitudinal electric

component E‖ = cos(ϕ)Eθ +sin(ϕ)Ey parallel to the local “in-plane” wavevector (kθ, ky) was considered for

Figure 12. The fields still resemble the major electric components of their “original” (straight slab) TE- and

TM-shapes, only that both spiral modes exhibit strong fields Er and E⊥ in both transversal directions. The

modes differ (and are possibly orthogonal [2], in a suitable sense) in the relative signs of these large transverse

electric profile components.

3.3 Tube modes

We now consider specifically the lossless waves in the region ϕ > ϕ̃ of large propagation angles. Imagine

the former bend segments being extended towards entire circular cylinders, for angular range θ ∈ [0, 2π]. We

then look at circular dielectric fibers with specific, piecewise-constant single layer refractive index profiles. As

argued in Section 2.3, with small modifications our previous theory can be applied to determine the guided

modes supported by these tube-shaped optical fibers. The axial wavenumber, the propagation constant of these

tube modes, is now being sought as the eigenvalue of the modal eigen-problem, for given integer angular order

ν = kθR ∈ Z. Respective results are collected in Figure 13.
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Figure 13: Effective indices ky/k0 of polarized tube modes versus the outer radius R of the tube, for mode orders

ν = kθR between 0 and 15 (not all are shown). Structures with lower (a) and higher refractive index contrast (b) are

considered, with parameters as in Table 1. Horizontal lines indicate the effective indices of polarized modes of straight

slab waveguides [19] with equivalent parameters.

For TE-like polarization, the modes of first angular order, rather than those of zeroth order, appear as funda-

mental modes, with the highest propagation constants. This corresponds to respective observations [17, 18]

for standard step-index optical fibers, where the TE01- and TM01-modes (LP11), of angular order 0, i.e. with

constant angular functions, have effective indices below those of the fundamental HE11-mode (LP01).

At fixed mode order ν, and for large tube radii, the in-plane wavevectors (ky, kθ = ν/R) of the tube modes

tend towards the axial direction. Also, for large radii, the waves are guided by a refractive index profile with

lower and lower curvature, that becomes eventually similar to that of a straight slab waveguide. Therefore, in

the limit of large tube radii, the effective indices of the tube modes are seen to converge to the effective indices

of these straight slab waveguides.

Reasoning that the discrete tube fields are just special cases of our former spiral modes, in the range of van-

ishing losses ϕ > ϕ̃, and for “accidentally” integer angular order, these are to be compared with the previous

findings for the spiral modes of angular segments of these tubes. To that end, the given modal orders ν, and

the ky-eigenvalues that represent the tube modes in Figure 13 are translated to wavenumbers kθ = ν/R and

propagation angles ϕ, with sinϕ = ky/(k0Neff), that characterize the constituting spiral modes. Figure 14

shows an enlargement of Figures 4–7, for the range beyond ϕ̃. Wavenumbers for the spiral modes match those

associated with the discrete tube modes for equal radius and polarization. This comparison can serve as a test

of consistency for the two different computational procedures (cf. Section 2.3) that led to the data.
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Figure 14: Angular wavenumbers kθ of spiral modes, versus propagation angle ϕ, and respective data associated with the

tube modes, for tube segments / tubes with low refractive index contrast (a, b) and high contrast (c, d); cf. Table 1. The

plots show enlargements of Figures 4 – 7, for ϕ > ϕ̃. Panels (a, c) concern TE-like fields, while panels (b, d) relate to

TM-like polarization. Gray markers show the wavenumbers associated with all tube modes of Figure 13, while the lines

and the red, bold-face markers concern wavenumbers for tube radii R = 5µm (a, b) and R = 3µm (c, d).

Finally, Figure 15 gives an impression of the field shapes associated with modes of angular order ν = 8, for

tubes of both levels of refractive index contrast, and for the small radii that were also considered for Figures 9,

10. These fields can be viewed as being constructed from spiral modes with propagation angles of ϕ = 78.6◦

(low contrast, Figure 15(a)) and ϕ = 71.4◦ (high contrast, Figure 15(b)). Note the remarks on the degeneracy

of the tube modes in Section 2.3.
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Figure 15: Transverse electric fields E⊥, and electromagnetic

energy density w, of TE-like tube modes of angular order

ν = 8, for tube structures (see Table 1) of low (a) and high

refractive index contrast (b), with radii of R = 5µm (a) and

R = 3µm (b).

4 Concluding remarks

For oblique angles of wave propagation relative to the symmetry axis, bent dielectric slabs support a continuum

of vectorial quasi-guided spiral modes, that can be parameterized by the axial wavenumber component. Our

analytical formalism covers standard bend modes, spiral modes for varying angles of propagation, and lossless

waves at near-axis angles that constitute the guided modes of the full dielectric tubes.

Polarized scalar TE- and TM-bend modes correspond to zero axial wavenumber, or to zero propagation angle,

respectively. Starting from these, the vectorial spiral modes at larger angles of propagation experience a lower

“effective curvature”, with reduced radiative losses and correspondingly smaller exterior field strengths, and

their field maxima appear at smaller radial positions. Radiative losses vanish altogether for propagation angles

beyond a critical limit, given by the wavenumber associated with plane waves in the exterior medium. Guided

tube modes can be associated with specific discrete spiral waves beyond this critical angle.

Effective indices and attenuation constants of spiral modes have been calculated, and field profiles illustrated,

for sets of parameters with different refractive index contrast. While the modal confinement grows with the in-

dex contrast, such that the effects of the curvature are seen at smaller bend radii, the phenomenon of vanishing

radiative losses becomes the more dramatic for the low-contrast configurations. Also here, our formalism pre-

dicts low losses (compared to the standard 2-D bend) for quite small radii, even for spiral modes at propagation

angles below the critical limit.
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A Continuity of spiral mode profiles

We refer to the bend configuration as introduced in Figure 1, and the formalism of Sections 2.1–2.1.2. Principal

field components Ey and Hy are defined piecewise for the regions r < R − d, R − d < r < R, and R < r in

the form of Eq. (8), with separate coefficients AE , BE , CE , DE , and AH , BH , CH , DH , respectively. Eqs. (5)

relate the principal fields to the remaining electromagnetic components Eθ, Hθ, Er, and Hr.

Requiring the principal components Ey and Hy, and the angular components Eθ and Hθ, to be continuous at

r = R− = R− d leads to the equations

AEJν(R
−χs) = BEJν(R

−χf) + CEYν(R
−χf), (14)

AHJν(R
−χs) = BHJν(R

−χf) + CHYν(R
−χf), (15)

1

χ2
s

(

− i
kyν

R−
AEJν(R

−χs)− ωµ0χsAHJ′ν(R
−χs)

)

(16)

=
1

χ2
f

(

− i
kyν

R−

(

BEJν(R
−χf) + CEYν(R

−χf)
)

− ωµ0χf

(

BHJ′ν(R
−χf) + CHY′

ν(R
−χf)

)

)

,

1

χ2
s

(

− i
kyν

R−
AHJν(R

−χs) + ωǫ0n
2
sχsAEJ

′
ν(R

−χs)
)

(17)

=
1

χ2
f

(

− i
kyν

R−

(

BHJν(R
−χf) +CHYν(R

−χf)
)

+ ωǫ0n
2
fχf

(

BEJ
′
ν(R

−χf) + CEY
′
ν(R

−χf)
)

)

.

Likewise, these four fields are continuous at the outer interface at r = R, if the equations

BEJν(Rχf) + CEYν(Rχf) = DEH
(2)
ν (±Rχc), (18)

BHJν(Rχf) + CHYν(Rχf) = DHH(2)
ν (±Rχc), (19)

1

χ2
f

(

− i
kyν

R
(BEJν(Rχf) +CEYν(Rχf))− ωµ0χf

(

BHJ′ν(Rχf) + CHY′
ν(Rχf)

)

)

=
1

χ2
c

(

− i
kyν

R
DEH

(2)
ν (±Rχc)∓ ωµ0χcDHH(2)′

ν (±Rχc)
)

, (20)

1

χ2
f

(

− i
kyν

R
(BHJν(Rχf) + CHYν(Rχf)) + ωǫ0n

2
fχf

(

BEJ
′
ν(Rχf) + CEY

′
ν(Rχf)

)

)

=
1

χ2
c

(

− i
kyν

R
DHH(2)

ν (±Rχc)± ωǫ0n
2
cχcDEH

(2)′

ν (±Rχc)
)

(21)

are satisfied. Here abbreviations χr =
√

k20n
2
r − k2y , for r ∈ {s, f, c}, have been introduced. Signs ± and ∓

distinguish wavenumber parameters ky ≶ k0nc. Just as in the discussion of Eq. (8), the
√

-symbol is meant

to indicate the positive real root, for a positive radicand, or the imaginary root with positive imaginary part, in

case of a negative radicand. Eqs. (14)–(21) imply continuity of Hr and of n2Er at the radial positions of both

interfaces.
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