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Abstract: The propagation of guided and nonconfined optical waves at fixed frequency through
dielectric structures with piecewise constant, rectangular permittivity is considered in two spa-
tial dimensions. Bidirectional versions of eigenmodes, computed for sequences of multilayer
slab waveguides, constitute the expansion basis for the optical electromagnetic field. Dirichlet
boundary conditions are sufficient to discretize the mode sets. Superpositions of two such expan-
sions (bidirectional eigenmode propagation (BEP) fields), oriented along the two perpendicular
coordinate axes, establish rigorous semianalytical solutions of the relevant Helmholtz wave equa-
tion on an unbounded, cross-shaped computational domain. The overlap of the lateral windows
of the two BEP sets can be viewed as a rectangular computational window with fully transpar-
ent boundaries. Simulation results for a series of model systems (Gaussian beams in free space,
Bragg gratings, waveguide crossings, a square cavity with perpendicular ports, and a 90◦ bend
in a photonic crystal waveguide) illustrate the performance of the approach.
Keywords: waveguide optics, numerical modeling, eigenmode propagation techniques, omnidi-
rectional light propagation, Helmholtz problems
PACS codes: 42.82.–m 42.82.Et

1 Introduction

With their potential for high integration densities, devices based on optical microcavities [1] or on photonic
crystals [2] attract considerable attention in photonics research at present. Specific obstacles for the modeling
originate from the high permittivity contrasts which are exploited for effective guiding and trapping of light
waves: Phenomena like wide angle propagation and pronounced reflections are essential for the interference
effects that the new structures rely upon.

Among the current simulation tools for scattering problems in integrated optics, the popular beam propagation
methods [3] are not applicable at all, due to the underlying approximations. Concerning rigorous numeri-
cal simulations based on spatial discretizations, finite-difference-time-domain (FDTD) simulations [4] are the
most common choice (frequency domain programs (Helmholtz-solvers) [5] exist as well, but receive much less
attention). Unfortunately these fully general, finite-difference or finite-element based schemes are usually quite
expensive in terms of computational effort, even in a 2D setting.

Where applicable, rigorous semi-analytic simulation tools, the class of bidirectional eigenmode propagation
(BEP) or mode expansion techniques [6, 7, 8], can frequently offer a robust, accurate, and quite effective
alternative. Packages with academic [9] and commercial backgrounds [10, 11] are available; the formalism in
this paper is based on an own implementation as described in [12, 13]. For simulations in the optical regime,
the BEP algorithms are so far set up exclusively along one major axis of light propagation. This viewpoint is
decidedly inadequate for the high contrast structures, where one would expect that a rigorous (2D) simulation
treats both relevant coordinate axes exactly alike. The approach outlined in this paper realizes that requirement,
basically by means of superposition of eigenmode expansions along the two perpendicular axes.

Section 2 starts with a specification of the problem setting. Basis fields for the mode expansion and the related
mode products (overlap integrals) are introduced in Section 2.1. Here one can restrict to eigenmodes of multi-
layer slab segments on finite cross section intervals with simple Dirichlet boundary conditions. In contrast to
the complex modes defined by perfectly matched layers (PMLs) [14], that are necessary in conventional BEP
schemes to realize transparent boundaries, the basis functions used here satisfy simple, well established orthog-
onality properties. At least for the present lossless structures, the mode profiles are real; propagation constants
are to be searched on the real axis, not in the complex plane. The more or less standard spectral discretization
procedure can be implemented in a quite robust and efficient way.
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The ansatz for the optical field is the subject of Section 2.2. By suitable projection on the basis elements
the problem is reduced to a set of linear equations. Section 2.3 outlines this projection procedure together
with our strategy to solve the problem for the coefficients in the mode expansion. Modes propagating in
positive and negative direction along two coordinate axes play a role in this approach, hence this could be
called a “quadridirectional eigenmode propagation” (QUEP) method. Section 3 summarizes the outcome of
calculations for several (benchmark) structures of current interest.

Necessarily, with the Helmholtz wave equation being considered on a cross shaped domain limited by Dirichlet
boundary conditions (perfectly conducting walls), the simulation setup resembles a crossing of hollow metal
microwave waveguides, for which similar modeling approaches have been formulated. General formulations
involving analytic expansions for different types of relatively simple microwave structures have been given e.g.
in Refs. [15, 16, 17, 18]; similar lines of reasoning have been followed in the framework of the method of
lines [19, 20, 21, 22, 23, 24]. However, here we are interested in regimes of simulation parameters where one
can entirely disregard any influences of the enclosing walls. The focus is on the field in the region around the
optical device, given as a refractive index inhomogeneity at the center of the domain, and around the connecting
dielectric optical waveguides, that extend along the half-infinite ends of the cross.

2 Quadridirectional eigenmode expansion

The propagation of continuous optical electromagnetic waves in linear isotropic dielectric structures is to be
simulated. The vacuum wavelength λ = 2π/k = 2πc/ω specifies the fixed angular frequency ω corresponding
to a time dependence ∼ exp(iωt) of all fields, for vacuum wavenumber k and vacuum speed of light c. For
a description in two spatial dimensions, we choose a Cartesian coordinate system with relevant directions x
(vertical) and z (horizontal), where all fields and the optical permittivity are assumed to be constant along the
y-axis. The structure under investigation is given by a piecewise constant, rectangular refractive index profile,
with the dielectric interfaces being parallel to either the x or z-axis. We restrict to lossless structures; all
refractive index values are real.
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Figure 1: Rectangular decomposition of the computational domain.
Horizontal interfaces at xl, l = 0, . . . , Nx and vertical interfaces
at zs, s = 0, . . . , Nz divide the interesting inner region (x, z) ∈
[x0, xNx

]×[z0, zNz
] into Nx horizontal inner layers and Nz vertical

inner slices. The outer regions with layer indices 0 and Nx + 1 and
slice indices 0 and Nz + 1 are outwards unbounded.

Interest is in what happens inside a rectangular computational window [x0, xNx
]× [z0, zNz

]. Figure 1 sketches
the division of the domain into a number of vertical slices and horizontal layers. Here two viewpoints are pos-
sible: What follows can be regarded as an approach to solve the wave propagation problem on the rectangular
inner domain, enclosed by four boundaries at x = x0, xNx

and z = z0, zNz
that are transparent for outgoing

waves and that allow a specification of incoming fields. Alternatively, one can view this as a method to ap-
proximate a solution of the wave equation on an unbounded domain, consisting of the inner rectangle and the
outwards unbounded external layers and slices. Both equivalent viewpoints are occasionally referred to in the
following discussion.

The spectral discretization of the optical field is enforced by prescribing Dirichlet boundary conditions on the
external border lines z = z0, zNz

, x < x0 or x > xNx
and x = x0, xNx

, z < z0 or z > zNz
. One has to

restrict the simulations to configurations, for which the assumption of vanishing basis fields on these lines is
reasonable. The next section states the discretization more precisely.
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2.1 Basis fields & mode products

For the present 2D structures made of isotropic materials, the optical electromagnetic field splits into TE and
TM polarized parts. Due to the linearity of the problem, both parts can be treated separately (and the solutions
later superimposed, where necessary). The formulation below applies simultaneously to TE and TM polarized
fields.

We first focus on the decomposition into vertical slices, which represent the waveguide segments in a
conventional bidirectional eigenmode propagation algorithm. Within slice number s, the region (x, z) ∈
[x0, xNx

] × [zs−1, zs], the refractive index is constant along z, but x-dependent (piecewise constant). We
choose the eigenmodes associated with the multilayer slab profile of the slice as elements for the field expan-
sion in Section 2.2, where the mode spectrum is discretized by Dirichlet boundary conditions, i.e. the basic
components Ey (TE) or Hy (TM) of the mode profiles are assumed to vanish at x = x0 and x = xNx

, as well
as outside that interval.

Propagating and evanescent modes up to a certain order M x
s −1 are included in the expansions. We apply a nota-

tion close to that introduced in Ref. [12]. Profile symbols ψd
sm = (Ed

sm,x, Ed
sm,y, E

d
sm,z,H

d
sm,x,Hd

sm,y,H
d
sm,z)

collect the six electric and magnetic components of mode number m on slice s, the profile components are in
general complex valued functions of x, such that for the present lossless problems each component is either
purely real or purely imaginary. Modes that travel in the positive (forwards) and negative z-direction (back-
wards) are identified by symbols d = f and d = b. With each basis field a propagation constant βsm (real
for propagating fields, purely imaginary for evanescent modes) is associated, such that β > 0 (β < 0) for a
forwards (backwards) traveling propagating mode, or −iβ < 0 (−iβ > 0) for a forwards (backwards) traveling
evanescent mode.

For purposes of field projection and power summation, we employ the following product of two general elec-
tromagnetic fields ψ1 = (E1;H1) and ψ2 = (E2;H2):

(

ψ1;ψ2

)z

[xa,xb]
=

1

4

∫ xb

xa

(E∗

1,xH2,y − E∗

1,yH2,x + H∗

1,yE2,x − H∗

1,xE2,y)(x, z) dx . (1)

Here the asterisk denotes complex conjugation. The notation is meant to be stretched as required, e.g. the z-
position is omitted in case the expression is applied to two only x-dependent mode profiles. With the same field
substituted for both arguments, the product (1) computes the z-component of the time averaged Poynting vector
of that field. Assuming that equivalent profiles are employed for the directional mode variants, the power associ-
ated with each individual mode profile, used for purposes of normalization, reads Psm =

∣

∣

(

ψf
sm;ψf

sm

)

[x0,xNx
]

∣

∣,

if mode m is propagating, and Psm =
∣

∣

(

ψf
sm;ψb

sm

)

[x0,xNx
]

∣

∣ in case mode m is evanescent. See Ref. [12] for
the orthogonality properties of the basis mode sets, expressed by the product (1).

Upon viewing the structure alternatively as a stack of layers, an analogous spectral discretization procedure can
be applied. Layer l comprises the region (x, z) ∈ [xl−1, xl] × [z0, zNz

]; within each layer, the refractive index
is constant along the x-direction. The eigenmodes associated with these layers, now discretized by Dirichlet
boundary conditions at z = z0 and z = zNz

, constitute a second set of basis elements for the total field
expansion.

We use a hat accent to mark quantities that are related to the wave propagation along the vertical axis. Ac-
cordingly, the profile symbol of mode m on layer l, that travels upwards in the positive x-direction d = u or
downwards in the negative x-direction d = d, reads ψ̂

d

lm = (Ed
lm,x, Ed

lm,y, E
d
lm,z,H

d
lm,x,Hd

lm,y,H
d
lm,z). Each

profile is accompanied by a propagation constant β̂lm, with the sign convention as introduced above. Per layer
and direction of propagation, M z

l modes up to order M z
l − 1 are included in the expansions.

Analogously to Eq. (1), a product meant for fields ψ̂1 = (E1;H1) and ψ̂2 = (E2;H2) that travel along the
x-axis can be introduced, now with an integration along a horizontal line:

〈

ψ̂1; ψ̂2

〉x

[za,zb]
=

1

4

∫ zb

za

(E∗

1,yH2,z − E∗

1,zH2,y + H∗

1,zE2,y − H∗

1,yE2,z)(x, z) dz ; (2)

the power associated with the individual vertical mode profiles is expressed as P̂lm =
∣

∣

〈

ψ̂
u
lm; ψ̂

u
lm

〉

[z0,zNz
]

∣

∣, if

mode m is propagating, and P̂lm =
∣

∣

〈

ψ̂
u
lm; ψ̂

d
lm

〉

[z0,zNz
]

∣

∣ in case mode m is evanescent.
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Note that the formulation is somewhat redundant. Assuming that a horizontally traveling mode with profile
ψ(x) = (Ex, Ey, Ez,Hx,Hy,Hz)(x) and propagation constant β has been calculated, for a local refractive
index profile n(x) on an interval x ∈ [a, b]. Then the same function n, now thought as being rotated by 90◦

and viewed as the refractive index profile n(z) of a layer, supports a vertically traveling mode with profile
ψ̂(z) = (−Ez, Ey,−Ex,−Hz,Hy,−Hx)(z) and propagation constant β̂ = β on an interval z ∈ [a, b]. Hence
the entire set of basis modes can be represented by a uniform data structure.

2.2 Field ansatz

Using the symbols as introduced above and common complex notation, we write the following ansatz for the
optical field in the overlap region of slice s and layer l:

(

E

H

)

(x, z, t) =

Mx
s −1
∑

m=0

Fsm
1√
Psm

ψf
sm(x) eiωt − iβsm(z − zs−1)

+

Mx
s −1
∑

m=0

Bsm
1√
Psm

ψb
sm(x) eiωt + iβsm(z − zs)

+

Mz

l
−1

∑

m=0

Ulm
1

√

P̂lm

ψ̂
u
lm(z) eiωt − iβ̂lm(x − xl−1)

+

Mz

l
−1

∑

m=0

Dlm
1

√

P̂lm

ψ̂
d
lm(z) eiωt + iβ̂lm(x − xl),

(3)

valid for zs−1 < z < zs, s = 1, . . . , Nz , and xl−1 < x < xl, l = 1, . . . , Nx. Note that the coefficients Fsm

and Bsm of the forward and backward versions of mode m on slice s are relevant for all layers l = 1, . . . , Nx.
Likewise, the coefficients Ulm and Dlm of the upward and downward versions of mode m on layer l contribute
to the field on all slices s = 1, . . . , Nz .

A similar ansatz is used for the outer regions, where only modes traveling along the respective coordinate axes
are present. The field in the half-infinite slices s = 0 and s = Nz + 1 only consists of forward and backward
modes with coefficients F0m, B0m, FNz+1m, BNz+1 m. On the half-infinite layers l = 0 and l = Nx + 1, the
field is expanded solely into vertical, upwards and downwards traveling modes with coefficients U0m, D0m,
UNx+1 m, DNx+1 m. For the external regions the coordinate offsets in the exponentials are obsolete and formally
interpreted as z−1 = z0, zNz+1 = zNz

, x−1 = x0, xNx+1 = xNx
.

A given scattering problem prescribes the coefficients F0m, BNz+1 m, U0m, DNx+1 m of the incoming waves.
For a problem with guided wave input, typically only a few (or only one) of these amplitudes are nonzero,
which correspond to the approximations (Dirichlet boundary conditions) of the physically unbounded input
modes. A more general exciting field profile is to be expanded into the basis mode set on the respective slices
or layers, where for a physically relevant solution only propagating (i.e. non evanescent) modes contribute. One
is interested in all remaining coefficients, in particular in the amplitudes of the outgoing waves B0m, FNz+1 m,
D0m, UNx+1 m.

With the above mode normalization, orthogonality of the basis fields with respect to the products (1) and (2)
allows to write the total optical power that is sent into the structure as the sum of the squared input amplitudes:

Pin =
∑

m,propag.

|F0m|2 +
∑

m,propag.

|BNz+1 m|2 +
∑

m,propag.

|U0m|2 +
∑

m,propag.

|DNx+1m|2. (4)

Analogously, the total scattered, outgoing optical power reads

Pout =
∑

m,propag.

|B0m|2 +
∑

m,propag.

|FNz+1m|2 +
∑

m,propag.

|D0m|2 +
∑

m,propag.

|UNx+1 m|2. (5)

Energy conservation requires that these quantities coincide (there are no evanescent waves in the incoming
fields, hence the evanescent modes do not contribute to the power balance [12]). If external waveguide cores
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are present, one is usually interested in the guided part of the outwards scattered power. The sum in Eq. (5) is
then to be restricted to the coefficients of the interesting confined modes.

Now it is convenient to combine the previous coefficients and the mode normalization factors into dimensionless
mode amplitudes fsm = Fsm/P

1/2
sm , bsm = Bsm/P

1/2
sm , ulm = Ulm/P̂

1/2
lm , dlm = Dlm/P̂

1/2
lm . For a more

compact notation, these are merged into amplitude vectors f s = (fsm), bs = (bsm), ul = (ulm), dl = (dlm).

2.3 Algebraic procedure

Assuming that the basis modes are properly constructed, the superposition (3) satisfies the Maxwell equations
exactly in all points of the computational domain, with the exception of the slice and layer interfaces. The
coefficients of the expansion are to be determined such that across the interfaces the tangential components of
the total electric and magnetic field are continuous. Via the curl-equations, this implies suitable continuity or
discontinuity of the normal components of E and H.

2.3.1 Horizontal bidirectional eigenmode expansion

Consider an inner vertical interface first, that separates slices s and s + 1. The field expansions related to
the adjacent slices are evaluated at the interface position z = zs, and formally equated. The equation should
include only the tangential components Ex, Ey, Hx, Hy; only these are relevant for the product (1). Assuming

exact profiles ψ̂
d
lm(z) of the vertically traveling modes, the contributions from these basis fields to the equation

cancel in case of an inner interface with index s ∈ {1, . . . , Nz − 1}.

To extract algebraic relations between the involved coefficients, the equation is projected onto the basis modes
of the two slices by applying the products

(

ψd
sn; .

)

[x0,xNx
]
and

(

ψd
s+1 n; .

)

[x0,xNx
]
. In the first case one obtains

the following set of equations, written directly in matrix form:

D
s
dfT

sfs + D
s
dbbs = (Os

fd)
∗f s+1 + (Os

bd)
∗
T

s+1bs+1 , for d = f, b, (6)

where the asterisk denotes the adjoint. The elements of the directional overlap matrices are given by

(Ds
dr)nm =

(

ψd
sn;ψr

sm

)

[x0,xNx
]

and (Os
dr)nm =

(

ψd
s+1 n;ψr

sm

)

[x0,xNx
]
. (7)

The diagonal matrices Ds
dr contain the orthogonality properties of the basis modes [12] on a specific slice.

Overlaps between the mode profiles of different slices are stored in the operators Os
dr. The diagonal transfer

matrices

(Ts)nm = e−iβsm(zs − zs−1)δnm, (8)

represent the exponential dependence of the modal solutions on the propagation coordinate, here the z-axis,
with δnm = 1 if n = m, and δnm = 0 otherwise.

Likewise, the projection onto the basis fields of slice s + 1 yields the equation

O
s
dfT

sf s,+O
s
dbbs = D

s+1
df f s+1 + D

s+1
db T

s+1bs+1 , for d = f, b. (9)

By using the overlap matrices as defined in (7) as sub-matrices for the larger aggregates

D
s =

(

Ds
ff Ds

fb

Ds
bf Ds

bb

)

, O
s =

(

Os
ff Os

fb

Os
bf Os

bb

)

, (10)

and by combining these into the operators

M
s,− = (Ds)−1(Os)∗, M

s,+ = (Ds+1)−1
O

s, M
s,± =

(

M
s,±
ff M

s,±
fb

M
s,±
bf M

s,±
bb

)

, (11)
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Eqs. (6), (9) can be given the more compact form:

•

(

Tsf s

bs

)

=

(

M
s,−
ff M

s,−
fb

M
s,−
bf M

s,−
bb

)(

fs+1

Ts+1bs+1

)

,
•
(

f s+1

Ts+1bs+1

)

=

(

M
s,+
ff M

s,+
fb

M
s,+
bf M

s,+
bb

)(

Tsf s

bs

)

. (12)

Assume for the moment that only the system (12) determines what happens around the junction at z = zs. Then
f s and bs+1 must be regarded as given coefficients of incident waves; the junction scattering problem is to be
solved for the coefficients f s+1 and bs of the outgoing waves. One observes that the system (12) is twofold
overdetermined.

In the limit of an infinite number of terms, the modal basis functions used for the field expansions represent
complete sets of functions on the interval [x0, xNx

]. Hence, in this limit, the formal equality of fields that after
projection leads to Eqs. (6), (9), becomes exact; correspondingly Eqs. (6), (9) and likewise the first and second
part of Eq. (12) become equivalent.

The numerical implementation, however, requires a restriction to a finite, sufficiently large number of expansion
terms, where one can expect that the former statements are still approximately satisfied. To proceed, a subset
of the system (12) needs to be selected. We choose the sub-equations indicated by the symbols • in Eq. (12),
for the following reasons. Based on this choice, the algorithm as outlined below allows to avoid applying the
inverses of the matrices Ts (which would include exponentials growing with the slice length, related to the
presence of evanescent modes). The procedure is formally applicable to expansions with differing sizes M x

s

on each slice, and the algorithm is “as implicit as possible”. Concerning the numbers of expansion terms and
the extension of the slices and layers, the simulations appear to be unconditionally stable (cf. the corresponding
remarks in Ref. [13]). Perhaps other choices are possible and useful; what follows is based on the two equations

bs = M
s,−
bf f s+1 + M

s,−
bb T

s+1bs+1 , f s+1 = M
s,+
ff T

sfs + M
s,+
fb bs , (13)

established for each inner vertical interface at z = zs, s = 1, . . . , Nz − 1.

Now Eqs. (13) are to be combined, with a twofold aim. For the subsequent connection with the fields on the
outer slices and with the perpendicular field expansion, on the one hand one would like to relate the amplitudes
on slice s = 1 to those on slice s = Nz . On the other hand, the amplitudes on the intermediate slices are to be
expressed explicitly in terms of those on slices 1 and Nz .

As a fist step, Eqs. (13) are rearranged such that for each junction at z = zs the amplitudes of the “outgoing”
waves are explicitly given in terms of the amplitudes of the “incident” waves. After computing

Js
ff = (1 − M

s,+
fb M

s,−
bf )−1M

s,+
ff , Js

fb = (1 − M
s,+
fb M

s,−
bf )−1M

s,+
fb M

s,−
bb ,

Js
bf = (1 − M

s,−
bf M

s,+
fb )−1M

s,−
bf M

s,+
ff , Js

bb = (1 − M
s,−
bf M

s,+
fb )−1M

s,−
bb ,

(14)

this reads

fs+1 = Js
ffTsf s + Js

fbT
s+1bs+1 ,

bs = Js
bfT

sf s + Js
bbTs+1bs+1 ,

s = 1, . . . , Nz−1 . (15)

Then iteratively matrices are assembled that cover a sequence of slices in the same way, i.e. that for the sequence
of inner slices 2 to s relate the coefficients b1 and f s+1 of “outgoing” waves explicitly to the coefficients f 1

and bs+1 of “incident” modes (obviously this is relevant only for Nz ≥ 2):

fs+1 = Ks
ffT1f1 + Ks

fbT
s+1bs+1 ,

b1 = Ks
bfT

1f1 + Ks
bbTs+1bs+1 ,

s = 1, . . . , Nz−1 . (16)

Starting with K1
dr = J1

dr and using the intermediate quantities

As
ff = (1 − Ks

fbT
s+1J

s+1
bf Ts+1)−1Ks

ff , As
fb = (1 − Ks

fbT
s+1J

s+1
bf Ts+1)−1Ks

fbT
s+1J

s+1
bb ,

As
bf = (1 − J

s+1
bf Ts+1Ks

fbT
s+1)−1J

s+1
bf Ts+1Ks

ff , As
bb = (1 − J

s+1
bf Ts+1Ks

fbT
s+1)−1J

s+1
bb ,

(17)
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the matrices Ks
dr can be calculated along the recipe:

K
s+1
ff = J

s+1
ff Ts+1As

ff , K
s+1
fb = J

s+1
ff Ts+1As

fb + J
s+1
fb ,

K
s+1
bf = Ks

bf + Ks
bbTs+1As

bf , K
s+1
bb = Ks

bbTs+1As
bb .

(18)

After the final step, the matrices K
Nz−1
dr cover the entire inner sequence of slices, as required:

fNz
= K

Nz−1
ff T1f1 + K

Nz−1
fb TNzbNz

,

b1 = K
Nz−1
bf T1f1 + K

Nz−1
bb TNzbNz

.
(19)

In a kind of backsubstitution process, the system is solved for the intermediate coefficients, given the amplitudes
of the “incident” modes on the outer slices of the sequence (this is relevant only if Nz ≥ 3). Starting with
S

Nz−1
dr = A

Nz−2
dr , iteratively matrices Ss

dr are built according to the equations

S
s−1
ff = A

s−2
ff + A

s−2
fb TsSs

bf , S
s−1
fb = A

s−2
fb TsSs

bb ,

S
s−1
bf = A

s−2
bf + A

s−2
bb TsSs

bf , S
s−1
bb = A

s−2
bb TsSs

bb ,
(20)

such that

fs = Ss
ffT1f1 + Ss

fbT
NzbNz

,
bs = Ss

bfT
1f1 + Ss

bbT
NzbNz

.
(21)

As an intermediate summary, these formulas allow to compute matrices Kdr = K
Nz−1
dr and Ss

dr that connect all
amplitudes of horizontally traveling modes on the inner slices in an explicit way:

(

fNz

b1

)

=

(

Kff Kfb

Kbf Kbb

)(

T1f1

TNzbNz

)

,

(

f s

bs

)

=

(

Ss
ff Ss

fb

Ss
bf Ss

bb

)(

T1f1

TNzbNz

)

, s = 2, . . . , Nz − 1. (22)

Basically, the preceding formalism represents a conventional BEP algorithm, though one that takes into account
simultaneous influx from both ends of the slice sequence.

2.3.2 Vertical bidirectional eigenmode expansion

We now switch to a viewpoint, that considers the structure under investigation as a stack of layers, in place of
the former sequence of slices. By substituting layers for slices, replacing the product (1) by (2), and applying
projections onto the basis modes related to the decomposition into layers, connector matrices for the vertical
wave propagation can be established in a precisely analogous way. The resulting relations read

(

uNx

d1

)

=

(

K̂uu K̂ud

K̂du K̂dd

)(

T̂1u1

T̂NxdNx

)

,

(

ul

dl

)

=

(

Ŝl
uu Ŝl

ud

Ŝl
du Ŝl

dd

)(

T̂1u1

T̂NxdNx

)

, l = 2, . . . , Nx − 1. (23)

Here again the hat accent identifies the quantities related to the “vertical” BEP setting.

2.3.3 Combination of the horizontal and vertical expansions

It remains to look at the boundaries of the computational window, i.e. at the interfaces between the inner
rectangle and the outer, half infinite slices or layers, respectively. This will lead to a connection of the two —
so far independent — BEP representations for the interior.

We first focus on the left vertical boundary of the computational window. On slice 0 on the left of the junction
at z = z0, the field expansion consists of forwards and backwards traveling modes only, while in slice 1 on the
right of the junction, the full expansion (3) applies. As before, the components Ex, Ey, Hx, Hy, evaluated at
z = z0, are equated. With the vertical mode profiles vanishing on the left of the junction, now the contributions
of the upwards and downwards traveling basis fields do not cancel in these equations. We follow the procedure
along Eqs. (6)–(13), where additional terms related to the coefficients ul and dl have to be taken into account.
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The projection
(

ψd
0n; .

)z0

[x0,xNx
]

of the equated expansions onto the basis profiles of the external slice 0 results
in the equations

D
0
dff0 + D

0
dbb0 = (O0

fd)
∗f1 + (O0

bd)
∗
T

1b1 +

Nx
∑

l=1

C
0l z0

du ul +

Nx
∑

l=1

C
0l z0

dd dl , for d = f, b. (24)

Definitions (7) and (8) apply; additionally the cross-overlaps

(Csl z
dr )nm =







(

ψd
sn; ψ̂

u
lm(z) e−iβ̂lm(x − xl−1)

)z

[xl−1,xl]
for r = u,

(

ψd
sn; ψ̂

d
lm(z) eiβ̂lm(x − xl)

)z

[xl−1,xl]
for r = d,

(25)

appear. Eqs. (23) can be used to eliminate the coefficients related to the internal layers. That leads to the simpler
equations

D
0
dff0 + D

0
dbb0 = (O0

fd)
∗f1 + (O0

bd)
∗
T

1b1 + V
0 z0

du u1 + V
0 z0

dd dNx
, for d = f, b, (26)

where the summations are now shifted to the matrices

V
s z
du =

Nx−1
∑

l=2

(

C
sl z
du Ŝ

l
uu + C

sl z
dd Ŝ

l
du

)

T̂
1 + C

s1 z
du + C

sNx z
du K̂uuT̂

1 + C
s1 z
dd K̂duT̂

1 ,

V
s z
dd =

Nx−1
∑

l=2

(

C
sl z
du Ŝ

l
ud + C

sl z
dd Ŝ

l
dd

)

T̂
Nx + C

sNx z
dd + C

s Nx z
du K̂udT̂

Nx + C
s1 z
dd K̂ddT̂

Nx .

(27)

Likewise, the projection
(

ψd
1n; .

)z0

[x0,xNx
]

onto the modes of slice 1 leads to the expressions

O
0
dff0 + O

0
dbb0 = D

1
dff1 + D

1
dbT

1b1 + V
1 z0

du u1 + V
1 z0

dd dNx
, for d = f, b. (28)

Using the definitions (10), (11) and additionally

V
s z =

(

Vs z
fu Vs z

fd

Vs z
bu Vs z

bd

)

, R
0,− = (D0)−1

V
0 z0 , R

0,+ = (D1)−1
V

1 z0 , R
0,± =

(

R
0,±
fu R

0,±
fd

R
0,±
bu R

0,±
bd

)

, (29)

Eqs. (26), (28) can be given the form

•

(

f0

b0

)

=

(

M
0,−
ff M

0,−
fb

M
0,−
bf M

0,−
bb

)(

f1

T1b1

)

+

(

R
0,−
fu R

0,−
ff

R
0,−
bu R

0,−
bd

)(

u1

dNx

)

,

•
(

f1

T1b1

)

=

(

M
0,+
ff M

0,+
fb

M
0,+
bf M

0,+
bb

)(

f0

b0

)

−
(

R
0,+
fu R

0,+
ff

R
0,+
bu R

0,+
bd

)(

u1

dNx

)

.

(30)

As for the internal interfaces, the system (30) is twofold overdetermined; only the two rows marked by the
symbol •, i.e. only the equations

b0 = M
0,−
bf f1 + M

0,−
bb T1b1 + R

0,−
bu u1 + R

0,−
bd dNx

,

f1 = M
0,+
ff f0 + M

0,+
fb b0 − R

0,+
fu u1 − R

0,+
fd dNx

(31)

enter the further procedure.

Analogously, the remaining boundaries of the computational window can be handled. Using the definitions
(10), (11), (27), and

R
Nz ,− = (DNz)−1

V
Nz zNz , R

Nz ,+ = (DNz+1)−1
V

Nz+1 zNz , R
Nz,± =

(

R
Nz ,±
fu R

Nz ,±
fd

R
Nz ,±
bu R

Nz ,±
bd

)

, (32)
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one obtains the equations

bNz
= M

Nz ,−
bf fNz+1 + M

Nz ,−
bb bNz+1 − R

Nz,−
bu u1 − R

Nz ,−
bd dNx

,

fNz+1 = M
Nz ,+
ff TNzfNz

+ M
Nz,+
fb bNz

+ R
Nz ,+
fu u1 + R

Nz,+
fd dNx

(33)

for the right, vertical boundary at z = zNz
.

With the cross-overlaps on the upper and lower horizontal interfaces

(Ĉls x
dr )nm =







〈

ψ̂
d
ln;ψf

sm(x) e−iβsm(z − zs−1)
〉x

[zs−1,zs]
for r = f,

〈

ψ̂
d
ln;ψb

sm(x) eiβsm(z − zs)
〉x

[zs−1,zs]
for r = b,

(34)

with the related matrices

V̂
l x
df =

Nz−1
∑

s=2

(

Ĉ
ls x
df S

s
ff + Ĉ

ls x
db S

s
bf

)

T
1 + Ĉ

l1 x
df + Ĉ

l Nz x
df KffT

1 + Ĉ
l1 x
db KbfT

1 ,

V̂
l x
db =

Nz−1
∑

s=2

(

Ĉ
ls x
df S

s
fb + Ĉ

ls x
db S

s
bb

)

T
Nz + Ĉ

l Nz x
db + Ĉ

l Nz x
df KfbT

Nz + Ĉ
s1 x
db KbbT

Nz ,

(35)

and assignments analogous to Eqs. (29), (32)

V̂
l x =

(

V̂l x
uf V̂l x

ub

V̂l x
df V̂l x

db

)

, R̂
0,− = (D̂0)−1

V̂
0 x0 , R̂

0,+ = (D̂1)−1
V̂

1 x0 , R̂
0,± =

(

R̂
0,±
uf R̂

0,±
ub

R̂
0,±
df R̂

0,±
db

)

, (36)

R̂
Nx,− = (D̂Nx)−1

V̂
Nx xNx , R̂

Nx,+ = (D̂Nx+1)−1
V̂

Nx+1xNx , R̂
Nx,± =

(

R̂
Nx,±
uf R̂

Nx,±
ub

R̂
Nx,±
df R̂

Nx,±
db

)

, (37)

one arrives at the equations

d0 = M̂
0,−
du u1 + M̂

0,−
dd T̂1d1 + R̂

0,−
df f1 + R̂

0,−
db bNz

,

u1 = M̂
0,+
uu u0 + M̂

0,+
ud d0 − R̂

0,+
uf f1 − R̂

0,+
ub bNz

(38)

for the mode amplitudes around the horziontal interface at x = x0, and

dNx
= M̂

Nx,−
du uNx+1 + M̂

Nx,−
dd dNx+1 − R̂

Nx,−
df f1 − R̂

Nx,−
db bNz

,

uNx+1 = M̂
Nx,+
uu T̂NxuNx

+ M̂
Nx,+
ud dNx

+ R̂
Nx,+
uf f1 + R̂

Nx,+
ub bNz

(39)

for the coefficients related to the interface at x = xNx
.

Finally, one has to combine Eqs. (31), (33), (38), and (39). A possible solution procedure starts with eliminating
the coefficients fNz

, b1, uNx
, d1, by using the first equalities of Eqs. (22), (23). This results in explicit

dependences of the primary unknowns b0, fNz+1, d0, uNx+1 on the coefficients f 1, bNz
, u1, dNx

of the
inwards traveling waves on the outermost slices and layers inside the computational window:

fNz+1 = M
Nz ,+
ff TNzKffT1f1 + (MNz ,+

ff TNzKfbT
Nz + M

Nz,+
fb )bNz

+ R
Nz ,+
fu u1 + R

Nz ,+
fd dNx

,

b0 = (M0,−
bf + M

0,−
bb T1KbfT

1)f1 + M
0,−
bb T1KbbTNzbNz

+ R
0,−
bu u1 + R

0,−
bd dNx

,

uNx+1 = R̂
Nx,+
uf f1 + R̂

Nx,+
ub bNz

+ M̂
Nx,+
uu T̂NxK̂uuT̂

1)u1 + (M̂Nx,+
uu T̂NxK̂udT̂Nx + M̂

Nx,+
ud )dNx

,

d0 = R̂
0,−
df f1 + R̂

0,−
db bNz

+ (M̂0,−
du + M̂

0,−
dd T̂1K̂duT̂1)u1 + M̂

0,−
dd T1K̂ddT̂

NxdNx
,

(40)

Substituting these expressions into the remaining four matrix equations results in the following linear system









Xff Xfb Xfu Xfd

Xbf Xbb Xbu Xbd

Xuf Xub Xuu Xud

Xdf Xdb Xdu Xdd

















f1

bNz

u1

dNx









=











M
0,+
ff f0

M
Nz ,−
bb bNz+1

M̂
0,+
uu u0

M̂
Nx,−
dd dNx+1











, (41)
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with submatrices

Xff = 1 − M
0,+
fb (M0,−

bf + M
0,−
bb T1KbfT

1), Xfb = −M
0,+
fb M

0,−
bb T1KbbTNz ,

Xfu = R
0,+
fu − M

0,+
fb R

0,−
bu , Xfd = R

0,+
fd − M

0,+
fb R

0,−
bd ,

Xbf = −M
Nz,−
bf M

Nz ,+
ff TNzKffT1, Xbb = 1 − M

Nz ,−
bf (MNz ,+

fb + M
Nz,+
ff TNzKfbT

Nz),

Xbu = R
Nz ,−
bu − M

Nz ,−
bf R

Nz ,+
fu , Xbd = R

Nz,−
bd − M

Nz,−
bf R

Nz ,+
fd ,

Xuf = R̂
0,+
uf − M̂

0,+
ud R̂

0,−
df , Xub = R̂

0,+
ub − M̂

0,+
ud R̂

0,−
db ,

Xuu = 1 − M̂
0,+
ud (M̂0,−

du + M̂
0,−
dd T̂1K̂duT̂

1), Xud = −M̂
0,+
ud M̂

0,−
dd T̂1K̂ddT̂

Nx ,

Xdf = R̂
Nx,−
df − M̂

Nx,−
du R̂

Nx,+
uf , Xdb = R̂

Nx,−
db − M̂

Nx,−
du R̂

Nx,+
ub ,

Xdu = −M̂
Nx,−
du M̂

Nx,+
uu T̂NxK̂uuT̂1, Xdd = 1 − M̂

Nx,−
du (M̂Nx,+

ud + M̂
Nx,+
uu T̂NxK̂udT̂Nx),

(42)

where the given coefficients f 0, bNz+1, u0, dNx+1 of the incoming waves on the external regions form the
right hand side. Via Eqs. (22), (23), and (40), a solution of Eq. (41) determines all unknown coefficients in the
expansion (3), i.e. solves the scattering problem.

3 Numerical examples

While a detailed study of convergence properties of the QUEP scheme remains beyond the scope of this paper,
we give a few remarks on observations during the practical execution of the simulations.

The scheme has been implemented using the object-oriented features of the C++ language, as close as possible
along the abstract formulation of Section 2. The implementation rests on a mode solver for multilayer dielectric
slab waveguides. For the present lossless structures, the basis fields can be restricted to profiles with real
transverse components, and either purely real or purely imaginary propagation constants. The internal mode
representation as well as the computation of overlap integrals is kept as far as possible on an analytical level.

The mode solver engine relies on a search algorithm along the real axis of squared propagation constants, driven
by the nodal properties of the basis modes. The routines have to work reliably for rather nonstandard refractive
index profiles, that emerge from the alternative horizontal and vertical viewpoints. Where applicable, symmetry
properties are exploited to resolve mode degeneracies. In a few instances, permittivity profiles become relevant
that consist of individual regions with high refractive index, separated by a relatively large low index gap
(examples are the central vertical segment and the central horizontal layer in the photonic crystal structure of
Section 3.5). For the lowest order modes with exponential shapes in the intermediate low index region, the high
index parts are numerically decoupled. The mode solver treats these cases accordingly: Up to a suitable limit
of effective index, the lowest order basis fields are determined separately for the decoupled regions, and then
joined with the higher oder modes computed on the entire interval to form the full expansion basis.

The QUEP algorithm turns out to be quite robust in general, where the quality of the approximation is deter-
mined by the number of expansion terms used, and by the extension of the computational window. Values
for these parameters are given for the specific examples in Sections 3.1–3.5. So far the choice of the window
boundaries x0, xNx

, z0, zNz
is a matter of intuition (and of tests on the stability of specific results versus the

boundary positions), where the extension of the guided modes in the problem can give an orientation. In the
limit of infinite expansions, the completeness properties of the basis mode sets guarantee in principle a perfect
matching of the fields at the horizontal and vertical interfaces. For a finite set of basis modes the adjacent
fields can match more or less adequately, depending on the structure under consideration. Apart from an er-
roneously discontinuous field, an insufficient number of expansion terms usually shows up by a violation of
power conservation.

Occasionally, when computing series of varying configurations using fixed settings for the computational win-
dow and the number of basis modes, singular instabilities (i.e. few values off an otherwise straight line) were
observed. If magnified, these instabilities exhibit a resonant-like behaviour, with respect to more or less all
structural and computational parameters. We did not perceive a correlation with singular basis mode proper-
ties, e.g. a mode approaching a cut-off configuration. The phenomenon appears to be more pronounced for
simulations of TM polarized light, where the electric field components are known to exhibit sharp singularities
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around dielectric corners [25, 26]. Drastically increasing the number of expansion terms leads again to regular
results, at the cost of a high computational effort, which does not seem to be adequate when comparing with
neighboring configurations in a series of simulations.

Fortunately, the singular instances are always accompanied by pronounced errors in the power in- and outflow
balance. Hence, although the precise origin of the instabilities remains unclear, we could apply the following
practical approach to regularize the computations. The computational window should ideally not influence the
results at all, apart from the corner points; this in fact holds reasonably well in case of the regular configurations.
Nevertheless, the shape of the nonguided basis modes is dominated by the position of the window boundaries.
A particular mismatch of basis mode sets in case of a singular configuration can thus be altered effectively by
shifting x0, xNx

, z0, zNz
, and here one observes indeed a strong influence of these positions. Therefore, a

solution of Eqs. (41) is accepted, if the ratio of the total input and output power is calculated within a narrow
interval around 1 (uniform limits e.g. used for the waveguide crossings in Section 3.3 (TM) are [0.995, 1.002]).
Otherwise simulations of the same structure with slightly shifted window boundaries (displacement for Sec-
tion 3.3, TM: subsequently 0.05µm, 0.1µm, 0.2µm) are substituted until the power conservation criterion is
satisfied. This strategy leads to the more or less smooth results as shown in Sections 3.1–3.5.

The computational effort of a QUEP simulation is roughly comparable to two times a BEP simulation of the
structure under investigation, where first the sequence of inner vertical slices, second the sequence of inner
horizontal layers is considered. This corresponds to the procedure that leads to Eqs. (22) and (23). Additionally,
the system (41) is to be analyzed once. Hence the largest matrix for which a linear system of equations is to be
solved is of a size (Mx

1 + Mx
Nz

+ M z
1 + M z

Nx
) × (Mx

1 + Mx
Nz

+ M z
1 + M z

Nx
), or of a size (2Mx + 2Mz) ×

(2Mx +2Mz) in a setting with uniform expansion terms M x
s = Mx and M z

l = Mz , i.e. of about four times the
dimension of the matrices that are to be inverted in the inner BEPs. Note that the BEP parts of the procedure
could be regarded as a way to solve systems of linear equations for 2(Nz + 1)Mx unknowns in the slice
decomposition, or for 2(Nx + 1)Mz unknowns in the layer decomposition. In total these are systems (though
with a specific block structure) far larger than the dimension of (41). Obviously the effort depends crucially on
the numbers Nz and Nx of slices and layers; the solution of Eq. (41) does not dominate the operation count.

3.1 Gaussian beams in free space

Wave propagation in free space is selected as a first, most simple test. Figure 2 illustrates field profiles as
predicted by the QUEP algorithm, for Gaussian beams excited on arbitrary sides of the inner computational
window. The field is discretized by Mx = Mz = 150 Fourier components along both coordinate axes, on a
window of [0, 15.1]µm × [0, 15.1]µm. Apart from the inner rectangle, the plots include parts of the external
regions as well; the wedges at the corners indicate the outer Dirichlet boundaries.

Inset (a) shows a beam traversing the computational window along the z-axis, and the corresponding spreading
of the Gaussian profile. This is what can be expected from a conventional BEP implementation. According
to (b) and (c), here beams can be launched along the vertical x-axis as well, or simultaneously from all four
sides; the two axes are treated alike. For parts (d), (e), and (f), beams are launched on one of the vertical sides
under a higher angle, such that they leave the window via one of the horizontal sides. With the QUEP approach
fully transparent boundary conditions are realized, that allow for simultaneous influx and outflux along the four
edges of the inner computational window.

Similar calculations should be possible with a conventional BEP scheme as well, if suitably adjusted transparent
boundary conditions (typically perfectly matched layers, see e.g. [14]) are included. This would require to rotate
the simulation setting by 90◦ (b,c), to employ a formulation with double sided influx (c, f), and to superimpose
four (one sided influx) or two (double sided influx) separate simulations for computing the interference patterns
in (c). Note that such a superposition approach would be considerably more difficult if guided wave influx and
outflux along more than one coordinate axis is to be modeled, as in the examples of Sections 3.3–3.5.

The field plots show only minor influence of the corner points, where the basis components Ey (TE) or Hy

(TM) are enforced to be zero. Waves with cylindrical shape are visible, originating from these points, with
major amplitudes in the external regions x, z < 0 or x, z > 15.1µm that do not belong to the actual computa-
tional window. Within the present formulation, the remnant small perturbations inside the window can only be
suppressed by enlarging the computational domain, or by modifying the position or aspect ratio of the window.
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Figure 2: Propagation of Gaussian beams, TE waves (λ = 1 µm) in a homogeneous medium, n = 1.0. The plots show
snapshots of the optical electric field profile Ey. (a) – (c): Beams (width 4 µm, tilt angle 10◦, offset 2 µm with respect to
the center of the window) are launched from the left and bottom edges, and simultaneously from all four edges. (d) – (f):
Centered beams, now with a tilt angle of 45◦, are launched such that the rays leave the computational window across the
upper and lower horizontal edges, while they are excited on the left and right edges of the domain.

3.2 Waveguide Bragg gratings

As an example for a more involved structure where transparent boundaries are essential, we consider a
waveguide-Bragg-grating with varying etching depth, used as a benchmark problem to compare different mod-
eling tools in Ref. [27]. Figure 3 introduces the geometry.

x

z

Pin

PR

PT

Λg
1 2 . . . . . . Ng

ns

na

0

de
dg ng

Figure 3: A waveguide-Bragg-grating, benchmark problem from Ref. [27]. Ng = 20 grooves of width g = Λ/2 and depth
de are etched into a slab of thickness dg = 0.5 µm, with a period Λ = 0.430 µm. ns ≈ 1.45, ng ≈ 1.99, and na = 1.0 are
the refractive indices of the substrate, film, and cover layers.

The grating is excited by the guided, TE polarized mode of the outer slab waveguide; interest is in the relative
guided transmitted and reflected power fractions. The benchmark requires to incorporate the realistic wave-
length dispersion of the core material, according to a recipe as detailed in Ref. [27]. The dispersion is included
in all computations underlying the curves of Figure 4, where, on the scale of the figure, only very minor differ-
ences to results for ns = 1.45, ng = 1.99 appear. All QUEP results are obtained with a computational window
[z0, z41] × [x0, x4,5] = [−1.8, 10.185]µm × [−4, 2]µm, discretized uniformly by Mz = 120 and Mx = 60
basis functions.

The curves labeled “BEP, PML b.c.” correspond to the BEP2 results of Ref. [27], computed by means of
a bidirectional eigenmode propagation algorithm [28, 7] with perfectly matched layer boundary conditions
[29, 30]. The comparison to other, entirely different approaches in Ref. [27] gives some confidence that these
results can serve as a reliable reference. One observes an excellent agreement with the QUEP results. In
contrast to the reference BEP, the periodicity of the grating is not exploited in the QUEP formalism. Therefore
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Figure 4: Spectral response of
waveguide Bragg gratings accord-
ing to the specification of Figure 3.
The plots show the relative guided
transmission PT and reflection PR
as a function of the vacuum wave-
length λ, for three different etch-
ing depths de. Bold continuous
lines indicate power levels as pre-
dicted by the present method. The
thin continuous lines are results
of a conventional BEP technique,
with Dirichlet boundary conditions.
Bold dashed lines correspond to ref-
erence data from Ref. [27], com-
puted by means of a BEP algorithm
with PML boundary conditions.

the computation times are not comparable; the present QUEP algorithm is certainly not a method of choice in
case of piecewise periodic configurations, where a simulation could make use of the Bloch- or Floquet-theorem.

For comparison, Figure 4 includes also curves for BEP computations with basis fields defined by Dirichlet
boundary conditions (actually half of the QUEP basis fields), on the same rather narrow vertical window
x ∈ [−4, 2]µm as used for the QUEP simulation. While one finds a more or less satisfying agreement with
the more sophisticated approaches in the long wavelength regions, for shorter wavelengths the behaviour of
the “Dirichlet BEP” becomes entirely irregular. The results in this wavelength region depend strongly on the
boundary positions, indicating that reflections from these boundaries disturb the computations around the cor-
rugated waveguide core. Obviously these reflections can be suppressed effectually by means of the additional
vertical eigenmode expansion in the QUEP approach.

3.3 Waveguide crossings

Structures with guided wave input and output along both relevant coordinate axes are most interesting in the
present context. Figure 5 shows results for a series of waveguide crossings with varying width of the vertical
core. Light with fixed vacuum wavelength is launched via the fundamental, alternatively TE or TM polarized
mode of the horizontal waveguide. The plots show only the guided parts of the outgoing power fractions.
The QUEP simulations use uniformly Mx × Mz = 120 × 120 expansion terms on a symmetric 6µm × 6µm
computational window. In particular for the TM computations in this example, the regularization technique as
discussed at the beginning of Section 3 had to be applied.

As it is to be expected for the high refractive index contrast waveguides, the simulations yield quite different
transmission characteristics for TE and TM polarized light. Concerning the losses and the guided power scat-
tered into the vertical waveguide, the intersection has a much stronger influence on the TE waves than on TM
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Figure 5: Simulations of waveguide crossings, dependence of the relative guided powers PR, PT, PU, PD, that are
reflected, transmitted, and upwards and downwards scattered, respectively, on the width v of the vertical core, for TE
polarization (left), TM polarization (right), and a vacuum wavelength of λ = 1.55 µm. The horizontal guide (thickness
h = 0.2 µm, refractive indices nb = 1.45 (background) and ng = 3.40 (core)) is intersected by a vertical waveguide of
variable width.

polarized light, while the guided reflections are more pronounced for TM polarization than for TE light.

Perhaps the difference in the strength of the vertical scattering could be explained by imagining a properly
polarized oscillating dipole at the exit (x = 0, z = −v/2) of the left half of the horizontal core. While
its radiation covers both the x- and z-directions in the TE case, for TM polarization the (2D) radiation is
oriented more or less along the z-axis. Hence only minor power fractions of TM light are guided upwards and
downwards.
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Figure 6: Light propagation through the waveguides crossings of Figure 5, snapshots of the optical electric field Ey (TE,
top row) or of the basic magnetic field component Hy (TM, bottom row), for different widths v of the vertical core.

One observes an oscillatory behaviour of all curves in Figure 5. For a series of configurations with maximum
guided reflection, Figure 6 collects snapshots of the basis field components, evaluated at times where the partly
standing waves in the input waveguide are at extremal levels. Apparently the oscillations correspond to the
growing number of guided modes that are supported by the vertical core: At least for the TE polarized fields
one can identify the nodal lines of the vertically propagating modes, although the actual field will be the beating
pattern of a mode superposition. With growing v, the vertically traveling fields that eventually become guided
TE modes (propagating, non evanescent fields with effective indices below the background level nb) carry some
power even below cut-off. Therefore one observes the discontinuities in the curves for PD and PU at the widths
v where the wave is actually counted as a guided mode. This is obviously not the case for TM polarization.

Widths v with vanishing reflection are present for both polarizations. Probably the almost periodic oscillation
of PR with v can be interpreted as a Fabry-Perot effect of the transition across the vertical core: Apart from
sign changes one observes very similar field patterns (e.g. distances of the first maximum / minimum from the
junctions) in the horizontal input and exit waveguide segments. For the extremal configurations of Figure 6,
integer multiples of half wavelengths inside the vertical intersection match the same field extensions in the left
and right parts of the horizontal core.
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3.4 Square resonator with perpendicular ports

A square microresonator as investigated in [31, 13] serves as an example how the present approach can ade-
quately capture resonance phenomena. We consider a cavity constructed on the basis of a slab mode viewpoint
as outlined in [32], here a three port configuration with two perpendicular bus waveguides according to the
sketch of Figure 7. The cavity is excited via the fundamental, right traveling mode of the lower waveguide. In-
terest is in the wavelength dependence of the guided power transfer. The QUEP results in Figure 7 are obtained
uniformly with 100 × 100 expansion terms on a computational window [−4, 4]µm × [−4, 4]µm.
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Figure 7: Spectral power transmission through a square resonator with perpendicularly oriented port waveguides. A cavity
of width and height W = 1.786 µm couples the two identical cores with a thickness w = 0.1 µm. Refractive indices of
ng = 3.4 and nb = 1.0 were assumed for the guiding regions and the background, respectively. The horizontal and
vertical gaps are gh = 0.355 µm and gv = 0.385 µm; the vertical waveguide ends q = 0.355 µm away from the horizontal
core. The curves indicate the relative levels of reflected, transmitted, and upwards scattered guided power PR, PT, PU as
a function of the vacuum wavelength λ, for TE polarized input light.

Off-resonance, most of the input light just passes along the square cavity. In case of a resonance, apart from
losses to radiation the cavity scatters major parts of the input power into the three output ports. For the pro-
nounced resonance at λ = 1.55µm, an almost ideal configuration is realized with a quarter reflection, a quarter
transmission, and with half the input power scattered into the vertical bus waveguide.
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Figure 8: Light propagation through the resonator configuration of Figure 7 at the resonance wavelength λ = 1.55 µm.
The plots show snapshots of the TE field component Ey, at four times t that are equidistantly distributed over one time
period T = 5.17 fs. The simulation predicts levels of PR = 22%, PT = 22%, and PU = 46% for the outgoing relative
guided power.

Figure 8 illustrates field pattern that accompanies the resonance. One observes outgoing traveling waves in the
upper and lower right ports, a partly standing and partly traveling wave in the lower left input port. Inside the
square cavity a typical standing wave pattern establishes, here a high-quality bimodal resonance, made up of
the 4th and 6th order TE modes of a symmetric slab of thickness W , with refractive index contrast ng/nb at
the design wavelength λ = 1.55µm. The second resonance at λ = 1.579µm corresponds to a single mode
excitation based on the 5th order slab mode, with much lower quality. Details on these constructions can be
found in Ref. [32].
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3.5 Photonic crystal bend

A 90 degree bend of a 2D photonic crystal waveguide constitutes the last, most involved example. We adopted
a “classical” parameter set as introduced in [33, 2]. Figure 9 sketches the configuration and shows the spectral
transmission and reflection of the bend. The simulation includes the transition to conventional input- and output
waveguides, according to an optimization in [34]. While on the one hand this seems to be quite adequate for
a realistic simulation, it also emphasizes a restriction of the present modeling scheme: The exterior regions
need to be homogeneous along the respective coordinate axes; half infinite periodic permittivity profiles as
required for a simulation of the isolated photonic crystal bend without transitions can not be represented by the
expansions (3).
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Figure 9: Spectral response of a photonic crystal bend according to a specification of Refs. [33, 2]: square silicon rods
(nr = 3.4) of width 0.150 µm in air (nb = 1.0), arranged in a square lattice with period p = 0.6 µm and Nr = 4 rows of
rods in the reflector regions around the photonic crystal channel. The simulations include the transitions to conventional
guiding cores of width w = 0.5 µm and refractive index ng = 1.8. PR and PT are the relative guided power fractions that
are reflected and transmitted through the bend.

The QUEP simulations use Mx = Mz = 120 expansion terms on each slice / layer, on a computational
window [−1.2, 6.15]µm × [−1.2, 6.15]µm. For this structure establishing the basis mode sets for the various
1D refractive index profiles turns out to be more involved, i.e. the approaches mentioned in the beginning of
Section 3 are required. Symmetry properties allow to separate nearly degenerate modes in the slices/layers with
the inner periodic rod/air pattern. The decoupling strategy can be applied to the central vertical segment (and
the central horizontal layer), consisting of the upper grating region, and the lower external core part, separated
by a wide low index region.

Originally the conventional port waveguides were shaped for low losses at the transition to the photonic crystal
waveguides [34], at a wavelength of λ = 1.5µm. The present simulations of the full structure, however, predict
transmission maxima with almost vanishing reflection at two quite different wavelengths. The corresponding
field pattern in Figure 10 show partly standing waves along the line of missing rods in the photonic crystal
region, with 2 wavelengths (λ = 1.551µm) or 2.5 wavelengths (λ = 1.461µm) fitting between the two junc-
tions. Apparently the transmission maxima can be understood as Fabry-Perot resonances in the photonic crystal
channel, established by the transitions between the photonic crystal waveguide and the external conventional
cores.
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Figure 10: Light propagation along the photonic crystal bend as introduced in Figure 9, snapshots of the electric field
component Ey of the TE fields, for extremal configurations of the field in the photonic crystal region. The vacuum
wavelengths λ = 1.461 µm (left) and λ = 1.551 µm (right) correspond to the transmission maxima / reflection minima in
Figure 9.

4 Concluding remarks

A simulation technique for problems of fixed-frequency wave propagation in integrated optics has been dis-
cussed, intended for 2D structures with piecewise constant, rectangular, so far lossless refractive index profiles.
With the rigorous expansion of the optical electromagnetic field into eigenmodes that propagate along two per-
pendicular coordinate axes, one can view the fields generated by the QUEP technique as a superposition of two
fields obtained by suitably connected, perpendicularly oriented BEP simulations.

The quadridirectional mode expansion provides a completely equivalent treatment of the wave propagation
along the two relevant axes. One can view the approach as a way to realize transparent boundaries for the rectan-
gular central region on an unbounded, cross-shaped computational domain. Modeling simultaneous guided and
nonguided influx and outflux over all four boundaries is straightforward; the computational effort remains mod-
erate. While preserving the advantages (accuracy, efficiency, interpretability) of the BEP tools, the proposed
technique is capable to adequately capture the phenomena related to omnidirectional 2D light propagation.

Certainly different formulations of the present algorithm are possible. At least for the TE case, the scattering
problem is governed by a standard scalar Helmholtz equation. The products (1) and (2) can be replaced by
common L2-inner products, with integrations along either the x- or z-directions. Then the projection on inwards
and outwards propagating fields, leading e.g. to Eqs. (12) and (24), becomes equivalent to the L2-projection of
equalities for the scalar field itself, and for the derivative of the field along the direction perpendicular to the
respective interfaces. The subsequent algebraic procedure should be more or less the identical. However, the
formulation given in Section 2 is based on well established, more physical notions, and covers both the TE and
TM cases.

Naturally, when compared to methods based on rigorous spatial discretizations, the present quasi-analytical
approach is applicable only to a smaller range of problems. Nevertheless, within these limits the method
permits sufficient flexibility to study systems that are of interest in the current integrated optics research, as
demonstrated by the examples in Section 3.
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Electronics and Communication, 55(5):313–318, 2001.

[24] P. Pregla. Efficient and accurate modeling of planar anisotropic microwave structures by the method of lines. IEEE
Transactions on Microwave Theory and Techniques, 50(06):1469–1479, 2002.

18



[25] A. S. Sudbø. Why are accurate computations of mode fields in rectangular dielectric waveguides difficult? Journal
of Lightwave Technology, 10(4):418–419, 1992.

[26] M. Bressan and P. Gamba. Analytical expressions of field singularities at the edge of four right wedges. IEEE
Microwave and Guided Wave Letters, 4(1):3–5, 1994.
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[28] J. Čtyroký, S. Helfert, and R. Pregla. Analysis of a deep waveguide Bragg grating. Optical and Quantum Electronics,
30(5/6):343–358, 1998.
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