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Abstract

We present a new approach based on the recently reported finite element scheme [16] to study the
optical response of a finite one-dimensional nonlinear grating. Using the transmitted wave amplitude
as a numerical input parameter, we are able to find all stable and unstable solutions related to a
specific incident wave which build up the complete bistability curve. The method is applied to
investigate the optical bistability in a nonlinear quarter-wave reflector with a defect. With a proper
choice of the incident light frequency, a very low bistability threshold is predicted for an optimized
defect structure.

1 Introduction

The propagation of waves through periodic dielectric structures, called photonic band gap structures
(PBQG), has been extensively studied in recent years (see e.g. Ref. [1]-[3]). An essential property of
these structures is the existence of a frequency band gap in which light propagation is forbidden. This
is analogous to the electronic band gaps in semiconductor crystals. In a crystal, a moving electron
experiences a periodic potential produced by the atomic lattice, which produces a gap in the electronic
energy band. This gap splits the energy band into two parts: the lower energy band is called the valence
band and the high energy band is the conduction band. The optical analogy is the photonic crystal
where the periodic potential is due to a lattice of different macroscopic dielectric media.

When Kerr nonlinearity is introduced in the PBG structures (the effective refractive index now depends
on the field intensity) it can alter the transmission spectrum including the position of the band-edges.
This dynamic shifting of the band-edges can produce optical bistability phenomena (see. e.g. Ref. [4]-
[5]), where the threshold value of bistability needed by a PBG is relatively high. Introducing a defect into
an otherwise strictly periodic PBG structure can enlarge the nonlinear effect, thus reduce the threshold
of bistability. It was shown that the defect creates a donor or acceptor mode in the band gap [6]. Similar
to the case of an electron being localized around a defect mode, there is a large field enhancement in
the optical defect structure. Since the field intensity inside the defect structure can be very high, the
nonlinearity can be enhanced considerably.

Since 30 years ago, a lot of efforts have been devoted to study the phenomenon of bistability in a periodic
structure. A number of authors, e.g. Marburger and Felber [7], Winful et ol. [8], Danckaert et al. [9]
and [10] proposed an analytical formalism for this problem. All these formalisms are derived within
three basic approximations, i.e. the slowly varying envelope approximation (SVEA), the approximation
of nonlinear terms that appear in the interface conditions, and the omission of spatial third harmonics

* Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; on leave from Jurusan
Matematika, Universitas Brawijaya, JI. MT Haryono 167 Malang, Indonesia; email:A.Suryanto@math.utwente.nl



2 A. Suryanto, E. van Groesen and M. Hammer

generated in the structure. Treatments that make use of the full nonlinear interface conditions in the
nonlinear transfer matrix were given by Agarwal and Dutta Gupta [11] and Dutta Gupta and Agarwal
[12].

Another approach to solve the nonlinear wave equation was proposed by Chen and Mills [13] and [14].
In this approach the nonlinear Helmholtz equation is transformed into a phase-amplitude equation. By
combining with energy conservation the phase-amplitude equation is written in integral form. The inte-
gral equation together with the continuity conditions at the interfaces are solved numerically. Recently
this method has been implemented by Lidorikis et al. [15] to investigate the localized mode solution for
a single nonlinear layer sandwiched between two linear periodic structures.

A semi-analytic method has been proposed by Wang et al. [5] to study the optical bistability in a linear
structure with a single nonlinear defect layer in the center. The transfer matrix method is used for the
linear part and a finite difference method is implemented for the nonlinear layer. The left and right
linear parts and the nonlinear layer are linked using appropriate interface conditions.

In our earlier work [16] we have developed a robust finite element scheme to study the optical bistability
in a one-dimensional (1D) finite grating structure without and with defect. It directly implements the
nonlinear Helmholtz equation and exact transparent-influx boundary conditions with the amplitude of
the incident wave as the input parameter. The resulting nonlinear system is solved using a weighted-
averaged fixed-point iterative method. This approach can capture the bistability phenomena where the
method can only find the two stable solutions but not the unstable solutions. In case of multistability, it
will be very difficult to find more than two stable solutions. In addition, the convergence of the iteration
procedure can be very slow in the region of upswitching from low-output level to high-output level.

For a fixed frequency light propagation through the multilayer structures that are discussed here, optical
bistability manifests itself by a non-unique dependence of the transmission on the power of the incident
wave. Contrarily, when viewing the input power as a function of the transmission, the dependence
was observed to be unique ( see e.g. Ref. [16]). Therefore in this paper we refine the performance of
our scheme by using the transmitted wave as the input parameter instead of the incident wave. This
method will be discussed in Sec. 2. Here we focus only on a 1D PBG structure where a defect has been
introduced. In Sec. 3 we apply our numerical scheme to study the optical response of a defect structure.
We first focus on the linear structure and study the influence of the defect thickness, the position and
the refractive index of the defect layer, and the number of layer periods. Subsequently, we consider effect
of the nonlinearity. Conclusions and remarks will be given in the last section.

2 1D PBG Structure and Numerical Method

Consider a one-dimensional finite quarter-wavelength stack which is composed of alternating layers of
dispersionless and lossless materials which have a high refractive index ngy (denoted as H layer) and a
low refractive index ny (denoted as L layer). Fig. 1 illustrates the geometry. The thicknesses for the
two kinds of layers are such that dr = \g/4nr and dg = Ag/4ng, where )¢ is the free-space design
wavelength. We assume that the front and back media have refractive index ng. It is also assumed
that the high-index layer shows a positive Kerr nonlinearity. The defect structure can be obtained by
simply perturbing the thickness of any layer (which is then called a defect layer and is denoted by D)
or by changing the refractive index of the defect layer. For simplicity we denote the defect structure
as (HL)N*(D)M (LH)™z2, where N; and N, are respectively the number of layer periods in the left and
right of the defect layer and M is the multiple of the defect layer with a unit thickness of Ag/4n4. This
means that the thickness of the defect layer is Ly = M x (Ag/4nq), with ng being the refractive index of
the defect layer.

The electric field amplitude of the normally incident, monochromatic wave with frequency w and vacuum
wave number k = w/c is modelled by the nonlinear Helmholtz equation (NLH)
d’E

T2+ 8 (0 () +XO () |BF) B (2) =0, 1)
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Figure 1: Schematic view of the 1D PBG structures considered in this paper which are composed of
N; HL layers and Ny LH layers separated by a defect layer with thickness Ly = M x (Ag/4nq). The
thicknesses of layers H and L are respectively dg = Ao/4ng and df, = Ao/4nr. The medium outside the
structure is linear homogeneous with refractive index ng. For the numerical calculations we introduce
a transparent-influx boundary condition (TIBC) and transparent boundary condition (TBC) in the left
and right hand side of the structure.

where ¢ = 1/,/Eofio is the speed of light in vacuum and x(® is the third order nonlinearity, see e.g
Ref. [16]. Since the front and back media of our structure have a uniform index ng, the two boundary
conditions for the NLH (1) are given by

dE . .

i ikngE = —2ikngAinc, 2 = Zmin (2)
dE

- TiknoE =0, Z = Zmax- 3)

The first boundary condition (2) is an influx condition for an incident wave with wavenumber k and
constant real amplitude A;,.. It is also simultaneously transparent for the reflected wave (therefore
it is called transparent-influx boundary condition (TIBC)). The second condition (3) is a transparent
boundary condition (TBC) for the right-travelling wave, see Ref. [16].

In our previous work [16] we have developed a finite element scheme to solve the NLH (1) together with
the boundary conditions (2) and (3). We start by writing the functional of the problem:

-1

which can also be written as

2
1
— Kn? |B[” = Sk |E|4> dz (4)

F(E)=F1(E)+F(E) + F3(E) (5)
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As it is assumed that the medium outside the grating structure is linear homogeneous with refractive
index ng, without loss of generality, the solution of equation (1) can be written as

Aincexp (—ikng (2 — Zmin)) + Ares exp (ikno (2 — Zmin)) 2 < Zmin;
E(2) = E (2) y 2 € [Zmin, Zmax] ; (6)
Agr exp (—ikno (2 — Zmax)) , 2> Zmax;

where A;n. and A,.; are respectively the amplitudes of the incident and the reflected waves and A;, is
the transmitted wave amplitude. By substituting (6) into the functional (5), one can show that if the
variational derivative of this functional vanishes, g F = 0, then the field E (z) satisfies the NLH (1) and
its boundary conditions (2) and (3).

In the derivation of the numerical scheme, we approximate the functional F> (z) by writing the function

E (z) as a linear combination of a standard linear basis {¢, (2) éw o

My
E(z) =) Ejp;(2) (7
=0
such that o
72 ()= F; (E) (8)
R R R R T
where £ = ( Ey, Ei, ---, Ep, ) . Here we assume that the interval [zmin, Zmax] is divided into

My subintervals of equal length h = (Zmax — Zmin) /Mo by choosing the nodal points z; = Zmin + jh
for j = 0,1,...,My. Ej is the approximation of F (z) at z = z;. The condition dgF = 0 therefore
corresponds to dgF; + Vj':z (E) + 0gF3 = 0 which leads to the finite element scheme

11, A\ =
(EP+€hk Q+R(E))E—v, 9)
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and p; = hk? X;S) /20. Here n; and X;B) are the linear refractive index and the strength of the nonlinearity
in the interval (zj,z;41), respectively. One can check that the scheme (9) is second-order accurate.
However, as shown in [16], the linear part of this scheme can be improved to get a fourth-order scheme

11, A\ =
(EPlJf—ghk Q+R(E))E—v1, (10)
i.e., by replacing P and v in (9) with P, and v, respectively where
—Q) (]. + th‘no) (o)) 0 . . 0
Qo —(ag+a1) ag 0 . .
P = 0 . . . . 0 ,
. . 0 aM0—2 - (aM0—2 + aMo—l) aMo—l
0 . . 0 QMH—1 —QMy—1 (1 + ’ihkno)
with o = 1 — 5 k*A5h? and vy = ( —2ikAine (1 + k*ngh?/12) 0 --- 0 )T. The system of nonlinear

equations (10) can be solved using a weighted-averaged fixed-point iterative method combined with
a continuation method. Using the incident wave amplitude A;,. as an input parameter (fixed input
problem), we have shown in Ref. [16] that this iterative procedure is able to find the two stable solutions
in a bistable configuration, but it does not give access to unstable solutions. Unfortunately, when the
nonlinear effect is relatively high the convergence of this method can be very slow, especially in the
interval near the jumping area from the low-output state into the high-output state. Furthermore, in
the case of multistability, it will be very difficult to find more than two stable solutions.

In this paper we improve the performance of our finite element scheme. Instead of the incident wave, we
use the transmitted wave as the input parameter. This approach is called a fixed output problem. As
stated in (6), the transmitted wave in the homogeneous medium beyond the defect structure is of the
form

E(z) = Ayrexp (—tkno (2 — Zmax))s 2 > Zmax- (11)

Without loss of generality, we assume that the transmitted wave amplitude A;. is a real constant.
Consequently the value of the incident wave amplitude A;,. now can be a complex number. In this
approach the nonlinear system (10) is reformulated such that A;,. is included as an unknown variable
and Ay, is the input parameter:

Ainc
2ik (1 + k*ngh?/12) By 0
0 R 5y
: (kP + 4@+ R (E)) S I IR DREC
(') o 0
(0) ( 0 . 0 1 ) E-é4'071 AtT
Mo

We solve the nonlinear system (12) using a standard fixed-point iterative method. As shown in the
next section this method can find all stable and unstable solutions related to a specific incident wave
which build up the full bistability (or multistability) curve. We also notice that the convergence of this
approach is much faster than that of the fixed input problem.

3 Optical Bistability in a 1D PBG Structure with a Defect

In this section we apply the numerical scheme that was derived in the previous section to study the optical
response of linear and nonlinear defect structures. For the numerical calculations we take ny, = 1.25 and
ng = 2.5. Unless it is mentioned otherwise, the refractive index of the input and output regions z < 0
and 2z > Zmax 1S assumed to be ng = 1 and that of the defect layer is ng = ng. The computational
window is divided into My equidistant elements with grid size h = Ag/400. To get a better understanding
of the defect structure, we will discuss first the properties of the linear structure by setting x(3) = 0.
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Figure 2: The (frequency) position of transmission maxima as a function of the defect layer width for
structure (HL)* (D)™ (LH)* with ng = ng. The media in the input and output regions are assumed
to be air (n = 1). The shaded-area indicates the first band gap of the perfect structure, i.e. when the
defect layer is Ag/4ng (see the dashed-line). Observe the appearance of acceptor/donor modes caused by
changing the defect size. It is noticed that when two transmission maxima outside the band gap meet,
they show an anticrossing behavior.

3.1 Transmission properties of the linear structure

As mentioned in the first section the perfect (infinite) PBG structure has an essential property, i.e.
the existence of forbidden bands prohibiting a certain range of frequencies of light waves to propagate
through them. In other words, the light waves with frequencies inside the band gap are completely
reflected by the structure. However, in a finite periodic structure, the reflection will not be complete in
general. Therefore we practically use the term band gap (of a finite structure) for the smallest frequency
interval containing the band gap of the infinite structure that is bordered by two resonance frequencies.
When a defect is introduced in the structure, it can create a donor or acceptor mode inside the band
gap [6] which is similar to the case of a semiconductor. In this section we discuss the dependence of the
defect modes on the thickness, the position and the refractive index of the defect layer and the number
of layer periods.

Let us start by considering an ideal PBG structure with 17 alternating layers (9 H layers and 8 L layers;
the structure has the form HL..LHL...LH). Then by disturbing the width of the center layer, which
has a high refractive index ngr, we obtain a symmetric defect structure (HL)*(D)M(LH)*. In Fig.2 we
show the position of transmission maxima where the transmission coefficient is unity as a function of the
defect layer width for our defect structure. The perfect structure, i.e. when the thickness of the center
layer is Ag/4n g (see dashed line in Fig. 2) has a band gap which is centered at the frequency 2mec/\. The
shaded-region indicates the width of the first band gap. This band gap is bordered by two transmission
maxima, which are often called band-edge modes. The band-edge modes in this case are respectively at
w =0.75915 x 2mc/Ag and w = 1.24085 X 2mc/Ag. By analogy to the solid state electronics case, the
frequency band which lies below the band gap is called the valence band (VB) and the upper one is the
conduction band (CB). For the ideal structure, as shown in Fig. 2, there are nine transmission maxima
inside the VB which correspond to optical Bloch waves that can propagate through the structure. When
reducing the defect width, the valence band edge moves into the band gap to become a defect mode.
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Figure 3: The same as Fig. 2 except that the first and last semi-infinite layers are now assumed to
have refractive index ng = ny, instead of ng = 1. Similar to that presented in Fig. 2, acceptor/donor
modes are created as we change the thickness of the defect layer. With disturbing the defect layer, two
transmission maxima can merge and split but the frequency of one of these two maxima remain the
same.

Since the defect mode evolves from the valence band with decreasing the defect size, it can be thought
of as an acceptor mode (see e.g. Ref. [6]). We note that the acceptor mode frequency increases as the
defect size is decreased. On the other hand, if the width of the center layer of our perfect structure is
increased the conduction band edge moves into the band gap region. This type of defect mode is called
a donor mode. When the width of the defect layer is further increased more than one defect mode can
be obtained. Stanley et al. [17] have noticed that the moving behavior of the transmission maxima of
the defect structure is identical to the case of solid-states electronic, except for the anticrossing behavior
outside the band gap. However, when we assume that the front and the back media have a refractive
index nr, instead of air, the anticrossing behavior cannot be observed anymore (see Fig. 3). In this case,
as we change the defect layer, two transmission maxima outside the band gap merge and then split again
with the frequency of one of these maxima remaining constant.

It is well known that the defect mode can enhance the field intensity inside the structure. By assuming
that the incident wave amplitude equals to one, we show in Fig. 4 the enhancement of the field amplitude
as a function of the size of the defect layer for donor mode 1, donor mode 2 and donor mode 3, respectively.
The field amplitude enhancement here is defined as the maximum field amplitude (max|E|) inside the
structure. It is shown in Fig. 4 that for each donor mode the largest enhancement occurs when the
width of the defect layer equals to a(A\o/2ng) for integer . It can be checked in Fig. 2 that those
donor modes have the same frequency w = 2w¢/Ag. The maximum enhancement of the field amplitude
in this case is sixteen times of the incident wave. Although the enhancement factors of structures with
defect thicknesses a(Ao/2nm) are the same, the field amplitudes inside the structures are different for
different a. By increasing the value of a by one an additional field amplitude peak is observed in the
structure, see Fig. 5. Moreover, the change of o will also change the spectral width of the defect mode.
It is clearly seen in Fig. 6 that the full width at half maximum (FWHM) of the defect mode decreases
with increasing a.

Now we study the influence of the defect position in the structure on the defect mode. We are still
considering a structure of 17 alternating layers including 9 H layers and 8 L layers. The defect layer
is introduced by changing the size of one of the layer H to be Ag/2np. The effect of defect position is
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Figure 4: The maximum field enhancement as function of the defect layer width for donor mode 1, 2
and 3. The enhancement factors for those three donor modes are 16 which occur when the defect modes
are at w = 2me/Ag and the thickness of the defect layer equals to a (Ao/2ng) for integer a.
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Figure 5: The field amplitude |E| inside the defect structure (H L)* (D)™ (LH)* with ng = ng for (a)
Lg = Xo/2nm; (b) Lg = Mo/nm; (¢) Lg = 3Xo/2ng and (d) Lg = 2X¢/np at frequency w = 2mwe/Ag.

Observe that the maximum of the amplitude is 16 for all cases. The longer the defect layer is the more
amplitude maxima can be observed inside the defect region.
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Figure 6: The transmission spectrum around the defect mode for different defect layer widths. The
spectral width of the defect mode decreases with the increasing defect Lg.

investigated by moving the defect layer from the left to the right of the structure. It is found that the
changing of the defect position disturbs the positions of the transmission maxima outside the band gap.
However the position of the defect mode remains the same, i.e. at frequency 2mc/\g. Furthermore, the
transmission coefficients of those transmission maxima including the defect mode can be less than one
when the defect layer is not located at the center of the structure. Because we are more interested in the
defect mode, we plot in Fig. 7 the transmission coefficient of the defect mode as a function of the position
of the defect layer. The incident wave is fully transmitted by the defect structure only when the defect
layer is placed in the center of the structure. Otherwise the incident light is partly reflected. Wang et al.
[18] explain this phenomena by considering the whole defect structure as two smaller structures linked
together, i.e. one is structure with a defect in the middle and the other is a perfect structure. Incident
light with frequency of the defect mode can pass through the defect part, but is partly reflected by the
perfect part because its frequency is in its band gap. Therefore, the structure with a central defect layer
has the highest transmission coefficient.

Next we investigate the dependence of the defect mode on the refractive index of the defect layer. The
defect structure considered here has the form (HL)* (D)™ (LH)*. The index of the defect layer ng is
varied from 2 to 4. According to the results of our calculations, an acceptor mode appears in the band
gap if the defect thickness is less than Ag/4ng4. On the contrary, some donor modes can be obtained if
the size of the defect layer is greater than Ag/4n4. Similar to the previous case the enhancement factor of
the field amplitude is sixteen and is obtained when the width of the defect layer is a multiple of Ag/2n4
(i.e. when M is an even number) at defect mode frequency 2mwc/Ag. Furthermore the FWHM of the
defect mode of a structure (HL)* (D)? (LH)" becomes smaller as we increase the refractive index of the
defect layer, see Fig. 8.

Flnalljz we 1nvest1gate the effect of the number of layer periods by considering the symmetrical structure
(HL)" (D)* (LH)N for N = 4,5,6,7. The index and the width of the defect layer are chosen to be
ng and Ag/4ng, respectively. Usmg this structure, a defect mode in the center of the band gap of the
corresponding perfect structure can be found. Fig. 9 shows the field amplitude inside the structure for
different N. The maximum field intensity is changed as the number of periods changes. A larger N
produces a larger field amplitude enhancement. More precisely the enhancement factors of structures
with N = 4,5,6,7 are respectively 16,32, 64 and 128 which are exactly 2V. In addition to the increasing
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N =0,1,...,8. The maximum transmission occurs when the defect layer is placed in the middle of the
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refractive index of the defect layer is increased.
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Figure 9: The field amplitude |E| inside the defect structure (HL)™ (D)? (LH)™ with ng = ny and
Lg = 2(Mo/4nm) for (a) N =4; (b) N =5; (¢) N =6 and (d) N = 7 at frequency w = 2mc/Ag. The
maximum amplitudes for those cases are 2%V.

field enhancement of the defect mode with respect to the increasing IV, its spectral width also decreases,
see Fig. 10.

It is well known that the enhancement factor and the decrease of the spectral width are important
properties for optical bistability. Based on the previous discussion we conclude that to get a high field
enhancement a defect structure (HL)N' (D)™ (LH)™ is to be designed such that the defect layer is
positioned in the middle of the structure, i.e Ny = Ny with M being an even integer number. Then
the defect mode is located in the center of the band gap. A higher value of M leads to a smaller
FWHM. Increasing the number of grating periods N yields simultaneously a narrower resonance and a
field enhancement that grows exponentially with N.

3.2 Bistable switching controlled by input intensity

If a Kerr nonlinearity is introduced in the structure, it causes a change of local refractive index. According
to Ref. [19] the induced refractive index change is proportional to the intensity of the optical field and
can be written as

An =ny|E? (13)

where the nonlinear refractive index coefficient 7y of the medium is defined by

Ty = £ (®

M2 =5 X (14)
Due to a change of the effective refractive index, the transmission spectrum will also change accordingly.
It was shown in Ref. [16] that when a positive Kerr nonlinearity is introduced in all high index layers of
a defect structure, the entire transmission spectrum will be shifted dynamically to the left. Specifically
when the resonance is sharp enough, e.g. in case of a defect mode, the transmission spectrum can exhibit
a bistability phenomenon. Hence, to obtain a bistability behavior the frequency of the input light has
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Figure 10: The transmission spectrum around the defect mode of the structures (HL)™ (D)? (LH)" for
N =4,5,6,7. The spectral width of the defect mode decreases with growing number of periods N.

to be selected in the vicinity of the defect mode frequency. More precisely, it should be below the defect
mode.

A Dbasic issue of the optical bistability is to realize it with threshold as low as possible. A low threshold
requires a large nonlinear effect. There are two ways to increase the nonlinear effect, i.e. by using
a medium with a high Kerr constant or by designing a structure that can enhance the input intensity.
Given the presently available materials with limited Kerr nonlinearity, we, therefore, consider a symmetric
defect structure. We assume that a Kerr nonlinearity with x(®) = 2 x 1072 m?>V~2 is present in all high
index layers H as well as in the defect layer.

In Fig. 11 we present the input-output characteristics of the structure (HL)* (D)? (LH)" for some
frequencies below the defect mode w = 2me/Ag. It is found that for w = 0.995 x 27e/ Ao the structure
shows an S-shape response. When the incident intensity (I;,.) increases slowly from zero, the transmitted
intensity (Iy-) first increases slowly. If the input reaches the upswitching threshold value (about 6228.3
kW /m?), I, jumps into a higher value (from state 1 to 1’, see Fig. 11.a). Then I, increases slowly again
as we increase the value of I;,.. On the other hand, when I;,. is decreased from the value that is greater
than the threshold value, ;. decreases slowly from the high value. When I;,. reaches the threshold
value (state 1’), I, does not jump back to lower value (state 1), but it remains to decrease slowly until
it reaches state 2, at which it jumps to state 2’. Then I continues to decrease with decreasing I;,..
Thus, the nonlinear defect structure can implement an optical bistability. It should be noticed that the
line between the low-output state and high-output state, i.e. the line which connects the state 1 and
state 2, corresponds to the unstable solutions.

While the upswitching threshold value for w = 0.995 x 27c/ Ao is very large, this value can be reduced
by tuning the frequency of the input light closer to the defect mode. For example, the thresholds for
w = 0.997 x 2mc/ A and w = 0.999 x 2we/ Ao are 1392.8 kW /m? and 81.2 kW /m? respectively. However,
the bistable behavior can not be obtained anymore when the input field has frequency that is very close
to the resonance frequency, e.g. in the case of w = 0.9995 x 27c/ A, see Fig. 11.b. We remark that the
change of refractive index due to the Kerr nonlinearity that corresponds to the incident intensity 6228.3
kW /m? is ~ 0.0412, which is relatively large. When the intensity threshold is reduced to 81.2 kW /m?,
the corresponding refractive index change is ~ 0.0063.
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Figure 11: The input-output characteristics of a structure (HL)* (D)? (LH)* with ng = ng for different
frequencies where the Kerr nonlinearity is introduced in all high index layers. The bistability threshold
decreases when the input light frequency is closer to the defect mode. However, when the frequency
is too close to the defect mode (the case of w = 0.9995 x 2mc/\g) the bistability cannot be obtained
anymore.

Now we investigate the effect of the defect thickness to the threshold of the bistability. We show in
Fig. 12.a the bistability curve of structure (HL)* (D)™ (LH)* for M = 2,4,6. The optical bistability
thresholds are ~ 62.28 kW /m? for M = 4 and ~ 28.29kW/m? for M = 6. It was noticed in the previous
section that increasing the defect size does not influence the field enhancement factor but it reduces the
FWHM of the defect mode. Therefore we change w together with M in Fig. 12.a. We conclude that the
narrower the width of the defect mode, the lower the threshold of the bistability will be achieved. This
qualitative behavior agrees with the result of the FDTD analysis done by Lixue et al. [20].

Based on the previous analysis, for a fixed Kerr constant, the bistability threshold is reduced when the
width of the defect mode is smaller or when the enhancement factor is larger. Since an increasing number
of grating periods produces a smaller FWHM and simultaneously enlarges the enhancement factor, we
can expect that a higher number of periods will produce optical bistability with a lower threshold. And
indeed, a very low threshold is already obtained when we use a defect structure (HL)"™ (D)? (LH)" for
N =5 or N = 6. The bistability thresholds in these cases are about 7.55 kW /m? for N = 5 and about
0.96 kW/m? for N = 6 (see Fig. 12.b). The change of refractive index which corresponds to the latter
case is only ~ 7.6 x 107%.

4 Conclusions

We have presented a new approach to solve the NLH together with the exact transparent (-influx)
boundary conditions based on the variational method. In the previous study [16], the nonlinear problem
may have non unique solutions and therefore we implement the weighted-averaged fixed point iterative
method. The new approach leads to a unique solution and only needs a standard fixed-point iterative
method. Therefore it is more robust and more efficient.
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Figure 12: The input-output characteristics of structures (HL)" (D)™ (LH)" with ng = ng for different
M and N where the Kerr nonlinearity is introduced in all high index layers: (a) N =4 and M = 2,4, 6;
(b) M =2 and N = 5,6. In (b) the axis on the left hand side is meant for the structure N = 5 and
M = 2, the transmission for structure N = 6 and M = 2 is to be found on the right hand axis.

The new scheme has been implemented to study the optical response of linear and nonlinear quarter-
wavelength reflectors with a defect. It is found that the shape of a defect mode depends on the defect
thickness, the position and the refractive index of the defect layer as well as on the number of the grating
periods. When the defect thickness is less (greater) than Ag/4ng then acceptor (donor) modes can be
observed in the band gap of the perfect structure. It is found that an optimal field enhancement is
obtained when the defect layer is placed in the middle of the structure with the defect thickness being
a multiple of \g/2ng4. Increasing the defect thickness yields a smaller spectral width of the defect mode.
A larger enhancement factor and simultaneously a narrower FWHM can be achieved by increasing the
number of layer periods. When a Kerr medium is present in a defect structure which has good optical
features (large field enhancement and narrow resonance) and the frequency of the incident light is selected
to be close to the defect mode, optical bistability with a very low threshold can be obtained.

Acknowledgement

This research is supported by the Technology Foundation STW (TWI. 4813), applied science division
of NWO and the technology programme of the Ministry of Economic Affairs, The Netherlands. The
authors appreciate the valuable discussions with H.J.W.M. Hoekstra and F.P.H. van Beckum.

References

[1] J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals (Princeton University Press,
Princeton, NJ, 1995).

[2] C.M. Soukoulis (ed.), Photonic Band Gaps and Localization (Plenum, New York, 1993).
[3] C.M. Soukoulis (ed.), Photonic band gap materials (Kluwer Academic, Dordrecht, 1996).



Finite Element Analysis of Optical Bistability 15

[4] M. Scalora, J.P. Dowling, C.M. Bowden and M.J. Bloemer, Phys. Rev. Lett. 73, 1369 (1994).
[5] R. Wang, J. Dong and D.Y. Xing, Phys. Rev. E55, 6301 (1997).

[6] E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer and J.D. Joannopoulos,
Phys. Rev. Lett. 67, 3380 (1991).

[7] J.H. Marburger and F.S. Felber, Phys. Rev. A17, 335 (1978).
[8] H.G. Winful, J.H. Marburger and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).

[9] J. Danckaert, H. Thienpont, I. Veretennicoff, M. Haelterman, and P. Mandel, Opt. Comm. 71, 317
(1989).

10] J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant and R. Reinisch Phys. Rev. B44, 8214 (1991).
11] G.S. Agarwal and S. Dutta Gupta, Opt. Lett. 12, 829 (1987).
12] S. Dutta Gupta and G.S. Agarwal, J. Opt. Soc. Am. B4, 691 (1987).

[

[

[

[13] W. Chen and D.L. Mills, Phys. Rev. B35, 524 (1987).

[14] W. Chen and D.L. Mills, Phys. Rev. B36, 6269 (1987).

[15] E. Lidorikis, K. Busch, Q.M. Li, C.T. Chan, and C.M. Soukoulis, Phys. Rev. B56, 15090 (1997).
[

16] A. Suryanto, E. van Groesen, M. Hammer and H.J.W.M. Hoekstra, Opt. Quant. Electr., accepted
(2002).

[17] R.P. Stanley, R. Houdre, U. Qesterle, M. Tlegems and Weisbuch, Phys. Rev. A48, 2246 (1993).

[18] R. Wang, J. Dong and D.Y. Xing, Phys. Stat. Sol. (b) 200, 529 (1997).

[19] G.S. He and S.H. Liu, Physics of Nonlinear Optics (World Scientific, Singapore, 1999).

[

20] C. Lixue, D. Xiaoxu, D. Weigiang, C. Liangcai, and L. Shutian, Opt. Comm. 209, 491 (2002).



