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Abstract: Circuits of dielectric integrated optical microring resonators are addressed through
a 2-D hybrid analytical / numerical coupled mode theory (HCMT) model. Analytical modes
of all straight and curved cores form templates for the optical fields of the entire circuits. Our
variational technique then generates solutions for the amplitude functions in their natural Carte-
sian and polar coordinates, discretized by 1-D finite elements. Bidirectional wave propagation
through all channels and pronounced reflections can be takeninto account. The series of exam-
ples includes rings coupled in parallel, rows of cavities (coupled resonator optical waveguides,
CROWs) of varying length, a triangular photonic molecule, and a resonator with a slit ring to
illustrate the role of intra-cavity reflections.
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1 Introduction

The variants of dielectric optical micro-ring resonators,and circuits made thereof, are already for some time
discussed as promising concepts in integrated optics, e.g.for applications in optical telecommunications or
optical sensing. See [1, 2] for recent overviews of the field.Frequently these structures tend to be inconvenient
when it comes to rigorous numerical simulations: Compared to other photonic circuits they typically cover
larger areas, i.e. require larger computational windows onwhich the optical waves have to be represented
adequately, such that also local mesh refinement does not help much. At the same time, fine spectral details
need to be resolved, either by detailed wavelength scans of afrequency domain solver, or by long integration
intervals in case of time domain calculations.

As a more viable alternative, approaches based on coupled mode theory (CMT) are quite popular. Mostly
these are parametric models [3, 4, 5, 6] that combine scattering matrices for the coupler regions and effective
indices for the wave propagation along the connecting channels into analytic descriptions. Explicit solutions are
obtainable for simpler, typically highly symmetric structures, used also for fitting experimental data [7, 8, 9].
Coupling constants and transmission coefficients of the couplers, sometimes also the phase propagation and
attenuation constants of the cavity modes are treated as free (fit) parameters.

Attempts to determine values for these parameters from firstprinciples, i.e. by solving the coupled mode equa-
tions [10, 11] for the evanescent wave interaction in the coupler regions, are seen less often. Examples are
found in [12, 13], more recently in [14], the latter formulation has also led to a 3-D implementation [15]. These
first-principle CMT descriptions of microring circuits, however, require specific localized interaction regions
with (more or less) well defined outlets that need to be carefully stitched together by analytic expressions for the
wave propagation along the connecting straight and bent channels within a scattering matrix formalism. Inside
the coupler regions, the coupled mode equations are usuallywritten for a single propagation coordinate, which
appears to be decidedly unnatural e.g. in case of the evanescent wave interaction between adjacent straight and
bent channels.

As an alternative we propose to apply the Hybrid analytical /numerical Coupled Mode Theory (HCMT) formal-
ism of [16, 17]. The approach can treat directly the full resonator circuits, i.e. avoids the necessity to identify
spatially distinct regions of interaction, and to establish scattering matrices for carefully defined input/output
ports (although a restriction to coupler regions would certainly be possible just as well). Each of the interacting
waves can be described with its natural coordinates of propagation. Once the computer code exists, the method
turns out to be quite versatile and easily applicable.

We consider optical microresonator circuits that consist of a number of not necessarily identical circular cavities
and straight waveguides, with evanescent wave interactionbetween these elements. The standard configuration
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of Figure 1 serves as an example. Given the analytical modes of the two bus cores and the bend mode(s)
[10, 18, 19] supported by the curved waveguide profile that constitutes the cavity, one readily writes an ansatz
for the time harmonic electromagnetic field, using the natural Cartesian and polar coordinates for the straight
and curved waveguide elements. In line with the HCMT approach [16] the unknown amplitudes (functions) of
the given mode profiles are discretized by linear 1-D finite elements over suitable coordinate intervals. Then a
Galerkin procedure is applied on a computational window that covers the entire resonator circuit. One obtains a
dense, but small size algebraic system of equations for the element coefficients. The numerical solution yields
approximations for the amplitude functions and permits to reassemble the overall optical field.
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Figure 1: A circular cavity between two bus channels, unidirec-
tional HCMT model, schematically. Guided light enters fromthe
left through the upper core; interest is in the relative transmitted and
dropped guided optical powersT andD, and in their spectral prop-
erties. Ringresonator functionality is established by theevanescent
interaction of the directional guided modesψf , ψb associated with
the bus channels and the bend modeψc supported by the cavity
core. Cartesian coordinatesx, z and polar coordinatesr, θ will be
used. Parameters: cavity radiusR = 7.5µm (outer rim), width of
the cavity ringd = 0.75µm, waveguide widthw = 0.6µm, gap
between ring and bus waveguidesg = 0.3µm, refractive index of
all guiding regionsng = 1.5, of the backgroundnb = 1.0, target
vacuum wavelengthλ ≈ 1.56µm.

So far the implementation [20, 21] is restricted to two spatial dimensions and to TE polarization. The parameters
as introduced in the figure caption apply analogously to all further structures in this paper, unless other values
are given. We thus focus on an intermediate regime with small, but not too tiny cavities with substantial, but
not too large refractive index contrast, where a coupled mode approach has some chance to work well, while
rigorous numerical schemes (e.g. the popular FDTD simulations) are already inconveniently computationally
expensive, even in the 2D case, at least for the larger circuits of Sections 4 and 6.

The outline of the model in Section 2 closes with a section on the efficient evaluation of spectral properties.
The approach covers quite general multi-cavity configurations with unidirectional as well as bidirectional wave
propagation through all elements, as illustrated by the examples in Sections 3 – 7.

2 Hybrid analytical / numerical coupled mode theory

The approach will be outlined along the example of Figure 1. More involved configurations with multiple
guided modes in each channel and/or with bidirectional modepropagation along the cores can be handled
analogously with a correspondingly extended field template. Also the adaptation to structures with more and
quite arbitrarily positioned channels is straightforward. Further details of the theory, including an alternative
truly variational formulation, can be found in [16].

2.1 HCMT field template

Starting point is a plausible and convenient template for the overall electromagnetic field in the form of a
superposition of known fields. Typically these are the guided modes supported by the optical channels in the
structure with amplitudes that are functions of suitable propagation coordinate(s).

For the single ring resonator, according to Figure 1, one identifies the following basis elements. Light propa-
gates along the bus channels in the form of the directional modes

ψf, b(x, z) =

(

Ẽ

H̃

)f, b

(x) e∓iβz. (1)

ψf, b covers the six electromagnetic componentsẼ
f,b

, H̃
f,b

of the mode profile, together with the exponential
dependence on the propagation distancez with phase constants−β (forward propagationf, upper waveguide)
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and+β (backward propagationb, lower waveguide). We assume a time dependence∼ exp(iωt) of all time
harmonic fields, with the frequencyω specified by the wavelengthλ = 2πc/ω, for vacuum speed of light c.

Waves travel around the cavity in the form of the clockwise propagating bend mode

ψc(r, θ) =

(

Ẽ

H̃

)c

(r) e−iγRθ, (2)

given in polar coordinates by the radial dependent bend modeprofile Ẽ
c
, H̃

c
and the complex angular prop-

agation constantγ. Note that the value ofγ depends on the definition of the cavity radiusR [6], which here
represents the outer rim of the cavity.

A superposition of the three former expressions then constitutes the template for the overall electromagnetic
fieldE,H ,

(

E

H

)

(x, z) = f(z)ψf(x, z) + b(z)ψb(x, z) + c(θ)ψc(r, θ), (3)

with as of yet unknown amplitudesf (z), b(z), c(θ), each a function of one variable. The formal relation
r = r(x, z), θ = θ(x, z) between the polar and Cartesian coordinates is to be understood implicitly for Eq. (3)
to make sense, but will be taken into account explicitly onlyat a later stage.

With the non-integer exponentγR, the cavity part (2) of Eq. (3) exhibits a discontinuity atθ = 0, 2π. While
in principle this jump could be compensated by an equally discontinuous amplitudec, we prefer to remove the
phase mismatch after one round trip and the decay in amplitude of the bend mode from the fixed part of the
template. The factorexp(−iγRθ) in Eq. (2) is thus replaced byexp(−iκRθ) with a real constant

κ = floor(ReγR+ 1/2)/R (4)

(here floor(x) is the largest integer smaller thanx) such thatκR is an integer number that resembles as good as
possible the rapid angular phase gain of the bend mode. Any further phase variations as well as local variations
in absolute amplitude (also the bend mode losses) can be covered by a smooth, prospectively slowly varying
complex functionc that is also smooth (i.e. continuous with continuous derivative) at the transition2π → 0.

One should be aware that the template (3) determines which physical effects are covered by the simulations.
For the present circuits, this concerns in particular the optical losses. Losses due to the bend mode propagation
along the ring are well taken into account, as is clearly visible in the spectra of e.g. Figure 4, where the dropped
and transmitted power do not add up to one in general. Other loss mechanisms, e.g. radiation related to the
wave interaction in the coupler regions, are disregarded byour models.

2.2 HCMT procedure

It remains to determine the three functionsf , b, andc. Analytical solutions are not to be expected for the
present system anyway, hence we continue directly with numerical means. For the amplitudef of the forward
wave in the upper core a straightforward finite element (FE) discretization reads

f(z) =
N

∑

j=0

fj αj(z). (5)

Here theαj are (in the simplest case) the standard triangular functions associated with an equidistant 1-D first
order finite element discretization over a finite interval ofthez-axis, with half infinite first and last elements (cf.
[16] for explicit expressions). Analogous discretizations are applied tob(z) andc(θ), where for the latter the
first and last elements on the intervalθ ∈ [0, 2π] are identified. Note that the amplitudec(θ) of the cavity mode
is discretized into finite elements first; the formal transformation to Cartesian coordinates follows thereafter.
After this step we are left with the task to find values for the now discrete coefficientsfj, bj, andcj .
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With dots as wildcards for indices and arguments, the template (3) can now be written in the generic form

(

E
H

)

(x, z) =
∑

k

ak

(

α·(·)ψ
·(·, ·)

)

=:
∑

k

ak

(

Ek
Hk

)

(x, z), (6)

where the symbolic indexk covers the summation over the different channels, the possibly multiple modes in
each channel, and the element indices of each individual FE discretization. The “modal elements”(Ek,Hk)
consist of the mode fields (1), (2), multiplied by the respective FE triangle functions. All former coefficients
are combined into one set of variablesak ∈ {fj, bj , cj}. Most of these are unknowns, but some represent
given quantities: A value one for the coefficient of the first,half-infinite element off realizes a guided wave
input with unit amplitude in the upper left port. The zero value of the coefficient for the last element in the
discretization ofb suppresses any input from the right in the lower channel.

As the next step we establish a system of equations for theak through a Galerkin projection procedure. Solu-
tions of the Maxwell curl equations for the frequency domain

∇ ×H − iωǫ0ǫE = 0, −∇ ×E − iωµ0H = 0 (7)

are to be approximated as good as the template (3) permits.ǫ(x, z) here represents the relative dielectric permit-
tivity of the full structure,ǫ0 andµ0 are the vacuum permittivity and permeability, respectively.1 Multiplication
of Eqs. (7) by test fieldsE′ andH ′ and integration over a suitable computational domainΩ leads to a weak
form of Eqs. (7):

∫∫∫

Ω

K(E ′,H ′;E,H) dxdy dz = 0 for all E′, H ′ , (8)

with

K(E ′,H ′;E,H) = (E′)∗ · (∇ ×H) − (H ′)∗ · (∇ ×E) − iωǫ0ǫ(E
′)∗ ·E − iωµ0(H

′)∗ ·H . (9)

One now inserts the template (3) forE, H, restricts the test fields to the modal elementsEl, H l, and thus
obtains the linear set of equations

∑

k

Klkak = 0, with Klk =

∫∫∫

Ω

K(El,H l;Ek,Hk) dxdy dz . (10)

To proceed, the vector of coefficientsa = (ak) and accordingly the matrixK = (Klk) are rearranged and split
to separate unknownsu and given quantitiesg, such that the system can be given the form

(

Kuu Kug

Kgu Kgg

)(

u

g

)

= 0 , or Kuu = −Kgg with Ku =

(

Kuu

Kgu

)

, Kg =

(

Kug

Kgg

)

. (11)

The unknowns in the — overdetermined — linear system of equations are finally found in a least squares sense
as the solution of

K
†
uKuu = −K

†
uKgg . (12)

Here† denotes the adjoint. See [16] for a further discussion of theprocedures, and for alternative schemes.

For purposes of notational compactness the above outline has been given for a 3-D configuration. After restrict-
ing the model to TE polarized waves in the 2-Dx-z-plane, only the transverse electric componentEy and the
two in-plane magnetic componentsHx andHz of all fields remain; they-integration in all integral expressions
is dropped. It is then straightforward to write out the kernel (9) explicitly in components.

1 The fieldsψf , ψb, ψc that constitute the template (3) satisfy formally the same equations, but each with different permittivity
functions that represent the upper core, the lower core, or the cavity only, always on a homogeneous background.
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2.3 Fast evaluation of spectral properties

Frequently one is interested in spectral properties, i.e. in scans over the wavelength parameterλ. Unfortunately
in the frequency domain formulation given so far almost all quantities are wavelength dependent. Hence in
principle one would have to repeat the entire procedure as discussed before for every new sample wavelength.
This may become quite cumbersome even for the present 2-D configurations, in particular if fine spectral details
around some resonance features need to be resolved. A way outis found in the following observations.

At least for the moderately low numbers of unknowns that playa role here, the most time consuming part of the
simulations is the evaluation of the “overlaps”Klk in Eq. (10), which in principle needs to be repeated for each
new wavelength sample point. For a reasonably narrow wavelength interval, say a couple of free spectral ranges
of a not-too small resonator, one can expect, however, that the properties of the modal basis fields change but
slowly with λ, while rapid spectral variations are due to thesolution of the linear system involvingK.

Consequently, in order to reduce the numerical effort, one might be tempted to restrict the actual computation
of K(λ) to a few suitably selected sample points, sayλ0 := (3λa + λb)/4, λ1 := (λa + 3λb)/4 within
the wavelength intervalλ ∈ [λa, λb] of interest. The required continuous wavelength dependence is then
(approximately) obtained by interpolation of the matricesK, i.e. asK(λ) ≈ Kint(λ) = K0 + ((λ − λ0)/(λ1 −
λ0))(K1 − K0) where onlyK0 = K(λ0) andK1 = K(λ1) have to be computed explicitly. Finally one solves
Eq. (12) foru(λ) with K(λ) replaced byKint(λ). Extension to higher interpolation orders is obvious.

All spectral results shown in the following sections rely onthis approximation with linear interpolation. The
comparison with a directly computed scan in Section 3 shows that, for the present parameter set, the linear
scheme is sufficient to obtain good qualitative and quantitative results.2 For all other examples, the approxi-
mation is at least roughly checked at the wavelengths corresponding to the field plots (computed directly) that
accompany the spectral scans.

Note that the interpolation does not necessarily conserve specific matrix properties. Hence, while it works well
at the level of the original matrixK, the scheme is not applicable to the matrices in Eq. (12), at least not if a linear
solver is employed that relies on the positivity of the system matrix [22], as in our present implementation.

Care must be taken that the interpolation is applied to continuous, slowly varying quantities only. For the
formulation of Section 2.2 this implies that the approximate angular mode orderκ must be selected uniformly
over the entire wavelength interval (i.e. with Eq. (4) applied for a central target wavelength). The angular
dependence is then captured by a moderately more pronouncedvariation of the amplitudec(θ).

Dispersion can be included straightforwardly into the present frequency domain model by describing the ap-
propriate wavelength dependence of the refractive index values. For well behaved dispersion properties an
interpolation scheme as above, if necessary of higher order, should be able to cover that additional wavelength
variation as well.

3 Single ring filter

The single ring with two bus waveguides of Figure 1 serves as aconstituting element for the circuits considered
in the following sections. A parameter set from [19, 14] has been transferred to the more familiar wavelength
region around1.56µm. The spectral scan in Figure 2 agrees well with the curves based on “conventional”
CMT and also with the numerical FDTD results if [19, 14]. One also observes a reasonable agreement between
the directly computed spectral properties and the outcome of the interpolation procedure of Section 2.3. As
expected, the deviations increase at the ends of the interval of interestλ ∈ [1.52, 1.63]µm.

Beyond the mere power transfer properties, the HCMT model permits to assemble approximations to the full
optical field. Figure 3 illustrates the field at the central resonance. So far these are pure traveling waves; any
ripples that might appear in the plot of|Ey| are thus attributable to sampling effects. For excitation in the top
left port one observes a slightly larger intensity in the right half of the cavity, corresponding to a certain amount
of non-resonant power transfer from the upper to the lower bus waveguide. This must thus be considered a
strongly coupled configuration, also confirmed by the off-resonance levels of dropped power in Figure 2.

2 One might observe that this interpolation process is quite analogous to the usual analytical evaluation of parametric CMT models
[6], where one takes into account first or second order wavelength derivatives of effective mode indices and neglects thewavelength

5



1.55 1.555 1.56 1.565 1.57 1.575
0

0.2

0.4

0.6

0.8

1

λ [µm]

T
, D

T

D

1.52 1.54 1.56 1.58 1.6 1.62
0

0.2

0.4

0.6

0.8

1

λ [µm]

T
, D

T

D

T

D

zr
θ

0

x
Figure 2: Power spectrum
of the single ring filter as
introduced in Figure 1, rel-
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and dropped optical power
D versus the vacuum wave-
lengthλ. Bold curves: di-
rect computation; thin lines:
interpolated spectral scan
according to the procedure
of Section 2.3.
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Although no explicit analytic expressions for the amplitude functions are generated, one can at least inspect
the numerical solutions of the CMT formalism for the coupledmode amplitudes. The wave interaction in the
regions of closest approachz ≈ 0, θ ≈ 0, π of the bent and straight channels becomes apparent. Here the
overlap of the nonorthogonal contributions to the optical field is most pronounced, hence it is not surprising
that the levels of|f | or |b| exceed1 in these regions. In-between, the slight slope of the curvesfor Rec and Imc
reinstates the actual (complex) phase propagation constant of the bend mode after the replacementγ → κ as
explained in Section 2.1. The attenuation of the bend mode isnot visible, the level|c| appears to be constant
outside the interaction regions. Note that these curves arecomputed for the specific resonant state of the full
device, hence they differ from plots of the spatial evolution of coupled mode amplitudes in the bend-straight
coupler structures of [14]. In principle the reasoning of [14] on the extraction of modal output amplitudes
by overlap evaluation applies here as well; however, since the amplitudes are not used here for subsequent
computations we do not further elaborate this issue.

4 Coupled resonator optical waveguides

Chains of evanescently coupled ringresonators have attracted recent interest, as a means of channeling of optical
power over the path of the resonators, but also for interest in their time delay properties [23, 24, 25]. Here we
employ a series of coupled resonator optical waveguides (CROWs) with growing length to demonstrate the
ability of the HCMT to cover also the ring-to-ring coupling without any further heuristics. So far the model
remains restricted to unidirectional wave propagation.

Apart from the orientation and positioning of the bus cores,the field template now includes a bend mode profile
with properly positioned origin and alternately clockwiseand anticlockwise propagation direction for each of

dependence of coupling coefficients.
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the cavity rings in the series. The computational window hasbeen enlarged correspondingly. For upward
guided wave excitation in the left channel, the drop output is being detected in the upper (even number of
cavities) or lower outlet of the bus waveguide at the right.
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Figure 4: Spectral properties of CROW structures with 2, 3, 4, and 9 evanescently coupled rings, relative directly
transmittedT and dropped guided optical powerD.

Figure 4 shows the spectral response of CROWs built from cavities with the parameters of the ring of Section 3.
The features recur with the free spectral range of the individual cavity. Hence, for the CROWs, we concentrate
on a wavelength rangeλ ∈ [1.55, 1.57]µm that includes only one resonance of the single ring device at λ =
1.5623µm. When compared to Figure 2, one observes a sharpening of features with growing number of rings,
manifested e.g. by the much smaller off-resonance drop levels. The dip/peak of the single ring device splits
into a series, corresponding to the supermodes of the CROW structures. The related resonant fields can be
inspected in Figure 5. A systematics akin to standard Fourier harmonics is clearly recognizable. “Nodes” are
realized either as fields with opposite symmetry on both sides of a gap (not evident from the present plots,
actual physical fields would be required), or by entire ringsin an “off”-state.
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(h) λ = 1.5672µm

(i) λ = 1.5681µm

Figure 5: Field pat-
terns associated with the
resonances as indicated
(letters) in the spectra of
Figure 4, the plots show
the absolute value of the
principal electric com-
ponent of the TE fields.
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5 Parallel rings

Now we place two of the former rings such that each interacts with both bus cores as well as with the other
cavity. The direct coupling between the rings can be expected to excite bidirectional wave propagation in both
rings, and consequently also in the access waveguides. Therefore the field template includes prototypes for the
forward and backward propagating guided waves of the upper and lower straight channels, and prototypes for
clockwise and anticlockwise traveling bend modes of both cavities. Figure 6 shows the response of a device in
a spectral range around the single-ring resonance at1.5623µm.
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Figure 6: Two microrings coupled in parallel. Parameters are as in Figure 1, with a gaps = 0.25µm between the rings.
Upon excitation with wavelengthλ in the upper left port, the power is distributed to the outletsT ,R, A, andB.

In contrast to the sequential arrangement in Section 4 here we see broadened features, probably due to stronger
direct, also non-resonant, interaction. Possibly other regimes can be realized with different parameters. The
cavity gaps has been adjusted such that at a specific wavelength the inputpower is distributed equally among
all four output ports. Corresponding fields are shown in part(c) of Figure 7.
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Figure 7: Field patterns (absolute values and time snapshots of the principal electric field component) observed for the
parallel ring configuration of Figure 6 at three selected wavelengths. The overall phase for the plots in the lower row has
been chosen (roughly) such that the maximum wave amplitude becomes visible.

Among the manifold spectral features we selected two other wavelengths for field illustrations: In configuration
(a) about 0.4 of the unit input power is reflected, while the remainder is roughly equally distributed among the
other three outlets. The field plots show a major light path that consists of the upper right quarter of the left
resonator, followed by the three lower and right quarters ofthe right resonator and the central piece of the upper
straight waveguide, i.e. a loop that includes pieces of bothresonators. A similar loop, though with higher
intensity in the other parts of the left cavity, is realized in configuration (b), where the backward dropA and the
direct transmissionT are suppressed almost entirely, while roughly half of the input power is reflected (R) and
dropped forward (B).

In this case the ripples in the|Ey|-plots indicate standing waves caused by bidirectional mode interference.
Time animations of the physicalEy-fields, however, reveal a mixture of standing and travelingwaves. Hence,
while in principle the symmetry-related supermode model of[26, 27, 28] should be applicable, not all spectral
features might be easily explainable for the present structure with quite strong interaction.
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6 R3 resonator

Next we consider the configuration of Figure 8: Three rings are placed on the corners of a equilateral triangle,
excited through a single straight bus channel next to one of the rings. The entire structure is symmetric with
respect to the central horizontal axis. A motivation could be found in the photonic molecules of e.g. [29, 30].
Here, however, the concepts have been realized with much larger rings, corresponding to whispering gallery
resonances of higher order, and we are considering the structure explicitly with external guided wave excitation,
not the states of isolated molecules. Nevertheless these will play a role in the brief discussion below. This could
be seen as an example where a conventional scattering matrixmodel based on a division of the structure into
separate coupling regions with well defined outlets seems tobe neither appropriate nor convenient.
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Figure 8: A triangular ar-
rangement of coupled rings,
accessed by a single bus
waveguide. TransmissionT
and reflectivityR versus the
vacuum wavelengthλ.

Obviously the HCMT model has to allow for bidirectional wavepropagation again. The template now includes
up- and downwards propagating modes for the bus channel, andclock- and anticlockwise traveling bend modes
for each of the three rings, in total eight unknown functions. Their FE discretization (equidistant, first order
1-D elements; bus:x ∈ [−17.65, 17.65]µm, 89 coefficients; rings:θ ∈ [0, 2π], 118 unknowns) leads to
a system of equations (10) of dimension886. The overlapsKlk are evaluated on an integration window of
(x, z) ∈ [−17.65, 17.65] × [−2.5, 33.1]µm2. Our parameters are as in Figure 1, with equal gapsg between all
respective cores at the points of closest approach. Figures8 and 9 summarize the outcome of these simulations.
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The original single-ring resonance splits into four features with high reflectivity and almost canceling transmis-
sion. In particular at wavelengthλ = 1.5583µm (a), the structure acts as a good reflector for guided waves.
Animations of the stationary, time harmonic fields show almost purely standing waves with simultaneous large
amplitudes in all parts of the structure. The (rough) symmetries of the excited “supermodes” can be understood
by inspecting the field levels and signs in adjacent cores of the three central inter-cavity coupling regions: One
recognizes a field that is antisymmetric with respect to the division lines of all three couplers (a), one that is
symmetric with respect to the horizontal axisx = 0 but antisymmetric over the two angled division lines (b),
then a field that is antisymmetric with respect tox = 0 but symmetric over the two angled division lines (c),
and finally the field (d) that is symmetric over all three couplers.

7 Slit ring resonator

The whispering gallery modes (WGMs) of a rotationally symmetric cavity are twice degenerate [31]; the de-
generacy is related to the arbitrariness in the choice of theorigin of the angular coordinate in a description in
polar coordinates. Introducing a perturbation, e.g. in theform of an evanescently coupled bus waveguide, can
be expected to lift this degeneracy. One thus would expect tosee separate peaks in the transmission or reflection
curves, each associated with the excitation of a WGM of different symmetry. In principle our model should
be able to capture that effect as well: the field template say for the single ring of Section 3 would have to be
extended by counter-propagating waves. When carrying out the respective simulations, however, we received
precisely the same answers as shown in the former plots, at least within our present accuracy limits.

This is confirmed by the arguments of [32], where this problemhas been investigated by a parametric analytical
model. For all reasonable parameters (of the idealized model systems) the wavelength shifts due to the degener-
acy lifting are obscured by the natural width of the resonance peaks. The authors propose to look at a different
structure that enlarges the effect: an artificial, somewhatstronger reflector is introduced into the resonator,
which does not influence the functioning of the couplers.3 We adopt this concept as our last example.

The reflector is realized as a slit in the ring cavity of our standard single ring device. Figure 10 shows a
schematic. For simplicity only one access waveguide is considered, such that the respective theory of [32]
becomes applicable. The structure is quite similar to the concept investigated in [34]. Note, however, that here
we can carry out ab-initio simulations; in principle the results provide a quantification of those models.
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Figure 10: Ring resonator
with a slit. Transmission
T and reflectionR versus
wavelengthλ. Parameters
are as in Figure 1, with a
slit s = 0.2µm. Bold con-
tinuous lines: excitation in
the left port only; thin lines,
mostly shadowed: sym-
metric (dashed) and anti-
symmetric excitation (dash-
dotted) in both ports.

In principle, the HCMT model can be applied just as before, where the template now includes bidirectional
waves for both the cavity and the bus core. The slit merely leads to a slightly modified dielectric permittivityǫ in
Eqs. (7) and (9), respectively. Nevertheless, according toFigure 10, it affects the spectral response significantly.
We focus on the thick curves first, that show the relative transmission and reflection due to an excitation in only
one of the outlets. Resonances occur still at the positions and with the free spectral range as for the continuous
ring in Figure 2, but appear now as doublets. At the extreme configurations, the transmission vanishes almost
entirely, most of the inserted power is reflected. The two central plots of Figure 11 allow to inspect the symmetry
properties of the associated fields. One observes almost purely standing waves in the cavity, with a field pattern
that is roughly symmetric (lower wavelength) or antisymmetric with respect to the vertical axis.

Apparently, the slit here acts as a sufficiently strong reflector to well separate the resonances associated with
the WGMs of the same order, but with different symmetry. If this would not have been the case, one could

3This might well relate to actual physical effects, e.g. to a pronounced surface roughness [33, 32].
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Figure 11: Slit ring resonator, field pattern associated with the extremal configurations indicated in Figure 10. (s): sym-
metrical excitation from both the left and right ports, (l):an incoming wave from the left only, two different wavelengths
close to the (s) and (a) resonances, (a): antisymmetric excitation from left and right.

have followed the recipe of [32] to excite exclusively one WGM with definite symmetry, by prescribing optical
input with the respective symmetry in both the left and rightoutlet. The overall solution then obviously shares
this symmetry. This experiment can also be easily repeated within the HCMT model by switching the given
coefficient related to the last finite element of the backwardmode in the upper channel from0 to 1, then to−1.
Figure 10 includes two related curves. The output power received at both ports is always identical; resonances
show up through the cavity losses (lossy bend modes play a role). These resonances appear at different positions
for excitation with different symmetry, very close to the former two peaks of the same symmetry. The small
deviation could be attributed to the influence that the “other” WGM still might have for single-side excitation
close to the eigenfrequency of one of the WGMs.

To quantify the former findings, we apply the theory of [32]. The analytical model predicts a wavelength shift

∆λ ≈
λ2

2π2NrR

|ρ|

|τ |
=

λ

πγR

|ρ|

|τ |
(13)

between the resonances observed for symmetric and asymmetric excitation in both the left and right outlet of
the bus channel. Hereρ andτ are the amplitude reflectance and transmittance of the reflector for guided wave
incidence,Nr = Reγ/k is the real part of the effective index associated with the bend mode of the cavity, and
R is the related cavity radius.

Rather than viewing the ratio|ρ/τ | as a fit parameter, one could estimate it from first principlesas well, i.e.
as the modal reflection that the guided mode of an analogous straight channel experiences when encountering
a slit as in our cavity. The HCMT approach can also applied to this latter problem, together with a reference
calculation (quadridirectional eigenmode propagation, QUEP [35]); Figure 12 compares the corresponding
field data. At the central wavelengthλ = 1.5614µm of the resonance the reference simulation gives values of
|ρ|2 = 0.062, |τ |2 = 0.905 for the relative transmission and reflection of the guided TEmode. The HCMT
model is reasonably close with values of|ρ|2 = 0.073, |τ |2 = 0.927. Note that the scattered waves are entirely
neglected in the (here power conservative) HCMT simulationof the slab hole.
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Figure 12: Straight waveguide with a hole, a guided wave en-
ters from the left and is partly reflected; rigorous reference cal-
culation (QUEP, [35]) and HCMT model. The plots show the
absolute value|Ey| of the principal electric field component of
the TE waves.

Assuming that the outcome of the HCMT model for the bend mode reflection at the slit in the ring is not
too different, with the valuesR = 7.5µm andNr = 1.294 (hardly any change within the5 nm interval
that covers the central resonance in Figure 10), Eq. (13) predicts a wavelength shift of∆λ = 3.6 nm. This
agrees reasonably with the difference of about3 nm observed in Figures 10 and 11. Hence the present HCMT
simulations are consistent with the analytical description of [32].
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8 Concluding remarks

While being related to standard analytic parametric microresonator models, our hybrid approach shows certain
advantages: No free parameters appear, full field information is available, and the technique is quite flexible
as long as a physically reasonable field template can be established and handled conveniently. The price is a
somewhat higher computational effort than what would be required for the evaluation of pure analytic equations,
and a number of numerical parameters (computational window& intervals, stepsizes) that need adjustment.
Being computationally significantly cheaper than any pure numerical scheme, the HCMT approach is certainly
also more restricted in its range of applicability, and convergence can be guaranteed up to the limits of the
initial template only. One might thus see this as an intermediate method between an analytic treatment on the
one hand, and a general rigorous numerical technique on the other hand.

The present implementation and all examples are restrictedto 2-D. The formulation of the approach in Sec-
tion 2, however, applies to 3-D configurations as well. An HCMT version in 3-D would have to rely on
numerically computed modes of straight and bent channels, just as in [15]. While the size of the systems (11),
(12) remains about the same as in 2-D, the computational costwill depend largely on the amount of sophistica-
tion that is invested into the evaluation of the modal element overlaps (9). Hence, 3-D HCMT simulations on
circuits as in our examples won’t be exactly fast, but shouldbe sufficiently efficient for actual device design.

Our main purpose has been the demonstration of the capabilities of the modeling approach. Each of the exam-
ples addressed other and increasingly complex aspects of the HCMT formalism. The discussion of the physical
properties of these systems could only be touched; the present implementation of the HCMT formalism consti-
tutes a convenient basis for further numerical experiments.

Note that we have looked here at a pure frequency domain reasoning (cf. Eqs. (7)). The fields are built of bend
modes (2) which usually do not fit into the circular cavities,i.e. differ in amplitude and phase at the angular
origin after a2π round trip. Only the interaction with the bus waveguides, orwith other cavities, enables
the formation of resonances through a non-constant amplitude c(θ). The resonances are thus to be attributed
to the entire system, not to the cavity alone. As an alternative one could try to establish a model based on
the whispering gallery modes of the circular cavities [36],i.e. on fields with complex frequency and integer
angular wavenumber. Similar to [17], the HCMT template would then include the bus modes with their varying
amplitudes, together with a series of whispering gallery modes of the cavity that fall in the wavelength interval
of interest, each multiplied by a single variable coefficient. Implementation and evaluation of that approach is
under way.

Acknowledgments

The author thanks Kirankumar R. Hiremath, Hugo J.W.M. Hoekstra, and Remco Stoffer for many fruitful dis-
cussions.

References

[1] M. Bertolotti, A. Driessen, and F. Michelotti, eds.,Microresonators as building blocks for VLSI photonics, vol. 709
of AIP conference proceedings (American Institute of Physics, Melville, New York, 2004).

[2] I. Chremmos, N. Uzunoglu, and O. Schwelb, eds.,Photonic Microresonator Research and Applications, Springer
Series in Optical Sciences, Vol. 156 (Springer, London, 2010).

[3] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Optics Letters7, 288–290 (1982).

[4] K. Okamoto,Fundamentals of Optical Waveguides (Academic Press, SanDiego, 2000).

[5] A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,”
Electronic Letters36, 321–322 (2000).

[6] M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of optical microresonator
devices,” in “Microresonators as building blocks for VLSI photonics,” , vol. 709 of AIP conference proceedings,
M. Bertolotti, A. Driessen, and F. Michelotti, eds. (American Institute of Physics, Melville, New York, 2004), pp.
48–71.

12



[7] D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H.F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and
A. Driessen, “Vertically and laterally waveguide-coupledcylindrical microresonators in Si3N4 on SiO2 technology,”
Applied Physics B73, 603–608 (2001).

[8] D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, H. J. W. M.Hoekstra, A. Driessen, L. Kuipers, and N. F. van
Hulst, “Detailed analysis of the intracavity phenomena inside a cylindrical microresonator,” Journal of Lightwave
Technology20, 519–529 (2002).

[9] D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis,G. Sengo, B. Docter, H. J. W. M. Hoekstra, and
A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” Journal
of Lightwave Technology21, 1099–1110 (2003).

[10] C. Vassallo,Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).

[11] D. G. Hall and B. J. Thompson, eds.,Selected Papers on Coupled-Mode Theory in Guided-Wave Optics, vol. MS 84
of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Washington USA, 1993).

[12] D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,”
IEE Proceedings, Pt. J140, 177–188 (1993).

[13] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” Journal
of Lightwave Technology16, 1433–1446 (1998).

[14] K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D
frequency-domain coupled mode theory,” Optics Communications257, 277–297 (2006).

[15] R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J.Čtyroký, “Cylindrical integrated optical microresonators:
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