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Abstract - The device principle of a prism-based on-chip spectrometer for TE polarization is introduced. The 

spectrometer exploits the modal dispersion in planar waveguides in a layout with slab regions having two 

different thicknesses of the guiding layer. The set-up uses parabolic mirrors, for the collimation of light of the 

input waveguide and focusing of the light to the receiver waveguides, which relies on total internal reflection at 

the interface between two such regions. These regions are connected adiabatically to prevent unwanted mode 

conversion and loss at the edges of the prism. The structure can be fabricated with two wet etching steps. The 

paper presents basic theory and a general approach for device optimization. The latter is illustrated with a 

numerical example assuming SiON technology. 
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1. INTRODUCTION 

In the early years (70’s) of Integrated Optics (IO), the theory and experimental characterization of slab 

waveguide based components, such as thin film lenses, prisms, reflectors and polarization splitters were 

extensively investigated [1]. The design of these components is straightforward since the propagation of light 

waves in these slabs can be described by geometrical optics in 2D and diffraction theory [2]. Furthermore, slab 

waveguide fabrication is not a complicated process. In spite of these advantages, only a small number of device 

principles, which combines one or more of these components, have been implemented, like prism based mode 

separators [3], grating based de-multiplexers [4] and thermo-optic switches [5].  

Wavelength (de)multiplexing planar devices, or micro-spectrometers, have a large potential for applications in 

telecommunication and sensing [6-10]. In planar implementations the device principle is often based on IO 

variants of bulky grating spectrometers like an arrayed waveguide grating (AWG) [6], employing diffractionless 

propagation in waveguides and compact Echelle gratings [9, 10]. In addition, cascaded Mach-Zehnder 

interferometers and ring resonators are being used [11, 12] as micro-spectrometers. In particular, the AWG is 

quite often applied owing to its robustness and high resolution compared to the device area. The latter is related 

to the working principle of the device based on the use of higher diffraction orders, which also leads, as a 

possible disadvantage, to spectral overlap (limited free spectral range) and loss via spreading of the intensity 

over a number of orders. The advantages of employing a prism-based spectrometer are the absence of extra 

diffraction orders (no power splitting) and an unlimited free spectral range. 

In this paper, we describe the performance and design aspects of a miniature prism spectrometer, which can be 

fabricated in a relatively simple way with adiabatically connected slab waveguides (having two different 

thicknesses), using in the design principles of geometrical optics and diffraction theory. In such a spectrometer 

dispersion is introduced by the differing wavelength dependence of the effective indices of the modes in thin and 

thick films. The device relies on ridge waveguides for light transport and on parabolic mirrors for collimation 

and focusing. A design strategy will be presented and illustrated via a numerical example with TE polarized light 

in a range of 100 nm around the central wavelength of    = 850 nm with a channel spacing of 5 nm by using 

SiON waveguide technology. 

The rest of this paper is organized as follows. First, we will introduce the principle and basic theory related to 

the prism spectrometer in Section 2. The part of the imaging theory discussed in this section is well usable for 

other integrated optics based spectrometer types, such as AWGs. It is followed by an explanation of the design 

of this device in Section 3, where also a numerical example is given. The paper ends with conclusions in Section 

4. A preliminary account of this design strategy has been given in [13]. 
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2. PRISM SPECTROMETER: PRINCIPLE AND BASIC THEORY 

A schematic picture of the considered prism spectrometer device is shown in Fig. 1. It is composed of an input 

waveguide, a collimating mirror, a prism slab, a focusing mirror and receiver waveguides, corresponding to 

different wavelengths. The picture in the middle of Fig. 1 with output of 3 adjacent waveguides shows the 

important spectrometer parameters that will be used in this paper, such as 3 dB bandwidth (  ), channel spacing 

(    ), adjacent channel cross-talk (ACCT), global cross-talk (CT) and Loss.  
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Fig. 1.  Schematic of the considered prism spectrometer. The white and dark grey areas correspond to thick and thin slabs, respectively. 
Ridge waveguides are indicated by yellow lines. The inset illustrates schematically the relation of the output intensities to the parameters that 

characterize the device performance. Regions with different thicknesses of the guiding layer are connected adiabatically via vertical tapering. 

 

 The proposed device is planned to be implemented in SiON waveguide technology by using a stoichiometric 

Si3N4 (nitride) layer sandwiched between buffer and cladding SiO2 (oxide). Patterning of nitride will be done by 

using a BHF wet etching process, which has a very low etch rate being 0.9 nm/min [14] and so very controllable 

etching performance, in two different process steps; (i) definition of input/output waveguides and (ii) definition 

of prism and mirror trenches. A sacrificial oxide layer is deposited on top of the nitride layer in the latter in order 

to achieve the adiabatic transition on the edges of patterned structures. The main advantage of using an adiabatic 

transition of the layer thickness, and thus the effective refractive index, between the slab waveguides is the 

elimination of partial reflection of the incident light at the edges of the prism [1]. With such a tapering the angle 

of incidence to the prism can be chosen relatively high (just below the critical angle      ), which is beneficial 

for a larger angular dispersion (enabling a smaller device area for a given resolution) as discussed below 

(Section 2.1), without increasing insertion loss and the amount of stray light in the spectrometer. These adiabatic 

transitions also affect the modal phase shift upon total internal reflection (TIR) by the mirrors and so the imaging 

onto the receiver waveguides. This will be elaborated in Section 2.4. In the following subsections we will 

present the basic theory for the set-up, relevant for device design and operation. 

2.1 Prism 

A sketch of the prism is shown in Fig. 2, where also the ray trajectory is indicated and used symbols are 

introduced.  
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Fig. 2.  Schematic (top view) of a generic prism structure. 

 

The angular dispersion is defined by  

 

  
        , (1) 
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where   is the (vacuum) wavelength. The angular dispersion can be rewritten as follows: Diffraction at the prism 

interfaces is governed by Snell’s law. For the first interface, this can be written as 

 

            , (2) 

 

where we defined        , with    and    the effective indices of the thick and thin slabs, respectively. Note 

that the following inequality holds for      . Knowing that    does not depend on λ, the derivative of Eq. (2) 

gives 

  
   

  

 
       (3) 

 

with         . The relation between    and    can be found from the geometry leading to 

 

         (4) 

 

By combining Eqs. (3) and (4) we arrive at 

 

  
  

  

 
       (5) 

 

If Snell’s law is applied to the second interface it follows  

 

            , (6) 

 

from which the following can be obtained by taking the derivative, 

 

  
    

     

     

    
 
     

     

  (7) 

 

The above equality can be rewritten by inserting Eqs. (5) into (7) as follows:  

 

  
    (

     

     

 
          

           

)  (8) 

 

For later use we consider the angular dispersion, assuming minimum deviation (             ), which 

can be re-written from Eq. (8) into:  

 

  
  

  

 
(      )  (9) 

 

The deviation angle   can be expressed as 

 

                      , (10) 

 

where we used Eq. (4). The minimum deviation condition implies  (     )      ⁄ , or          ⁄ . As a 

consequence of the latter relative angles don’t change, for light at a certain wavelength with an angle of 

incidence near   , traversing the prism. Consequently, beams don’t change shape while traveling through the 

prism, provided that there is no truncation of the beam (by the limited dimensions of the prism) and the angular 

dependence of the transmission is small (as accomplished by the adiabatic transitions; see Section 3 for a 

numerical example). So, if a Gaussian beam having a transverse field distribution according to  

 

 ( )     
(          ), (11) 

 

with   the full width at half maximum (FWHM) and   the transverse coordinate, is traversing the prism its 

shape will be unaltered if truncation of the beam by the limited prism size can be neglected. The far field of that 

beam is then given by [15]  
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 ( )  ∫  ( )      
  

  
    

            
 , (12) 

 

where we assumed a time dependence     (   ) of all electromagnetic fields, and   is defined as           

with   the wavenumber and   the diffraction angle. The FWHM of the far field intensity is given by    
       and corresponds to       (   ). An expression for the resolution can now be derived as follows. 

Assuming that two equally shaped peaks corresponding to different wavelengths are resolved if these are 

separated by the FWHM it follows 

     
    , (13) 

 

         (  
     ). (14) 

 

In the above     is the FWHM of the far field intensity, assuming that it is not affected by truncation of the 

Gaussian beam due to the finite size of the prism (or mirrors). As will be discussed in Section 2.3 truncation 

effects are almost negligible if the truncation parameter   is larger than ~3, with   defined by  ̃     ( ̃ is the 

width of the output/input beam as defined in Fig. 2). If we assume, for example, that    , substitute  ̃     

into Eq. (14) it follows from the geometry, with          :  
 

    
     

   ̃   (      )
    (15) 

 

where         and      , assuming the minimum deviation condition. It is seen from the above that   

should be chosen as large as possible for a smaller device area (so for smaller  ̃) and thus optimization of the 

resolution for given beam width,  ̃), comes down to optimizing the quantity      
   .   

It is seen from eq. 9 that for a large angular dispersion (and so for higher resolution) the angle of incidence on 

the prism facet should be as large as possible (analogue to what we concluded above using Eq. (15)). On the 

other hand it should of course not exceed the critical angle for TIR,      , defined by  

 

           (    ⁄ )  (16) 

 

It is found, as illustrated in Section 3 with an example, that with proposed adiabatic transitions between areas 

with a thick and a thin guiding layer there is an abrupt transition from very low reflectance at angles of incidence 

below       to (of course) full reflectance for angles of incidence above       . This can be employed by choosing  

 

         (17) 

 

such that    is below       for the whole considered wavelength region. For later use we give the inequality 

holding at minimum deviation 

 

             (18) 

 

which can be derived using the definition for   and Snell’s law (Eq. (1)) together with the inequality      . 

2.2 Mirror 

Both mirrors, which are identical owing to the assumed symmetric implementation, are parabolic mirrors, 

which can be designed using Fermat’s principle. Fig. 3(a) shows the schematic of a parabolic 

collimation/focusing mirror, which has a collimated beam parallel to the x-axis. In this figure     and    are the 

incidence/reflection angles for the start and end points of the mirror respectively,  ̃  is the width of the 

output/input beam and   (        ) is the angle between the outermost rays and the focal point is chosen to 

be origin. Fermat’s principle dictates that the total optical path lengths between the focal point and points at an 

arbitrary cross section of the collimated beam, say, at     , are all the same. Denoting the mirror coordinates 

by (x,y) it follows:  

 

 √       (    )      (19) 

 

which can be rewritten by defining a new variable              -   as 
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 √             (20) 

 

Next we will show, for later use, that the parabolic mirror (shape and size) is fully defined by the quantities  ̃,    

and  . Using Eq. (20) and the relation  

 

       (  )   (21) 

where   is the incidence angle of an arbitrary point on the mirror, it follows (assuming that    (  )   , as in 

the device considered by us in section 3.2) 

 

 (√  (   (  ))   )   
 [     (  )]

   (  )
     

(22) 

 

which enables us to write: 

 

  
  [     (   )]    (  ) 

[     (  )]    (   )
  

(23) 

 

Then, with Eq. (21) and        ̃        (   )  we find 

 

     ̃       (   )        (   ). (24) 

 

Substitution of    according to Eq. (23), with (   )  (     ), into the second equality of Eq. (24) leads after 

simple manipulations to:  

 

 ̃            (  ⁄ )    (   (     ⁄ )    (   )), (25) 

 

from which the full mirror curve can indeed be derived, also using Eqs. (23) and (21). 

 

 
Fig. 3.  Schematic pictures of the collimation mirror (a), the focusing mirror (b) and the focal area (c), introducing the used symbols. 

 

In order to obtain a simplifying picture of the working of the mirror a virtual aperture and a focal length are 

introduced (see Fig. 3(a) and (b)). The former is defined by a line piece through the point   , which is the 

intersection point of the bisector of the outermost rays and the mirror curve, perpendicular to the corresponding 

ray and with end points defined by the (extrapolated) outermost rays. The distance between point    and the 

focus is called    the focal length. The width of the virtual aperture,  , is equal to the (maximum) beam width, 

 ̃, with a small relative error proportional to   . Note that the point    of the collimation mirror (as well as of 

the focusing mirror) is chosen to be on the optical axis and that it does not correspond to the middle of the 

parallel beam coming from the input mirror. As a consequence, assuming a symmetrical mode coming from the 

input waveguide, the field in the collimated beam will be (slightly) asymmetric. But, the asymmetry of this beam 

(which travels without changing shape through the prism) is fully compensated by the identical focusing mirror. 

So, for a certain wavelength, the image of the input field near the receiver waveguides can be considered as the 

focused far field of the input field, truncated by the mirror owing to a finite (virtual) aperture, as defined by the 

size of the mirror. 
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The mirror is designed for the central wavelength   . Light at a nearby wavelength is diffracted by the prism 

and focusing mirror at a different angle. The latter leads to a small change in focal distance, as indicated in Fig. 

1, and to aberrations, as follows from numerical calculations using ray tracing according to geometrical optics, 

corresponding to small blurring of the central spot. It is found from geometrical optics that the blurring effect 

becomes smaller for smaller angles of incidence   (which then should be chosen to be just above the critical 

angle) and smaller values of the angle  . 

 

2.3 Imaging of the Input Field 

We consider the propagation through the prism spectrometer of the modal field at a certain wavelength,   , 

launched by the input waveguide. In case of ideal lensing and no truncation by the prism (or mirrors) the light is 

imaged onto the focal line without any change of shape and at a position according to its wavelength. The 

imaging process, now including the truncation, can be described numerically by taking the Fourier transform of 

the transverse distribution of the launched field (to calculate the far field), truncation of the far field, taking the 

complex conjugate of the result (to account for the lensing effect) followed by again taking the Fourier 

transform. The above can be expressed analytically as follows. The transverse distribution of the far field of the 

launched mode,    is given by [15] 

 

 ( )   
 

√  
∫   ( )      

 

  
, (26) 

 

where          ,   is a local coordinate and   is the diffraction angle. The shape of the field    is defined 

by the   parameter [16] given by  

 

    √  
    

  (27) 

 

with   the width of the waveguide and    and    are the effective indices of the planar structures corresponding 

to the guiding and adjacent waveguide sections, respectively. The image in the focal area then follows from [15] 

 

   ( )  
 

√  
∫   ( )      

    ⁄

     ⁄

 (28) 

 

with    the FWHM of   ( )   and   is the truncation parameter. The following relations hold:  

 

 (  ̃)           (29) 

 

with W the FWHM of the far field intensity. A few numerically computed examples of      and       , with 

maxima assumed at    ,  are given in Fig. 4, using     and      4 and 6. The side lobes in the imaged 

intensities are due to the truncation by the prism and mirrors. The relative power of the light at a certain 

wavelength captured by a receiver waveguide at a transverse distance   from the center of the image is given by 

[16]:  

 

 ( )  
|∫   (  )   (    )     

  
|
 

|∫   
 (  )     

  
|
   (30) 

 

Results are given in Fig. 5(a) and Fig. 5(b) for     and 3 and       4 and 6, showing the quantity   as a 

function of    ⁄ , with    the FWHM of  . Fig. 5(c) shows the computed curves of     ⁄  versus  . It is seen 

that for given index contrast (defined by V/h; see Eq. (27))    increases approximately linearly with  . For 

comparison, the corresponding modal width (corresponding to the FWHM of      ), in terms of     ⁄ , is also 

shown. As expected    is larger than   , approximately by a factor of √ , as would have been the case if    

would be purely Gaussian and there would be no truncation. 
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Fig. 4.  Intensity profiles for modal fields (solid lines) and the corresponding images (dashed lines) for indicated parameters, calculated using 

the expression in (28). 

 

 
 

Fig. 5.  Relative power captured by a receiver waveguide at a distance of    ⁄  from the maximum of the image for (a)  =2 and (b) 

 =3 and modal width, FWHM of O (c) and the functional loss (d) O (t=0)  as a function of V.  

 

The functional loss ( (   )), as depicted in Fig. 5(d), is relatively low for considered parameter range. 

Curves like the ones depicted in Fig. 5 can be used to determine a number of device parameters as follows. The 

maximum of the image of     
 ( )  corresponds to     for, say,   . Then, the maximum of the image 

corresponding to         (with    the 3dB bandwidth) should correspond to           ⁄ . Knowing the 

required ratio       ⁄ , the position     of the adjacent channel can be obtained from  

 

              (31) 

 

where the value of    can be determined as explained below. Next, the desired ACCT as well as the global 

functional CT (owing to the side lobes) can be obtained by selecting the appropriate parameters   and   from 

curves as in Fig. 5, assuming for the moment that there are no constraints on the acceptance angle   (a large 

acceptance angle may cause blurring of the focal image as noted in section 2.2). For example, if       ⁄    

(corresponding to          according to Eq. (31)) and if it is required ACCT       one may choose   

slightly larger than 2 (     ) with    , if the corresponding global CT (     ) is acceptable. A choice of 

    with      is also an option. If the required ACCT and CT are not attained one may choose for a smaller 

3 dB bandwidth than required. One may choose among the above options by considering also the device area as 

discussed in Section 3. Knowing   and   one can find   (for given contrast and wavelength, using Eq. (27)),   , 

   ,    and the channel spacing,    , using Eq. (31). The required focal distance   follows from       
    

(which follows from the fact that         ⁄  should correspond to       ⁄ ), and is  is given by  

 

    (  
   ) ⁄  (32) 

 

Knowing also f  the fields at the virtual aperture can be calculated, the FWHM of the corresponding intensity, 

 , and so  ̃, via  ̃    .  

c 

d 

a 

b 
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2.4 Effects of variations of the Phase Shift upon Reflection 

As is well known on TIR of a planar mode by a mirror a phase shift upon reflection (PSR) will occur which 

depends on structural properties, wavelength and angle of incidence. For light incident on the parabolic mirror in 

considered set-up, with varying angle of incidence, this means that the PSR is position dependent and these 

variations along the mirror lead to both (extra) beam deflection and (de)focusing effects for which we will 

present useful expressions next. In addition to the latter  the well-known Goos-Hänchen shift (GHS) [16], 

originating from the dependence of the PSR on the angle if incidence, should also be taken into account. Below 

we will present a derivation of expressions for the effect of the variation of the PSR along the mirror surface 

considering a small, straight mirror section. Next to that the well-known expression for the GHS will be given.  

We assume a position dependent PSR,  ( ), with s a local coordinate directed along the mirror, and modal 

reflection coefficient         , for a flat non-uniform (via    ( )) mirror (see Fig. 6). The figure shows an 

incoming plane wave, at an angle of incidence  , represented by two rays (ray 1 and ray 2). Due to the 

dependence of the PSR,  , on s the wave is refracted by the mirror at a slightly different angle   . The phase 

changes corresponding to trajectories 1 and 2 in between the dashed lines (indicating the wave fronts) should be 

equal, so 

 

                              (33) 

 

 
 

Fig. 6.  Illustration to the derivation of the effects of the position dependence of the phase shift upon reflection. 

 

In Eq. (33) the minus sign in front of the phase shifts originating from propagation length stems from the 

assumed time dependence     (   ). From Eq. (33) one may derive  

 

 ( )       
  

  

 

       
 

  ( )

  

 

   

  (34) 

 

with   the deflection angle, which varies along the mirror. It can be expanded according to 

 

      (    )     (35) 

 

where    and       ⁄  are both evaluated (numerically) at    (     )  ⁄ . The first term at the right 

hand side of Eq. (35) corresponds to a uniform deflection leading to both a small angular shift of the focal point 

and a change in focal distance (as follows from geometrical optics). The second term leads to a change of the 

focal distance.  

   The GHS leads to an apparent shift of the reflected ray along the reflecting interface, given by [16]: 

 

    
  

  

 

       
  (36) 

 

    In calculations based on ray tracing one should take into account the effect of the angle and position 

dependence of the PSR and use both the expressions for GHS (Eq. (36)) and for the tilt (Eq. (34)) to simulate a 

ray reflected by a curved mirror.  

As an alternative to the above approach (in which the effects of variations of the PSR are considered) one 

could shape the parabolic mirror via numerical calculations such that the above effects are fully compensated 
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(for the central wavelength   ). In order to obtain the magnitude of the PSR one could most conveniently use 

existing software for channel mode solving, as illustrated by the example in section 3.2. 

3. DESIGN 

In this section we will first sketch a general optimization strategy for our device on the basis of the theoretical 

considerations given above. Thereafter, the scheme will be applied for the design of an actual device as an 

illustration. As mentioned above, only the case of minimum deviation (for the central wavelength,    ), 

corresponding to a symmetric set up, will be considered.  

It is assumed that the wavelength channel spacing      and the      band width (  ) are fixed, as well as the 

maximum allowable  ACCT and CT, and that it is our task to design the device such that the device area   (apart 

from the waveguides) is minimized. As a reasonable measure for   we will take the following approximate 

expression (see also Fig. 7; G corresponds to the grey rectangle):  

 

         (  )                        (37) 

 

Here   (     ) is the deviation angle and we assumed in Fig. 7 that     (typically      ). It is seen 

from the equation that  , occurring in both terms, has a slightly larger impact on the device area than base length 

 . With       and assuming that   is smaller or not very much larger than   it can be shown from Eq. (37) 

that the area becomes smaller if   increases, i.e.,           
As is also seen from Eq. (37), the orientation of the prism has a considerable impact on the device area, as 

with the opposite orientation    would have to be replaced by   , which would lead to a much larger value for 

  and so for G. In most practical cases (like in the example discussed in Section 3.2) the orientation has to be 

chosen as indicated in Fig. 7 to attain a lower device area. 

 

 
Fig. 7.  Illustration to Eq. (37) giving the approximate device area (indicated by the grey rectangle). 

 

3.1 Scheme 

The optimization scheme proceeds along the following steps, for which it is assumed that the materials for 

guiding, cladding and cover layers have been chosen already. The required values for          ,   , the ACCT 

and the CT are assumed to be given. It is also assumed that the effective index contrast for the ridge waveguide 

has been chosen.  

1. Choose the two thicknesses (   and   ) for the thick and thin slabs (corresponding to    and    , 

respectively) such that the quantity   (defined in Section 2) is maximized, taking into account, if required, 

constraints defined by the technology. According to Eq. (15) a larger   leads to a larger resolving power for 

given lay-out (and so to a lower required device area for given required resolving power). The above choice 

determines the quantities        
  and   as well as the critical angle       (see Sec. 2).  

2. Determine the angles  ,   and   . Inspecting Eq. (9), it follows that   should be as large as possible for a 

larger value of   
  and so a smaller value of  ̃ (and so a smaller device area), according to Eq. (15), for fixed 

   . On the other hand the angle   should be below the critical angle,       for small reflection loss at the prism 

boundaries. The choice of   may be checked with (approximate) calculations of this loss as in the example 

below. Knowing   the angle   of the prism is defined according to Eq. (2) and the property        . The 

angle    should be chosen above       for 100% modal reflection but not too far above       to avoid the 

aberrations mentioned in Section 2.2.  

3. Determine the parameters   and   such that the required device performance is obtained with minimum 

device area, using graphs like the ones in Fig. 5. On doing so, one may use that     and that        (if 
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    ) as is seen from Eq. (32) and Fig. 5(c). Note also that generally a smaller   leads to larger functional 

losses according to Fig. 5(d). Next, from   and   one may determine  ̃ and   via the procedure outlined in 

Section 2.3. The quantities  ̃,   and   determine the prism size and shape. Using  ̃     fixes the angle   and 

so, with    and  ̃ the parabolic mirrors. The orientation of the mirrors with respect to the prism follows from the 

angle  .  

4. The positioning of the input and receiver waveguides can now be calculated with the mirror parameters and 

geometrical optics, including the PSR effect, as discussed in section 2.4. 

  

5. It has to be checked if the thus obtained device structure leads to (too large) aberrations (as an effect of the 

parabolic mirrors) for the outermost wavelengths of considered region. If so a larger   value has to be chosen 

implying a lower acceptance angle for the mirrors and lower aberrations; the adaptation will generally lead to 

(harmless) over-performance with respect to ACCT and CT.  

It is noted from the discussions in Section 2.3 and above that, for given       ⁄  and ACCT, both   and   are 

inversely proportional to the      bandwidth    and so that  , is roughly inversely proportional to    . 

3.2 A Numerical Example 

The spectrometer that will be discussed in this section is planned to be used for determining the natural 

moisturizing factor (NMF) in human skin [7]. This application requires a value for      of      at    
        with an operating bandwidth of       . The device will be operated with TE polarization. We assume 

a      bandwidth of          , implying that       ⁄   , and values for the cross talk as follows: ACCT 

         and CT        . The guiding layer will be a Si3N4 layer (index 2.008), which is sandwiched 

between two SiO2 layers (index 1.452). The height of the input/output waveguides is chosen equal to that of the 

thicker slab waveguide in order to decrease the losses at the exit of the input waveguide and entrance of the 

receiver waveguides. The ridge height is chosen such that the lateral index contrast of the waveguide is 0.01, 

which is sufficiently small to arrive at single mode waveguides with the available fabrication processes 

(minimum feature size     ).  

The desired spectrometer is designed by following the optimization scheme explained in the previous section. 

 1. The quantities    and    depend on the thicknesses used for the two waveguiding slab regions. We have 

optimized   by varying the two slab thicknesses between      , which is a safe lower limit to prevent leakage 

to the Si substrate, and       , which is a safe upper limit for the thickness of the Si3N4 layer made with our 

fabrication facility (there may be cracks in the layer if the thickness exceeds       ). As can be seen from Fig. 

8,   is maximized to a value of                 by choosing a thickness of       , which corresponds to 

   = 1.6931 at   , for the thicker layer (field outside the prism) and a thickness of      , which corresponds to 

   = 1.4785 at   ,  for the thinner layer (prism). Note that, as is seen from Fig. 8, the optimum thickness for the 

thicker layer would have been 190 nm if there would be no upper limit for the thickness of the Si3N4. The height 

of the Si3N4 waveguides is chosen to be 170 nm, which corresponds to     (   ) = 1.6931 and the ridge height 

is chosen as     , which corresponds to     = 1.6831. The critical angle corresponding to the two slab regions is 

given by             . 

h1 (µm)

h
2
 (
µ
m

)
N

1 *
 
 /D

 (/µ
m

)

not applicable

(t1<t2)

(N1*  /D)max = 0.234 /µm 

 
Fig. 8 Value of the quantity   as a function of layer thicknesses    and   . 

 

2. Fig. 9 shows the modal transmittance at the adiabatic interface, of which the structural parameters are given 

in the inset, as a function of the angle of incidence (from the high thickness side), as calculated by transforming 

the 3-D scattering problem (scalar approximation) to an effective 2-D Helmholtz problem [2, 17], where the 

incidence angle appears as a parameter. This effective equation is then solved by a quasi-analytic 2-D method, 
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applying a fine staircase approximation of the taper profile [18]. Owing to the adiabaticity the curve changes 

abruptly from nearly unity to zero at an angle equal to      . The angle   is chosen somewhat below      , at  

          . This choice leads to           ,   
                 (see Sec. 2.1). The smallest angle of 

incidence on the mirror is chosen as            . 
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Fig. 9 Transmittance vs. angle of incidence on the adiabatic taper. The inset depicts the taper structure. 

 

3. Considering Fig. 5 (a) and Fig. 5 (b) with the above performance conditions in mind it is seen that the 

combination     and     fulfills all the requirements: the ACCT (= (     )⁄ ) is well below        

and the global CT is sufficiently low. A combination of     and     would also be suitable and lead to a 

comparable device area, but the losses will be a bit higher, ~4% according to Fig. 5 (d). From the formulae 

presented earlier, it now follows:             (from Fig. 5 (d)),            (from Eq. (32)),   
       and          (from Eq. (29)) and         . Note that, as a consistency check,   also has been 

calculated using both the formula  ̃     and the geometrical parameters of the mirror; it was found that all 

three approaches led to the same result.  

4. We propose a new method to calculate the PSR at slab waveguide interfaces [17]. In this method an 

imaginary waveguide structure with symmetric tapered edges, which are identical to the tapered profiles to be 

used in the mirror and prism interfaces, is considered. Fig. 10 shows the structure of this imaginary waveguide, 

which is a ridge waveguide with       (equal to prism slab thickness) and        (equal to field slab 

thickness) slab waveguide thicknesses and the taper between these thicknesses has an angle of     , as defined 

by the fabrication process. Analysis of the field of the channel mode in the center of the imaginary waveguide 

shows that it is composed of virtually only the TE slab mode for not too narrow channel waveguides, i.e., the 

overlap between this field and the        thick slab mode is close to unity. Therefore, the structure can be 

pictured as a simple waveguide in which the TE slab mode is bouncing between the tapered edges (see Fig. 11). 

 

0.5°

d = 5 or 10 µm

170 nm
40nm

n = 1.4524

n = 2.0081

n = 1.4524

y

x

 
Fig. 10 Structure of the imaginary channel waveguide used to calculate phase change upon total internal reflection of slab TE modes. 
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Fig. 11 Simplified 1D view of the imaginary waveguide structure. 

 

In order to find the numerical values of the PSR as a function of the angle of incidence,    the transverse 

resonance condition can be used  

 

        

  

 
               (38) 

 

where   denotes the mode number,   is the width of the non-tapered waveguide part,        is the effective 

index of the        slab. The mode angle,   , for a specific channel mode can be calculated by using the 

following formula; 

 

                (39) 

 

where    is the effective index of the  th
 channel waveguide mode, calculated using appropriate software. For 

each channel mode one thus obtains a sample value    for the PSR of the incidence angle    by using Eq. (38). 

Fig. 12 shows the calculated phase shift upon TIR at the considered tapered interface for two different non-

tapered waveguide widths ( ) at            for a number of angles of incidence and the polynomial fit of the 

data for       . The incidence angle range (  ) used in the designed mirror is also depicted in the figure. It 

can be seen from the figure that the results for different   values are in good agreement.    values of the data 

points on this figure correspond to discrete channel waveguide modes. In order to calculate a smooth curve  ( ) 

these data points can be fitted to a polynomial function. Knowing the relation  ( )  the full layout of the 

spectrometer can be designed using ray tracing together with Eqs. (34) and (36), to account for the and GHS. In 

order to give some feeling about the magnitude of these effects in the mirror that has an adiabatic interface with 

0.5° as depicted in Fig. 10, we present the induced deflection angle and the GHS for the central ray hitting the 

mirror being:   = 0.32° (calculated using Eq. (35)) and GHS = 83.77    (calculated using Eq. (36)), 

respectively.  
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Fig. 12 Phase shift upon TIR vs. incidence angle for the considered interface with 0.5° taper angle at λ = 850 nm.  Δθ is the used 
incidence angle range for the designed mirror. 
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As an example of the effect of the applied correction for waveguide positions we present some results 

calculated using ray tracing based numerical calculations, in which a set of parallel rays propagating in the x 

direction (see Fig. 3) hit the parabolic mirror and converge on a point (correct position of the waveguide) by 

taking into account the varying (with angle and position) PSR. As a result, the input waveguide has to be shifted 

        in positive x direction,         in positive y direction and turned by       (          ) CCW. For the 

receiver waveguides the effect corresponds to a considerable wavelength shift being (        
  )          . 

5. With geometrical optics we have, for the structure resulting from the above steps, calculated the broadening 

of the image field for the outermost wavelengths of the considered region (      and       ). Considering 

only the rays in-between the two rays corresponding to the FWHM of the field coming from the focusing mirror 

(representing the major part of the power of the beam) a focal spot broadening of       was found. This is 

equal to around 20.1% of the un-blurred image implying an approximate broadening as small as 2% 

(√             )  and a minor extra functional loss of around 1%. Here we assumed for simplicity 

Gaussian shapes for the beam cross section and the broadening. So, the aberration effect is minor and requires no 

structural adaptations. The resulting layout of the spectrometer is presented in Fig. 13. The size of the device is 

             including the input and output waveguides. These dimensions are much smaller than the size of a 

comparable AWG device, which has a resolution of 5.5 nm (very close to the resolution of proposed device) and 

implemented in SiON technology, being             [19]. Therefore the propagation losses will be lower in 

the proposed device. Furthermore, we think that the scattering losses will be less significant in our device since it 

suffers less from sidewall roughness occurring in channel waveguides (in the presented device the light 

propagates mainly in slab waveguide regions rather than in channel waveguides). 
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Fig. 13 Full layout of the designed prism spectrometer, which has a size of             ; the inset shows the 

input and receiver waveguides in more detail. 

 

4. CONCLUSION 

We have presented a general approach for the design of a planar prism-based spectrometer, utilizing 

dispersion effects in two slab waveguiding areas having different thicknesses of the guiding layer. Here, the 

different regions are assumed to be adiabatically connected via vertical tapering. Part of the design strategy is 

generally applicable and can be used for also for the design of for example arrayed waveguide gratings. A new 

method to cope with the effect of both angle of incidence and position dependent modal phase shifts upon modal 

reflection by (parabolic) mirrors, defined by the interface between areas of different slab thicknesses, has been 

presented.  

The design strategy was illustrated by a numerical example assuming SiON technology. Assuming a central 

wavelength of 850 nm, a 3 dB bandwidth, a channel spacing of     , an adjacent channel cross talk of        

and a cross talk of        lead to a required device area of              and a minor functional loss of a few 

percent over a wavelength range of      . 
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