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Abstract: Circuits of dielectric integrated optical microring restors are addressed through
a 2-D hybrid analytical / numerical coupled mode theory (HDMnodel. Analytical modes
of all straight and curved cores form templates for the @pfields of the entire circuits. Our
variational technique then generates solutions for thditudp functions in their natural Carte-
sian and polar coordinates, discretized by 1-D finite elémeRBidirectional wave propagation
through all channels and pronounced reflections can be fakeaccount. The series of exam-
ples includes rings coupled in parallel, rows of cavitiesuf@led resonator optical waveguides,
CROWSs) of varying length, a triangular photonic moleculeg @ resonator with a slit ring to
illustrate the role of intra-cavity reflections.
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1 Introduction

The variants of dielectric optical micro-ring resonataed circuits made thereof, are already for some time
discussed as promising concepts in integrated optics fa.@pplications in optical telecommunications or
optical sensing. Setl[I, 2] for recent overviews of the fiElgquently these structures tend to be inconvenient
when it comes to rigorous numerical simulations: Compacedther photonic circuits they typically cover
larger areas, i.e. require larger computational windowswbich the optical waves have to be represented
adequately, such that also local mesh refinement does mpnheth. At the same time, fine spectral details
need to be resolved, either by detailed wavelength scandrei@ency domain solver, or by long integration
intervals in case of time domain calculations.

As a more viable alternative, approaches based on couplel® theory (CMT) are quite popular. Mostly
these are parametric models [3/ 415, 6] that combine stajtanatrices for the coupler regions and effective
indices for the wave propagation along the connecting oslannto analytic descriptions. Explicit solutions are
obtainable for simpler, typically highly symmetric strugts, used also for fitting experimental datal [7.18, 9].
Coupling constants and transmission coefficients of theleos, sometimes also the phase propagation and
attenuation constants of the cavity modes are treated agfitgparameters.

Attempts to determine values for these parameters fronyfinstiples, i.e. by solving the coupled mode equa-
tions [10,[11] for the evanescent wave interaction in theptaruregions, are seen less often. Examples are
found in [12]13], more recently in[l4], the latter formiuat has also led to a 3-D implementatidén|[15]. These
first-principle CMT descriptions of microring circuits, Wever, require specific localized interaction regions
with (more or less) well defined outlets that need to be clyedtitched together by analytic expressions for the
wave propagation along the connecting straight and bemingts within a scattering matrix formalism. Inside
the coupler regions, the coupled mode equations are usmgtign for a single propagation coordinate, which
appears to be decidedly unnatural e.g. in case of the evamtesave interaction between adjacent straight and
bent channels.

As an alternative we propose to apply the Hybrid analyticaimerical Coupled Mode Theory (HCMT) formal-
ism of [16,[17]. The approach can treat directly the full restor circuits, i.e. avoids the necessity to identify
spatially distinct regions of interaction, and to estdbkgattering matrices for carefully defined input/output
ports (although a restriction to coupler regions wouldaialy be possible just as well). Each of the interacting
waves can be described with its natural coordinates of gaman. Once the computer code exists, the method
turns out to be quite versatile and easily applicable.

We consider optical microresonator circuits that condistrmumber of not necessarily identical circular cavities
and straight waveguides, with evanescent wave interabttmeen these elements. The standard configuration
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of Figure[1 serves as an example. Given the analytical mofidseawo bus cores and the bend mode(s)
[10,[18,19] supported by the curved waveguide profile thasttutes the cavity, one readily writes an ansatz
for the time harmonic electromagnetic field, using the rat@artesian and polar coordinates for the straight
and curved waveguide elements. In line with the HCMT apgdrda€] the unknown amplitudes (functions) of
the given mode profiles are discretized by linear 1-D finigarednts over suitable coordinate intervals. Then a
Galerkin procedure is applied on a computational windowd¢bgers the entire resonator circuit. One obtains a
dense, but small size algebraic system of equations forl¢émeemt coefficients. The numerical solution yields
approximations for the amplitude functions and permitetssemble the overall optical field.

Figure 1: A circular cavity between two bus channels, ueickr
tional HCMT model, schematically. Guided light enters frttme
left through the upper core; interest is in the relativegraitted and
dropped guided optical powéefsandD, and in their spectral prop-
erties. Ringresonator functionality is established byabenescent
interaction of the directional guided modeg p associated with
the bus channels and the bend magesupported by the cavity
core. Cartesian coordinatesz and polar coordinates 6 will be
used. Parameters: cavity radilis= 7.5 um (outer rim), width of
the cavity ringd = 0.75 um, waveguide widthv = 0.6 um, gap
between ring and bus waveguidgs- 0.3 um, refractive index of
all guiding regionsvg = 1.5, of the backgroundy, = 1.0, target
vacuum wavelength =~ 1.56 um.

So far the implementation [20,21] is restricted to two sgdaimensions and to TE polarization. The parameters
as introduced in the figure caption apply analogously touather structures in this paper, unless other values
are given. We thus focus on an intermediate regime with sipatlnot too tiny cavities with substantial, but
not too large refractive index contrast, where a coupledaevaygproach has some chance to work well, while
rigorous numerical schemes (e.g. the popular FDTD sinanaji are already inconveniently computationally
expensive, even in the 2D case, at least for the larger tsrofiSection§l4 arld 6.

The outline of the model in Sectidi 2 closes with a sectionhenefficient evaluation of spectral properties.
The approach covers quite general multi-cavity configaratiwith unidirectional as well as bidirectional wave
propagation through all elements, as illustrated by thengkes in SectionSI3H 7.

2 Hybrid analytical / numerical coupled mode theory

The approach will be outlined along the example of Fiddre lorévinvolved configurations with multiple
guided modes in each channel and/or with bidirectional nmudgagation along the cores can be handled
analogously with a correspondingly extended field templaiso the adaptation to structures with more and
quite arbitrarily positioned channels is straightforwafeurther details of the theory, including an alternative
truly variational formulation, can be found in_[16].

2.1 HCMT field template

Starting point is a plausible and convenient template ferdlierall electromagnetic field in the form of a
superposition of known fields. Typically these are the gdidedes supported by the optical channels in the
structure with amplitudes that are functions of suitablgppgation coordinate(s).

For the single ring resonator, according to Figure 1, onatifies the following basis elements. Light propa-
gates along the bus channels in the form of the directionalaso
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" P covers the six electromagnetic componeE{‘s?, ﬂf’b of the mode profile, together with the exponential
dependence on the propagation distanegth phase constants 3 (forward propagation, upper waveguide)



and+ (backward propagatiob, lower waveguide). We assume a time dependenaep(iwt) of all time
harmonic fields, with the frequency specified by the wavelength= 27c/w, for vacuum speed of light c.

Waves travel around the cavity in the form of the clockwisepaigating bend mode
- ¢ _
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given in polar coordinates by the radial dependent bend moafde E°, H® and the complex angular prop-
agation constany. Note that the value of depends on the definition of the cavity radild6], which here
represents the outer rim of the cavity.

A superposition of the three former expressions then domss the template for the overall electromagnetic
field E, H,

(7 )(@2) = £ /0,2) + 00:) 0L 2) + c0) (), @

with as of yet unknown amplitudeg(z), b(z), ¢(#), each a function of one variable. The formal relation
r=r(z,z), § = 6(z, z) between the polar and Cartesian coordinates is to be unddrstplicitly for Eq. [3)
to make sense, but will be taken into account explicitly aatlg later stage.

With the non-integer exponentR, the cavity part[[R) of EqL{3) exhibits a discontinuityéat= 0, 27. While

in principle this jump could be compensated by an equallgaliinuous amplitude, we prefer to remove the
phase mismatch after one round trip and the decay in amplidfidhe bend mode from the fixed part of the
template. The factosxp(—iyR0) in Eq. ) is thus replaced bxp(—ixR#) with a real constant

r = floor(ReyR + 1/2) /R (4)

(here floofz) is the largest integer smaller thahsuch that R is an integer number that resembles as good as
possible the rapid angular phase gain of the bend mode. Athefuphase variations as well as local variations
in absolute amplitude (also the bend mode losses) can beetblg a smooth, prospectively slowly varying
complex functiore that is also smooth (i.e. continuous with continuous déxiga at the transitiorzr — 0.

One should be aware that the templafie (3) determines whigsiqath effects are covered by the simulations.
For the present circuits, this concerns in particular thécaplosses. Losses due to the bend mode propagation
along the ring are well taken into account, as is clearlyblésin the spectra of e.g. Figuk 4, where the dropped
and transmitted power do not add up to one in general. Otlssrritechanisms, e.g. radiation related to the
wave interaction in the coupler regions, are disregardedupynodels.

2.2 HCMT procedure

It remains to determine the three functiofisb, andc. Analytical solutions are not to be expected for the
present system anyway, hence we continue directly with migadeneans. For the amplitudéof the forward
wave in the upper core a straightforward finite element (R&Jrdtization reads

N
F2) =" fio5(2). (5)
j=0

Here thea; are (in the simplest case) the standard triangular fungtmsociated with an equidistant 1-D first
order finite element discretization over a finite intervathaf z-axis, with half infinite first and last elements (cf.
[16] for explicit expressions). Analogous discretizasaare applied td(z) andc(6), where for the latter the
first and last elements on the interdak [0, 27] are identified. Note that the amplitud@) of the cavity mode

is discretized into finite elements first; the formal tramsfation to Cartesian coordinates follows thereafter.
After this step we are left with the task to find values for tleevrdiscrete coefficientg;, b;, andc;.



With dots as wildcards for indices and arguments, the tet@@ can now be written in the generic form

(8o =Sa(atwe)) = a8 ), ©
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where the symbolic indek covers the summation over the different channels, the Iplgssiultiple modes in
each channel, and the element indices of each individualis&eatization. The “modal element$E;, H},)
consist of the mode field§1(1[1(2), multiplied by the resipwecEE triangle functions. All former coefficients
are combined into one set of variables € {f;,b;,c;}. Most of these are unknowns, but some represent
given quantities: A value one for the coefficient of the fitslf-infinite element off realizes a guided wave
input with unit amplitude in the upper left port. The zeroualof the coefficient for the last element in the
discretization ob suppresses any input from the right in the lower channel.

As the next step we establish a system of equations fodthbrough a Galerkin projection procedure. Solu-
tions of the Maxwell curl equations for the frequency domain

V x H —iwegeE = 0, —V X E —iwpH =0 @)
are to be approximated as good as the temlate (3) pewtits:) here represents the relative dielectric permit-
tivity of the full structure e andpg are the vacuum permittivity and permeability, respecyiﬂelvlultiplication

of Egs. [T) by test field#’ and H' and integration over a suitable computational donfaileads to a weak
form of Egs. [[7):

///K(E',H';E,H)dxdydz:o forall E', H', (8)
Q
with

K(E'.H,E.H) = (E")* - (V x H) — (H')" - (V x E) — iwege(E')* - E — iwpo(H')* - H. (9)

One now inserts the templatid (3) fét, H, restricts the test fields to the modal elemeBts H;, and thus
obtains the linear set of equations

ZKlkak = O7 with Klk = /// K:(El,Hl;Ek,Hk) dx dydz (10)
L Q

To proceed, the vector of coefficienis= (ax) and accordingly the matriK = (k) are rearranged and split
to separate unknowns and given quantitieg, such that the system can be given the form

ko) (4) = () o= (i)
=0, or Kyu = —Kygg with K, = , = . 11
<Kgu Kgg g ! 9 ! Kgu g Kgg (1)

The unknowns in the — overdetermined — linear system of égusare finally found in a least squares sense
as the solution of

KiKuu = —K]Kgg . (12)

Here' denotes the adjoint. S€e [16] for a further discussion opteeedures, and for alternative schemes.

For purposes of notational compactness the above outlmbden given for a 3-D configuration. After restrict-
ing the model to TE polarized waves in the 2#E:-plane, only the transverse electric compongptand the
two in-plane magnetic components, and H,, of all fields remain; the-integration in all integral expressions
is dropped. It is then straightforward to write out the ké @ explicitly in components.

1 The fieIdSzsz, wb, 4 ® that constitute the templatEl (3) satisfy formally the sampeagions, but each with different permittivity
functions that represent the upper core, the lower cordyeocavity only, always on a homogeneous background.



2.3 Fast evaluation of spectral properties

Frequently one is interested in spectral properties,n.scans over the wavelength parametetnfortunately

in the frequency domain formulation given so far almost akhities are wavelength dependent. Hence in
principle one would have to repeat the entire proceduresasigsed before for every new sample wavelength.
This may become quite cumbersome even for the present 24iyacations, in particular if fine spectral details
around some resonance features need to be resolved. A wasyfouhd in the following observations.

At least for the moderately low numbers of unknowns that plagie here, the most time consuming part of the
simulations is the evaluation of the “overlap&’;. in Eq. (I0), which in principle needs to be repeated for each
new wavelength sample point. For a reasonably narrow wagtienterval, say a couple of free spectral ranges
of a not-too small resonator, one can expect, however, tiegptoperties of the modal basis fields change but
slowly with A, while rapid spectral variations are due to Hokution of the linear system involving.

Consequently, in order to reduce the numerical effort, ofghtrbe tempted to restrict the actual computation
of K()\) to a few suitably selected sample points, say:= (3A\s + A\p)/4, A1 := (Aa + 3)\y)/4 within
the wavelength intervah € [\,, \y] of interest. The required continuous wavelength deperelén¢hen
(approximately) obtained by interpolation of the matriegs.e. ask(\) =~ Kint(A) = Ko + (A — Xo)/ (A1 —
20)) (K1 — Kp) where onlyKy, = K()\g) andK; = K(A;) have to be computed explicitly. Finally one solves
Eqg. (I2) foru(A) with K(X) replaced byKi: (). Extension to higher interpolation orders is obvious.

All spectral results shown in the following sections relythis approximation with linear interpolation. The
comparison with a directly computed scan in Secfibn 3 shbwast for the present parameter set, the linear
scheme is sufficient to obtain good qualitative and quai‘udataesultg For all other examples, the approxi-
mation is at least roughly checked at the wavelengths quoreting to the field plots (computed directly) that
accompany the spectral scans.

Note that the interpolation does not necessarily consgreeific matrix properties. Hence, while it works well
at the level of the original matriX, the scheme is not applicable to the matrices in[Eq. (12¢ast hot if a linear
solver is employed that relies on the positivity of the systaatrix [22], as in our present implementation.

Care must be taken that the interpolation is applied to nantis, slowly varying quantities only. For the
formulation of Sectiol 2]2 this implies that the approxienahgular mode order must be selected uniformly
over the entire wavelength interval (i.e. with EQl (4) apglifor a central target wavelength). The angular
dependence is then captured by a moderately more pronovadation of the amplitude(9).

Dispersion can be included straightforwardly into the préfrequency domain model by describing the ap-
propriate wavelength dependence of the refractive indéxesa For well behaved dispersion properties an
interpolation scheme as above, if necessary of higher osteuld be able to cover that additional wavelength
variation as well.

3 Single ring filter

The single ring with two bus waveguides of Figlite 1 servesamatituting element for the circuits considered
in the following sections. A parameter set from[L9} 14] hasrbtransferred to the more familiar wavelength
region aroundl.56 um. The spectral scan in Figuté 2 agrees well with the curvesdan “conventional”
CMT and also with the numerical FDTD results[if [19] 14]. Ofsoabserves a reasonable agreement between
the directly computed spectral properties and the outcoihtkeointerpolation procedure of Sectibnl2.3. As
expected, the deviations increase at the ends of the ihtfrirgterest) € [1.52,1.63] um.

Beyond the mere power transfer properties, the HCMT modehipe to assemble approximations to the full
optical field. FigurdR illustrates the field at the centralamance. So far these are pure traveling waves; any
ripples that might appear in the plot 0f, | are thus attributable to sampling effects. For excitatiothe top

left port one observes a slightly larger intensity in théntigalf of the cavity, corresponding to a certain amount
of non-resonant power transfer from the upper to the lowsrwaveguide. This must thus be considered a
strongly coupled configuration, also confirmed by the offareance levels of dropped power in Figlire 2.

2 One might observe that this interpolation process is quiéagous to the usual analytical evaluation of paramethiT@nodels
[6], where one takes into account first or second order waggthederivatives of effective mode indices and neglectsatheclength
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Figure 2: Power spectrum
of the single ring filter as
introduced in Figurgl1, rel-
ative guided transmitted
and dropped optical power
D versus the vacuum wave-
length\. Bold curves: di-
rect computation; thin lines:

0 interpolated spectral scan
152 154 156 158 16 1.62 1.55 1555 156 1.565 1.57 1.575 according to the procedure
A [um] A [um] of Sectior ZB.

Figure 3: For the single
ring filter of Figurel®: res-
onance aih = 1.5623 um.
Top row: coupled mode
amplitudesf(z), b(z), and
c(9) associated with the
waves in the upper and
lower bus channel, and with
the cavity mode, respec-
tively. Bottom: time snap-
shot of the physical electri-
[ r-isoum cal field and field modulus,

- principal componeng,, of
the TE polarized waves.

0
z [um]

Although no explicit analytic expressions for the ampléudinctions are generated, one can at least inspect
the numerical solutions of the CMT formalism for the coupfedde amplitudes. The wave interaction in the
regions of closest approach~ 0, § ~ 0,7 of the bent and straight channels becomes apparent. Here the
overlap of the nonorthogonal contributions to the opticaldfis most pronounced, hence it is not surprising
that the levels off| or |b| exceedl in these regions. In-between, the slight slope of the cuimeRec and Ime
reinstates the actual (complex) phase propagation cdrsttéime bend mode after the replacement- « as
explained in Sectioh2.1. The attenuation of the bend modetisisible, the leve|c| appears to be constant
outside the interaction regions. Note that these curves@rmuted for the specific resonant state of the full
device, hence they differ from plots of the spatial evolutad coupled mode amplitudes in the bend-straight
coupler structures of [14]. In principle the reasoning[of][bn the extraction of modal output amplitudes
by overlap evaluation applies here as well; however, siheeamplitudes are not used here for subsequent
computations we do not further elaborate this issue.

4 Coupled resonator optical waveguides

Chains of evanescently coupled ringresonators have tittaecent interest, as a means of channeling of optical
power over the path of the resonators, but also for intereftdir time delay properties [23,124,125]. Here we
employ a series of coupled resonator optical waveguide<OWE) with growing length to demonstrate the
ability of the HCMT to cover also the ring-to-ring couplingtiwout any further heuristics. So far the model
remains restricted to unidirectional wave propagation.

Apart from the orientation and positioning of the bus cotles field template now includes a bend mode profile
with properly positioned origin and alternately clockwesed anticlockwise propagation direction for each of

dependence of coupling coefficients.



the cavity rings in the series. The computational window Ib@sn enlarged correspondingly. For upward
guided wave excitation in the left channel, the drop outgubéing detected in the upper (even number of
cavities) or lower outlet of the bus waveguide at the right.

=
08
2 o XOOO‘
=
0.4
v
0.2
D
0
1
=
08
|O0O0000000]
o 06
F 04
0.2
. D
155 1.555 156 1.565 157 155 1555 156 1.565 157
A [um] A [um]

Figure 4: Spectral properties of CROW structures with 2, ,3add 9 evanescently coupled rings, relative directly
transmittedl” and dropped guided optical powBr.

Figurel4 shows the spectral response of CROWSs built frontieawvith the parameters of the ring of Secfion 3.
The features recur with the free spectral range of the iddali cavity. Hence, for the CROWS, we concentrate
on a wavelength rangg € [1.55,1.57] um that includes only one resonance of the single ring device-a
1.5623 um. When compared to Figuké 2, one observes a sharpeningtofdsavith growing number of rings,
manifested e.g. by the much smaller off-resonance dropslevihe dip/peak of the single ring device splits
into a series, corresponding to the supermodes of the CR@Wtwtes. The related resonant fields can be
inspected in FigurEl5. A systematics akin to standard Fohaemonics is clearly recognizable. “Nodes” are
realized either as fields with opposite symmetry on bothssiwfea gap (not evident from the present plots,
actual physical fields would be required), or by entire riimgan “off”-state.
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5 Parallel rings

Now we place two of the former rings such that each interadtis loth bus cores as well as with the other

cavity. The direct coupling between the rings can be expectexcite bidirectional wave propagation in both

rings, and consequently also in the access waveguidesefbhethe field template includes prototypes for the
forward and backward propagating guided waves of the upmetfaver straight channels, and prototypes for
clockwise and anticlockwise traveling bend modes of bothities. Figurd b shows the response of a device in
a spectral range around the single-ring resonante>é23 pm.

A % % B ol N N
1.55 1.555 1.56 1.565 1.57

A [um]

Figure 6: Two microrings coupled in parallel. Parameteesaar in Figur€ll, with a gap= 0.25 um between the rings.
Upon excitation with wavelength in the upper left port, the power is distributed to the ostletR, A, andB.

In contrast to the sequential arrangement in Seélion 4 hersew broadened features, probably due to stronger
direct, also non-resonant, interaction. Possibly othgintes can be realized with different parameters. The
cavity gaps has been adjusted such that at a specific wavelength thepgopur is distributed equally among

all four output ports. Corresponding fields are shown in @rof Figure[Y.

X [um]

X [um]

-15 -10 -5

0
z [um]

0 0
z [um] z [um]

Figure 7: Field patterns (absolute values and time snapsgtiaghe principal electric field component) observed for the
parallel ring configuration of Figuké 6 at three selectedelengths. The overall phase for the plots in the lower row has
been chosen (roughly) such that the maximum wave amplitaderbes visible.

Among the manifold spectral features we selected two otlawelgngths for field illustrations: In configuration
(a) about 0.4 of the unit input power is reflected, while thmander is roughly equally distributed among the
other three outlets. The field plots show a major light pa#it ttonsists of the upper right quarter of the left
resonator, followed by the three lower and right quartethefight resonator and the central piece of the upper
straight waveguide, i.e. a loop that includes pieces of befonators. A similar loop, though with higher
intensity in the other parts of the left cavity, is realizadconfiguration (b), where the backward drd@and the
direct transmissiofi” are suppressed almost entirely, while roughly half of tipaifrpower is reflectedr) and
dropped forward B).

In this case the ripples in thid”, |-plots indicate standing waves caused by bidirectional eniaterference.
Time animations of the physicd,-fields, however, reveal a mixture of standing and traveliages. Hence,
while in principle the symmetry-related supermode modgR6f(27,[28] should be applicable, not all spectral
features might be easily explainable for the present straawvith quite strong interaction.
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6 R3resonator

Next we consider the configuration of Figlile 8: Three ringsmaced on the corners of a equilateral triangle,
excited through a single straight bus channel next to onbefihgs. The entire structure is symmetric with
respect to the central horizontal axis. A motivation coudfund in the photonic molecules of e.lo.][29] 30].
Here, however, the concepts have been realized with mughrlaings, corresponding to whispering gallery
resonances of higher order, and we are considering thedwsteuexplicitly with external guided wave excitation,
not the states of isolated molecules. Nevertheless thdlgglayi a role in the brief discussion below. This could
be seen as an example where a conventional scattering maddgl based on a division of the structure into
separate coupling regions with well defined outlets seerbe toeither appropriate nor convenient.

7 T
0.8
x 0.6 Ei . ;
- igure 8: A triangular ar-
F o4 rangement of coupled rings,
0.2 accessed by a single bus
R R , waveguide. Transmissidn
0= 1555 156 1565 157 and reflectivityR versus the

A [um] vacuum wavelength.

Obviously the HCMT model has to allow for bidirectional waw®pagation again. The template now includes
up- and downwards propagating modes for the bus channetlackl and anticlockwise traveling bend modes
for each of the three rings, in total eight unknown functiofi$ieir FE discretization (equidistant, first order
1-D elements; busz € [—17.65,17.65] um, 89 coefficients; rings:0 € [0, 2x], 118 unknowns) leads to

a system of equation§_{[10) of dimensi®®6. The overlapsk;, are evaluated on an integration window of
(z,2) € [~17.65,17.65] x [—2.5,33.1] um?. Our parameters are as in Figlife 1, with equal gaipstween all
respective cores at the points of closest approach. Figaas® summarize the outcome of these simulations.

X [um]

(a) A = 1.5583um

X [um]

Figure 9: Resonant fields (ab-
solute values and time snap-
shots of the principal electric

field component) supported by
the triple ring configuration of

Figurel®.




The original single-ring resonance splits into four featuwith high reflectivity and almost canceling transmis-
sion. In particular at wavelength = 1.5583 um (@), the structure acts as a good reflector for guided waves.
Animations of the stationary, time harmonic fields show abpurely standing waves with simultaneous large
amplitudes in all parts of the structure. The (rough) symieebf the excited “supermodes” can be understood
by inspecting the field levels and signs in adjacent coreBefhiree central inter-cavity coupling regions: One
recognizes a field that is antisymmetric with respect to tkisidn lines of all three couplers (a), one that is
symmetric with respect to the horizontal axis= 0 but antisymmetric over the two angled division lines (b),
then a field that is antisymmetric with respectite= 0 but symmetric over the two angled division lines (c),
and finally the field (d) that is symmetric over all three ceugpl

7 Slit ring resonator

The whispering gallery modes (WGMSs) of a rotationally syntmicecavity are twice degenerate |31]; the de-
generacy is related to the arbitrariness in the choice obtlgin of the angular coordinate in a description in
polar coordinates. Introducing a perturbation, e.g. infthe of an evanescently coupled bus waveguide, can
be expected to lift this degeneracy. One thus would expesgdseparate peaks in the transmission or reflection
curves, each associated with the excitation of a WGM of difie symmetry. In principle our model should
be able to capture that effect as well: the field template sayhie single ring of Sectiod 3 would have to be
extended by counter-propagating waves. When carryingheutdspective simulations, however, we received
precisely the same answers as shown in the former plotsasttwathin our present accuracy limits.

This is confirmed by the arguments pf[32], where this probihes been investigated by a parametric analytical
model. For all reasonable parameters (of the idealized hsgdtems) the wavelength shifts due to the degener-
acy lifting are obscured by the natural width of the resorgmeaks. The authors propose to look at a different
structure that enlarges the effect: an artificial, somevstranger reflector is introduced into the resonator,

which does not influence the functioning of the coupﬁWe adopt this concept as our last example.

The reflector is realized as a slit in the ring cavity of oumstad single ring device. Figufell0 shows a
schematic. For simplicity only one access waveguide isidensd, such that the respective theory|ofi [32]
becomes applicable. The structure is quite similar to tieept investigated in [34]. Note, however, that here
we can carry out ab-initio simulations; in principle theuks provide a quantification of those models.

Figure 10: Ring resonator
W T with a slit. Transmission
T and reflectionR versus
wavelength)\. Parameters
are as in Figur&l1, with a
slit s = 0.2 um. Bold con-
tinuous lines: excitation in
the left port only; thin lines,
mostly shadowed: sym-

0 R metric (dashed) and anti-
152 154 156 158 16 1.62 155 1555 1.56 1.565 1.57 1.575 symmetric excitation (dash-
A [um] A [um] dotted) in both ports.

In principle, the HCMT model can be applied just as beforeemghthe template now includes bidirectional
waves for both the cavity and the bus core. The slit merelydéa a slightly modified dielectric permittivityin
Egs. [T) and(), respectively. Nevertheless, accordifggore[10, it affects the spectral response significantly.
We focus on the thick curves first, that show the relativesmaission and reflection due to an excitation in only
one of the outlets. Resonances occur still at the positindsadth the free spectral range as for the continuous
ring in Figure[2, but appear now as doublets. At the extrenmfigarations, the transmission vanishes almost
entirely, most of the inserted power is reflected. The twdregplots of Figuréll allow to inspect the symmetry
properties of the associated fields. One observes almaaymianding waves in the cavity, with a field pattern
that is roughly symmetric (lower wavelength) or antisymmeetith respect to the vertical axis.

Apparently, the slit here acts as a sufficiently strong réfleto well separate the resonances associated with
the WGMs of the same order, but with different symmetry. I§tvould not have been the case, one could

3This might well relate to actual physical effects, e.g. ta@npunced surface roughneBsl[33, 32].
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Figure 11: Slit ring resonator, field pattern associateth wie extremal configurations indicated in Figurk 10. (sjnsy
metrical excitation from both the left and right ports, @1 incoming wave from the left only, two different waveleimgt
close to the (s) and (a) resonances, (a): antisymmetritagicai from left and right.

have followed the recipe of [32] to excite exclusively one W&ith definite symmetry, by prescribing optical
input with the respective symmetry in both the left and rightiet. The overall solution then obviously shares
this symmetry. This experiment can also be easily repeattiirvthe HCMT model by switching the given
coefficient related to the last finite element of the backwaadie in the upper channel frodro 1, then to—1.
Figure[d0 includes two related curves. The output powerivedeat both ports is always identical; resonances
show up through the cavity losses (lossy bend modes plagp hese resonances appear at different positions
for excitation with different symmetry, very close to therfer two peaks of the same symmetry. The small
deviation could be attributed to the influence that the “OtNM&GM still might have for single-side excitation
close to the eigenfrequency of one of the WGMs.

To quantify the former findings, we apply the theorylofl[32heTanalytical model predicts a wavelength shift

2
AN A Al X gl

. lol _ X el 13
22 NiR|7|  7yR|7| (13)

between the resonances observed for symmetric and asyimeatitation in both the left and right outlet of
the bus channel. Heygandr are the amplitude reflectance and transmittance of the reflénr guided wave
incidence,N; = Rey/k is the real part of the effective index associated with thedbmode of the cavity, and
R is the related cavity radius.

Rather than viewing the ratip/7| as a fit parameter, one could estimate it from first principlesvell, i.e.

as the modal reflection that the guided mode of an analogoaigist channel experiences when encountering
a slit as in our cavity. The HCMT approach can also appliedi® latter problem, together with a reference
calculation (quadridirectional eigenmode propagatiot)ER [35]); Figure[ IR compares the corresponding
field data. At the central wavelength= 1.5614 um of the resonance the reference simulation gives values of
Ip|? = 0.062, |7|?> = 0.905 for the relative transmission and reflection of the guidedrii&le. The HCMT
model is reasonably close with values|pf® = 0.073, |7|? = 0.927. Note that the scattered waves are entirely
neglected in the (here power conservative) HCMT simulatibiine slab hole.

Figure 12: Straight waveguide with a hole, a guided wave en-
ters from the left and is partly reflected; rigorous referecal-
culation (QUEP,[I35]) and HCMT model. The plots show the
absolute valuéE, | of the principal electric field component of
the TE waves.

-1

0
z [um]

Assuming that the outcome of the HCMT model for the bend madleation at the slit in the ring is not
too different, with the valuest = 7.5um and N, = 1.294 (hardly any change within the nm interval

that covers the central resonance in Fidure 10), Eq. (13)igieea wavelength shift oAX\ = 3.6 nm. This
agrees reasonably with the difference of abbnin observed in Figurds1.0 ahd 11. Hence the present HCMT
simulations are consistent with the analytical descriptib[32].
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8 Concluding remarks

While being related to standard analytic parametric m&sonator models, our hybrid approach shows certain
advantages: No free parameters appear, full field infoomat available, and the technique is quite flexible

as long as a physically reasonable field template can belishtad and handled conveniently. The price is a

somewhat higher computational effort than what would beired for the evaluation of pure analytic equations,

and a number of numerical parameters (computational winflantervals, stepsizes) that need adjustment.

Being computationally significantly cheaper than any punmerical scheme, the HCMT approach is certainly

also more restricted in its range of applicability, and @gence can be guaranteed up to the limits of the
initial template only. One might thus see this as an intefatednethod between an analytic treatment on the
one hand, and a general rigorous numerical technique orttiee laand.

The present implementation and all examples are restrict@dD. The formulation of the approach in Sec-
tion [A, however, applies to 3-D configurations as well. An HCMersion in 3-D would have to rely on
numerically computed modes of straight and bent channedsap inl[15]. While the size of the systerfisl(11),
(@2) remains about the same as in 2-D, the computationalgtbstepend largely on the amount of sophistica-
tion that is invested into the evaluation of the modal elenoserlaps[(P). Hence, 3-D HCMT simulations on
circuits as in our examples won't be exactly fast, but shanddufficiently efficient for actual device design.

Our main purpose has been the demonstration of the capebiit the modeling approach. Each of the exam-
ples addressed other and increasingly complex aspects bfGMT formalism. The discussion of the physical
properties of these systems could only be touched; theqrasplementation of the HCMT formalism consti-
tutes a convenient basis for further numerical experiments

Note that we have looked here at a pure frequency domainnmieas(cf. Eqgs.[(FV)). The fields are built of bend
modes [[R) which usually do not fit into the circular cavities, differ in amplitude and phase at the angular
origin after a2z round trip. Only the interaction with the bus waveguideswith other cavities, enables
the formation of resonances through a non-constant ardplit(¢). The resonances are thus to be attributed
to the entire system, not to the cavity alone. As an altereatine could try to establish a model based on
the whispering gallery modes of the circular cavitigs! [3&], on fields with complex frequency and integer
angular wavenumber. Similar to [17], the HCMT template widihlen include the bus modes with their varying
amplitudes, together with a series of whispering gallerylesoof the cavity that fall in the wavelength interval
of interest, each multiplied by a single variable coeffitidmplementation and evaluation of that approach is
under way.
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