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Abstract

Quasi-Normal Modes are used to characterize transmission resonancesin 1D optical de-
fect cavities and the related field approximations. We specialize to resonances inside the
bandgap of the periodic multilayer mirrors that enclose the defect cavities. Using a tem-
plate with the most relevant QNMs a variational principle permits to represent the field and
the spectral transmission close to resonances.
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1 Introduction

When subjected to external excitation, periodic multilayerstructures show a reso-
nant response in the time or frequency domain, which can be tailored by inclusion
of defects [1–4]. Finite structures can be viewed as open systems which permit the
leakage of energy to the exterior, described by the Helmholtz equation with out-
going wave boundary conditions. This constitutes an eigenvalue problem for com-
plex frequencies and the associated field profiles, or quasi-normal modes (QNMs)
[5].The quasi-normal modes specify the field patterns in which the leaky optical
structure would oscillate naturally after an initial excitation is withdrawn, represent-
ing damped oscillatory solutions of the wave equation [6,21]. QNMs and associated
complex eigenvalues can be viewed as a proper model for solving the problem of
energy leaking out of open structures, see [2,5–7] and references therein.

Our aim is to use the characterization of the optical microcavity structures in terms
of quasi-normal modes to describe approximately the resonant response to external
excitation in the frequency domain and the related field profiles.
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For specific configurations the complex QNM eigenvalues appear to correspond to
the position and quality of resonances in the spectral transmission. Although this
holds when spectral resonances are sufficiently far apart from each other, this is
not a general property and real frequencies of transmissionresonances can be quite
different form the real parts of the complex QNM eigenfrequencies in the given
frequency range [8].

Field representations using QNMs have been investigated in[8–12], on the basis of
quasi-normal mode theory as established in [6], founded on certain completeness
properties and a linear-space structure for QNMs [13–15]. Orthogonality of QNMs
is expressed with a specific bilinear form that includes boundary terms and in con-
trast to the usual inner product does not define a real, positive definite norm [16,17].
An eigenfunction expansion based on this bilinear form [6,20], used as a means for
projecting functions onto the QNM basis, can furnish a field representation only
over a finite spatial domain (due to exponentially growing envelopes of QNM basis
functions) and under certain conditions necessary for completeness, as detailed in
[13]. The completeness properties of QNMs have been addressed also in [18,19].

When applying a QNM expansion method to transmission problems, several points
are important. First, individual QNMs do not satisfy the proper boundary condi-
tions for the transmittance problem directly. The incomingwave contribution in the
transmission problem is introduced via time dynamic equations for the expansion
coefficients. Frequency domain equations are obtained by Fourier transform [11],
[20]. Second, as detailed in reference [20], an expansion based solely on QNMs
can represent the internal cavity field up to the boundary of the enclosed region,
with exception of a set of measure zero (the boundary points). This means that
QNM expansions permit convergence in the mean but not pointwise. This situa-
tion arises specifically when the relevant field does not satisfy the same outgoing
wave boundary conditions as the QNMs. Hence, despite the completeness prop-
erty, in these cases finite, truncated QNM expansions lead topoorly converging
field representations. Only after applying certain summation rules following from
the completeness relations [6,20] a better convergence might be achieved. Still, ad-
equate approximations of the fields usually require summations over many basis
modes (although this hardly ever seems to have been observedexplicitly, perhaps
due to comparisons of intensity shapes in place of field profiles). In addition some
caution is necessary when taking into account contributions of a single resonance in
the field representation based on QNM expansion, as emphasized in the reference
[20]. This holds even in a spectral region of isolated, defect-induced transmission
resonances in the bandgap, where one would expect that only those QNMs with the
real parts of their eigenfrequencies in this frequency region are sufficient.

Alternative approaches in describing leaky optical structures are reported in litera-
ture and field representations in open 1D cavity structures are considered, see [21]
and references therein. These methods primarily consider quantum theory of open
systems and do not establish a direct connection between transmittance (scattering)
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problems and QNMs for general structure.

As far as we are aware no adequate generalizations to 2D and 3Dstructures are
reported in literature of the above mentioned approaches. This is also true for PBG
(photonic bandgap) structures that we are primarily interested in. Some attempts to
use a QNM-like (eigenmode) description for 2D and 3D PBG structures are those
related to a scattering-matrix approach as reported in [22,23] and [24].

It is the purpose of this paper to establish a quantitative relation between the de-
scription of the structure under external excitation with given fixed frequency (the
transmittance problem) and the eigenvalue problem for QNMs, emphasizing the na-
ture of realistic open structures. Our method specializes to optical defect structures
where high-Q resonances are present inside the photonic bandgap. As detailed in
this paper, it turns out that the variational form of the transmission problem offers a
resourceful alternative to existing methods when applied to description of the fields
and transmission responses of the localized defect modes formed inside the pho-
tonic bandgap. Our method does not rely on any completeness properties of QNMs
nor on a bilinear form for projecting fields onto the QNM basis.

The approach proposed in section 2 uses a combination of the bandgap field of
the structure (without defect) and only one/few relevant QNM(s) as a template. By
restricting a specific functional one obtains approximations for the spectral power
transfer and the optical field related to the transmission through the defect structure.
In section 3 we analyze single and multiple defect cavities in finite 1D periodic
structures for both symmetric and non-symmetric layer arrangements. Real world
structures are bound to be finite and this feature is explicitly incorporated by the
present approach, in contrast to techniques that rely on artificial periodization in
Bloch-type analysis and supercell methods that can introduce nonphysical and spu-
rious solutions, although usefulness and applicability ofthese methods is proven
and well established in practice [2,3].

2 Theory

We consider problems in 1D for structures with arbitrary piecewise constant refrac-
tive index distributionn(x) within a finite domainx ∈ (0, L) and assume that the
structure is enclosed by two semi infinite domains with constant refractive indices
nin, nout as depicted in Fig. 1 .

We choose a harmonic time dependence for the electric field

E(x, t) = E(x)e−iωt. (1)

Therefore, the response of the structure under external excitation is described by
the Helmholtz equation
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Fig. 1. The (defect) grating is a finite periodic structure consisting of two materials with
high indexnH and low indexnL. The layer thicknessesLH , LL are quarter-wavelength for
the target wavelength. Optical defects are introduced as changes of layer thicknesses. The
grating is surrounded by two semi-infinite media of indicesnin andnout.

∂2
xE(x) + k2(x)E(x) = 0 (2)

with a transparent influx boundary condition at the side of the structure where the
incident wave (Einc = Aince

ikinx) impinges, and a transparent boundary condition
at the other side

(∂x + ikin) E|x=0 = 2ikinAinc, (3)

(∂x − ikout) E|x=L = 0, (4)

wherek(x) = ω2n2(x)/c2, kin = ninω/c andkout = noutω/c , for given amplitude
of the incident waveAinc and frequencyω. This is the transmittance problem, where
the field distribution inside and outside the structure for given real frequencyω of
the incident wave is to be determined. For a solution of (2),(3),(4) the transmittance
is the ratio between the time-averaged Poynting vectors in the respective media
of incident and output regions. This is the ratio between incident and transmitted
power for time-harmonic electromagnetic fields

T =
Pout

Pin

=
1
2
nout | E(L) |2

1
2
nin | Einc(0) |2

. (5)

In this context, a transmission resonance can be defined as a local maximum of the
transmittance in a selected frequency region of otherwise low transmittance.

Alternatively, a finite structure can be viewed as an open system with transparent
boundaries which permit leakage of energy to the exterior. Just as before, the be-
havior of the electric field in the interiorx ∈ (0, L) is governed by the Helmholtz
equation

∂2
xQ(x) + k2(x)Q(x) = 0 (6)

now with outgoing wave boundary conditions

(∂xQ(x) + ikinQ(x))x=0 = 0 (7)

(∂xQ(x) − ikoutQ(x))x=L = 0. (8)
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This constitutes an eigenvalue problem for the frequencyω as the complex eigen-
value and the electric fieldQ(x) as eigenfunction, called Quasi-Normal Mode.
QNMs appear as discrete infinitely countable set of solutions of this eigenvalue
problem [6]. They are unbounded functions that blow-up forx → ±∞, so they are
essentially different from resonant field solutions of the transmittance problem.

A finite, but internally periodic structure, i.e. a finite multilayer grating possesses
a QNM spectrum that appears to be related to the bandgap structure and reso-
nance properties of the transmission / reflection spectra. Representations in terms
of QNMs for finite, periodic structures have been investigated in [9–11]. The posi-
tions of complex eigenfrequencies in the complex plane are arranged in such way
that suggest the presence of bandgap regions in the transmittance response. Occur-
rence of the bandgap is to be expected for slices in the complex frequency plane
where eigenvalues are not present. The edge of the bandgap inthese terms can
be estimated by taking real parts of the eigenfrequencies atthe ends of separated
arranged sets of eigenvalues [9–11]. The introduction of a defect in an otherwise
periodic multilayer results in isolated QNMs with the real parts of their complex
eigenfrequencies inside the bandgap region, as shown in section 3.

In [9,11] it has been noticed that the squared modulus of a QNMwith complex
frequencyωp is similar to the field intensity inside the structure for a real frequency
ω ≈ Re(ωp). This is a good approximation in particular for high-Q transmission
resonances and for QNMs with eigenfrequencies with small imaginary parts. Still,
a proper approximation of the field (not intensity) in the transmission problem re-
quires many terms in an expansion based solely on QNMs.

2.1 Solutions by transfer-matrix method

We consider multilayer structures with piecewise constantrefractive index distri-
bution inside the finite spatial domain. Method for solving the transmittance (and
eigenvalue) problems is the well known transfer matrix method (TMM) [4]. So-
lutions of the Helmholtz equation are given as combinationsof left- and right-
travelling waves in thej-th layer

Ej(x) = Aje
ikj(x−lj−1) + Bje

−ikj(x−lj−1) (9)

for x ∈ [lj−1, lj] in a region of constant indexnj wherekj = njω/c is the wave
number in this layer. To connect the fields inside all layers we impose continuity
conditions at the interfaces between consecutive layers,

Ej(lj) = Ej+1(lj), (10)

and
∂xEj(lj) = ∂xEj+1(lj). (11)
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These conditions lead to a system of equations that relate amplitudes of left- and
right- traveling waves in different layers. They can be represented in matrix form.
Ordered multiplication of the relevant matrices connects amplitudes in each layer
of the structure, as well as the amplitudes in the incidence and output regions:







Ain

Bin





 =







m11(ω) m12(ω)

m21(ω) m22(ω)













Aout

Bout





 . (12)

The transmittance problem with incoming wave from the left is solved withBout =
0 for specifiedAin (amplitude of the incoming wave) with given real frequency
ω ∈ R. The amplitude transmission and reflection coefficients areexpressed as

t(ω) =
Aout

Ain

, (13)

r(ω) =
Bin

Ain

. (14)

If we choose conditionsAin = Bout = 0, i.e. restrict the exterior solutions to purely
outgoing waves, the eigenvalue problem with outgoing wave boundary conditions
is addressed . With these conditions the system of equationscan be nontrivially
satisfied if

m11(ω) = 0. (15)

Analytic continuation of transfer matrix into the complex plane enables us to find
solutions of (15) as complex eigenvaluesω [24]. By substituting the eigenvalue
into the field representation (9) we obtain the corresponding eigenfunction, up to
a complex constant. To solve (15) we apply a numerical iteration procedure of
Newton type. In cases when that method fails to converge due to closely spaced
eigenvalues, we use a more powerful technique for determining complex solutions,
based on the argument principle method from complex analysis [22].

2.2 Field template and variational formulation for transmittance problem

We specialize to finite periodic structures that possess transmission properties with
a bandgap, i.e. with a region of frequencies of very low transmission. Introduction
of suitable defects leads to a resonant transmission response inside the bandgap of
the underlying periodic structure. We choose a field template for the transmittance
problem as

E(x, ω) ' Emf (x, ω) +
N
∑

p=1

ap(ω)Qp(x), (16)

wherep is an index countingN relevant QNMs . We take the relevant QNMs as
those with the real part of their complex frequency in the given frequency range.
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We show, in terms of the successful application of the template (16), that the trans-
mission resonance associated with the defect, appearing inside the bandgap, is trig-
gered by the ”mirror” fieldEmf of the periodic structure without defect, which for
frequencies inside the bandgap is an almost completely reflected wave with only a
weak tail that extends into the interior of the structure.

Note thatEmf satisfies correct boundary conditions of the form (3) for thetrans-
mittance problem, while a superposition of QNMs can not cover the contribution of
the incoming wave directly. The incoming field has to be included by other means
when expansion into the complete set of QNMs is considered [11]. The inclusion
of Emf (or some similar object) is essential in our approach as a means to represent
the incoming wave. The mirror field does not extend far into the region of the defect
where the contributions of the relevant QNMs are expected tobe dominant.

Hence, according to template (16) the forced resonance response of the structure
appears because the incident wave possesses a real frequency close to the real part
of the complex eigenfrequency of a suitable QNM supported bythe defect structure.

Obviously (16) constitutes only an approximate model for the transmittance prob-
lem in specific frequency regions, since neitherEmf nor Q satisfy all of equations
(2)-(4). The residuals can be viewed as contributions from other QNMs in the com-
plete set supported [13] by the defect structure, that are not included in (16). We
shall see, however, that the template (16) leads to excellent approximations for the
configurations of section 3.

To determine the decomposition coefficientsap in our field template we employ a
variational form of the transmittance problem. The transmittance problem corre-
sponds to the equation and natural boundary conditions, arising from the condition
of stationarity of the functional [25]:

L(E) =
∫ L

0

1

2

(

(∂xE(x))2 − k2(x)E2(x)
)

dx (17)

−
1

2
ikinE2(0) −

1

2
ikoutE

2(L) + 2ikinAincE(0).

If L becomes stationary, i.e. if the first variation ofL(E) vanishes for arbitrary
variations ofE, thenE satisfies (2), (3), and (4) as natural boundary conditions1 .

Restricting the functional (17) to our field template (16),L becomes a function of

1 The functional obtained from (17) by settingAinc = 0, is formally related to the bilinear
form (inner product), in which QNMs are orthogonal [6]. However, the frequency plays a
different role in both cases: while in the functional (17) it is a given parameter, the bilinear
form of [6] operates on objects that include the eigenfrequencies as arguments.

7



the coefficientsap, for givenEmf andQp. The stationarity conditions then read:

∂L(a1, a2, ..., aN)

∂aq

= 0, q = 1, ..., N. (18)

The optimal coefficients can be obtained as solutions of a system of linear equations

A · a = −b, (19)

wherea = [a1, a2, ..., aN ]T is the vector of coefficients to be determined. The com-
ponents of the matrixA = [Aqp]NxN and vectorb = [b1, .., bN ]T are

Aqp =
∫ L

0

(

∂xQq∂xQp −
n2(x)ω2

c2
QqQp

)

dx (20)

+ i
ω

c
(ninQq(0)Qp(0) + noutQq(L)Qp(L))

and

bq =
∫ L

0

(

∂xEmf∂xQq −
n2(x)ω2

c2
EmfQq

)

dx (21)

+ i
(ωq − ω)

c
(ninEmf (0)Qq(0) + noutEmf (L)Qq(L)) + 2inout

ω

c
AincQq(0).

By solving the system of equations (19) for each value of the real frequencyω the
decomposition coefficients in the field representation for the transmittance prob-
lem are obtained. This enables approximation of the spectral transmittance and
reflectance and the related field profile. The transmittance reads:

T (ω) =
nout

nin

tt∗ =
nout

nin

∣

∣

∣

∣

∣

Emf (L) +
∑N

p=1 ap(ω)Qp(L)

Ainc

∣

∣

∣

∣

∣

2

. (22)

The field in the region of incidence can be seen as a superposition of incident and
reflected waves

E(x) = Aince
ikinx + rAince

−ikinx, (23)

wherer is the amplitude reflection coefficient, related to the reflectance (power
reflection defined as the ratio between the Poynting vectors of reflected and incident
waves)

R = rr∗ =

∣

∣

∣

∣

∣

Emf (0) +
∑M

p=1 ap(ω)Qp(0)

Ainc

− 1

∣

∣

∣

∣

∣

2

. (24)
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3 Results and Discussion

We specialize to structures with piecewise constant refractive index distribution
of high nH and low refractive indexnL layers, with quarter-wavelength optical
thicknessesLH , LL at a target frequencyω0. High index layers are denoted byH,
low-index layers byL and defect layers byD. Thus a finite symmetric periodic
structure is represented by(HL)NH, whereN is the number of the layer pairs.
The defects are introduced as changes of the thickness of specific layers, but the
method can handle defects introduced as changes of refractive indices of certain
layers as well. In examples below we use only1, 2 and3 most relevant QNMs
corresponding to single-, double- and triple-cavity structures.

When single high-Q resonances inside the bandgap are considered, decomposition
coefficients depend weakly on the frequency, apart from the Lorentzian approxi-
mation (eqns. (28,29)). Then the transmittance profile can be obtained analytically
for the major part of the bandgap region around resonance position. If the full fre-
quency dependence is included inEmf as described so far, then computational cost
is comparable to direct TMM computations for the full structure, but captures ade-
quately the deviation from the Lorentzian approximation. Further, we earn a certain
degree of interpretability by being able to observe the interplay between the QNM
basis modes.

3.1 Symmetric single cavity structure

We consider a layer arrangement(HL)4D(LH)4, as an example of a single cavity,
with nH = 3.42 nL = 1.45, enclosed within two semiinfinite media of the same
refractive indexnin = nout = 1.0. The defect is introduced as a change of the
thicknessLH in the central layer with high refractive indexnH with LD = 2LH .
The QNM spectrum for the original periodic structure and thestructure with the
defect is depicted in Fig. 2A). The QNM frequencies clearly show an arrangement
in the complex plane, that reflects the presence of the bandgap in the transmittance
response presented in Fig. 2B). For the defect structure a complex frequency in
the QNM spectrum appears in the position of the transmissionresonance in the
bandgap (see Fig. 2A). The field profile of the transmission resonance and the pro-
file of the QNM corresponding to the defect structure have similar pattern as de-
picted in Figs. 2 C) and D). The difference between the QNM and transmission
resonance field is clearly visible in Fig. 2E), arising from different boundary con-
ditions (aroundx = 0, the transmittance field represents inwards travelling wave
and QNM outwards travelling wave), consequently leading toentirely different be-
havior in the region where the incident wave is present. We take the mirror field in
the template as the solution of the transmittance problem ofthe structure without
defect at each frequency in the considered bandgap region. Approximating both the
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mode structure and the correct boundary conditions for the field representation of
the TRM (transmission resonance mode Fig. 2C ), using the QNMsand the mir-
ror field in Fig. 2F) leads to an excellent agreement between the approximation
obtained form the field template and the exact TMM solution , as can be seen in
Fig. 2G). An acceptable agreement between the approximatedfield profile and the
TMM reference (exact solution) is valid in the whole bandgapfrequency range. The
field template including an exciting field, together with thevariational procedure,
provides a constructive quantitative way to relate QNMs andTRMs.
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Fig. 2. A) Complex frequencies (eigenvalues) for periodic and single cavity structure B)
Transmittance for periodic (dashed) and single cavity structure (continuous) C) Field pat-
tern for a (defect) frequency at the center of the bandgap, real andimaginary parts D)
Quasi normal mode corresponding to the complex eigenfrequencyωM E) Comparison of
the QNM forωM (solid line) and the transmission (defect) field (dotted line) in the region
aroundx = 0 where the incoming field is present. F) Mirror field for the (periodic) structure
without defect forω = Re(ωM ) G) Field associated with the transmission resonance in the
defect structure obtained via variational approximation based on mirror field and relevant
QNM and compared with TMM reference.

The transmittance (22) is compared with the TMM reference calculation, as shown
in Fig. 3A). We observe an excellent agreement between the approximation and
the TMM calculations. Fig. 3B) shows the frequency dependence of the decompo-
sition coefficientaM for this structure. The resonant response is clearly reflected
in this dependence, showing that the transmission resonance is connected with the
excitation of the internal dynamics represented by the relevant QNM.

A common assumption made in the literature is that the spectral transmission for the
single resonance situation, as described, is of a Lorentzian lineshape. Our method
can analytically justify this assumption. We consider the contribution of a single
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Fig. 3. A) Transmittance obtained from field representation using QNMs andTMM refer-
ence B) Decomposition coefficients C) Non-resonant part of the decomposition coefficient.

QNM in the field template (16). The equation for the decomposition coefficient
then reads

Aa(ω) + b = 0. (25)

After partial integration (21) can be given the form

b = ω2
∫ L

0

n2
0(x) − n2(x)

c2
EmfQqdx (26)

with n0 being the refractive index distribution for the finite periodic (unperturbed)
structure. After partial integration, (20) reads

A =
(

ω2
q − ω2

)

∫ L

0

n2(x)

c2
Q2

qdx + i
(ωq − ω)

c

(

ninQ2
q(0) + noutQ

2
q(L)

)

.

The amplitude transmission coefficient can be approximatedas

t(ω) =
Emf (L) + a(ω)Qq(L)

Ainc

'
a(ω)Qq(L)

Ainc

, (27)

assuming that the periodic structure represents a ”good mirror” with the property
Emf (L) ' 0. The frequency dependence of the transmission amplitude then comes
from the decomposition coefficient

a(ω) =
α(ω)

ω − ωq

'
α

ω − ωq

, (28)
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where

α(ω) =
ω2
∫ L

0

n2
0(x) − n2(x)

c2
EmfQqdx

(ω + ωq)
∫ L

0

n2(x)

c2
Q2

qdx +
i

c

(

ninQ2
q(0) + noutQ

2
q(L)

)

. (29)

Term (29) is non-resonant in character; in the case of a very narrow resonance
ω ' Re(ωq) and Im(ωq) � Re(ω) can be shown to depend weakly on the
frequency, see Fig. 3C). Therefore, in the framework of our approximate model
equation (28) represents the Lorentzian like shape as shownin Fig 3B). This re-
sult agrees with those obtained previously in literature [9,11,20,7] Here it follows
from a completely different approach and further supports the conclusion that our
method adequately captures the resonance character of the transmission.

3.2 Asymmetric single cavity

Now the internal structure of the previous example is enclosed within two semiinfi-
nite media of different refractive indicesnin = 1 andnout = 5 (as a somewhat
artificial example to emphasize asymmetric nature of the structure). The QNM
spectrum and transmittance shown in Fig. 4A) and 4B) and the QNM profile in
Fig. 4C) suggest that the difference between the symmetric and asymmetric struc-
tures is reflected in the shift of frequency positions in the complex plane. The same
qualitative behavior can be seen as in Fig. 2A) and 2B), i.e. a single resonance
appears in the bandgap region when the defect is introduced,now with the lower
transmittance level (corresponding to the reflection at an interface between media
with indicesnin andnout [4]). A similar field template as for the symmetric struc-
ture is used. This choice is further confirmed by the excellent agreement between
the approximation of the transmittance with the TMM reference calculation shown
in Fig. 4D).

3.3 Double cavity structure

For this example, we consider a layer arrangement(HL)4D(LH)2LD(LH)4, where
two defects are introduced as changes of thicknesses of layers LD = 2LH , where
nD = nH . The refractive index outside the structure is the same on both sides. The
values of the refractive indices are the same as in section 3.1. These defects are
forming two FP (Fabry-Perot like) resonant cavities enclosed by two identical mir-
rors and one separating mirror. The resonant response of thedouble-cavity structure
is represented by two complex frequencies in the bandgap region as shown in Fig.
5A). The corresponding transmittance plot shows two distinct transmission reso-
nances in the bandgap region Fig. 5B). The QNMs for these two defect-induced
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Fig. 4. A) QNM spectrum and B) Transmittance for the asymmetric periodic (dashed) and
defect (continuous) structure C) QNM for the defect structure D) Transmittance obtained
from the field representation using QNMs and the TMM reference.

eigenfrequencies are shown in Fig 6C) and 6D). Symmetric and skew-symmetric
behavior of the eigenfields is present, arising form the overall symmetry of the
structure.
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Fig. 6A) and 6B) shows the decomposition coefficients and the approximated trans-
mittance response that is in excellent agreement with TMM reference. The field
template based on the mirror field of the structure without defects and linear com-
bination of the two relevant QNMs enables an excellent field representation of the
transmission resonance modes as can be seen from Figs. 6C) and6D).
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Fig. 6. A) Decomposition coefficients. B) Transmittance obtained from the field represen-
tation using QNMs (dashed) and TMM reference (continuous). C) and D): approximated
field obtained from the field representation using QNMs (marker) and TMM reference for
the frequency of transmission resonance (solid line) forω = Re(ωL) and)ω = Re(ωR).

This example can be considered as a case of strongly coupled FP cavities where
the interaction is sufficient to introduce a significant separation of the resonance
frequencies. This is reflected in the positions of the defectQNM eigenfrequencies
of the defect structure. Our approximation method enables both an accurate field
representation and predicts the proper resonant transmission.

3.4 Multiple cavity structure with flat-top narrow-band transmission

As last example we choose an asymmetric triple cavity structure with layer ar-
rangement coded as(HL)4L(HL)9L(HL)9L(HL)4, nH = 2.1, nL = 1.45, nin =
nout = 1.52, LH , LL-quarter-wavelength [26]. This structure introduces three com-
plex eigenfrequencies in the bandgap region, as shown in Fig. 7A). The important
feature is that it provides a narrow-band flat-top transmission inside the bandgap
region as can be seen in Fig 7B). The closely spaced eigenfrequencies and the
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corresponding QNMs are shown in Fig. 8. The proximity of the complex frequen-
cies reflects weak coupling between the three individual FP cavities formed by the
defects. Fig. 9 shows the decomposition coefficients and theapproximated trans-
mittance (compared with the TMM reference). The close proximity of the eigenfre-
quencies is reflected in the substantial overlapping of the frequency regions where
all three decomposition coefficients contribute. The field pattern in this region is
clearly produced by the combination of three relevant QNMs.Obviously all three
QNMs play a significant role over the whole transmission band. The approximated
field profiles for the transmission pass-band and the immediate bandgap region
agree well with the TMM reference, as shown in Fig. 10.

We wish to point out that direct TMM calculations are not suitable for estimating
the resonance origin of the transmission band.Also, some ofthe methods used in
literature, that estimate complex eigenfrequencies by matching the transmittance
spectrum to the Lorentzian lineshape functions and estimate eigenfields through
association of the TRMs with the QNMs, see [27] and referencestherein, are not
efficient in this case. Neither can estimates of the complex eigenfrequencies and
QNMs based on FDTD (finite difference time domain) simulations deal easily with
this type of structures with flat-top transmission, see [2] and references therein.
In contrast our model permits to observe directly the relevance of the individual
QNMs at different frequencies (i.e. the magnitude of the expansion coefficients
ap).
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4 Conclusions

We proposed a constructive way of connecting a quasi-normalmode (eigenmode)
description with transmission resonance properties for optical defect microcavities
in 1D multilayer structures. The approach is meant specifically for approximations
of the defect induced transmission modes existing in the bandgap of otherwise pe-
riodical structures.

The field representation using a mirror field and the most relevant QNMs enables
very accurate field representations for field profiles in the transmittance problem.
The approximated spectral transmittance agrees excellently with the TMM refer-
ence. We emphasize the open and finite nature of the structures by directly charac-
terizing resonance properties via an investigation of the quasi-normal mode spec-
trum.

Numerical examples suggest that the method is valid for single and multiple cavity
structures in both symmetric and nonsymmetric layer arrangements and both weak
and strong couplings between defects. Moreover, our methodallows to examine
directly the resonance nature of the transmission responsein cases where it is very
hard to establish this from exact solutions of the transmission problem, such as
provided by the TMM method.

The approach quantifies directly the physical viewpoint, where the defect cavities
are regarded as externally forced oscillators. The field representations obtained us-
ing QNMs have a better foundation in the physics and nature ofthe realistic, finite
structures, when compared with methods that assumes periodic boundary condi-
tions for the structure.

We believe that our approach can be generalized to 2D and 3D structures as an
acceptable characterization for both fields and response functions. Provided that
suitable QNM basis fields can be made available by analyticalor numerical means,
generalizations could be based on the functional representations of the frequency
domain Maxwell equations for higher dimensions [28],[29].
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