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Abstract

Quasi-Normal Modes are used to characterize transmission resonarid@optical de-
fect cavities and the related field approximations. We specialize to ressmargide the
bandgap of the periodic multilayer mirrors that enclose the defect cavit@sgla tem-
plate with the most relevant QNMs a variational principle permits to represeffieid and
the spectral transmission close to resonances.
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1 Introduction

When subjected to external excitation, periodic multilagteuctures show a reso-
nant response in the time or frequency domain, which caniloegd by inclusion
of defects [1-4]. Finite structures can be viewed as opetesyswhich permit the
leakage of energy to the exterior, described by the Helmhemjuation with out-
going wave boundary conditions. This constitutes an eigieievproblem for com-
plex frequencies and the associated field profiles, or quasial modes (QNMs)
[5]. The quasi-normal modes specify the field patterns incWhhe leaky optical
structure would oscillate naturally after an initial estibn is withdrawn, represent-
ing damped oscillatory solutions of the wave equation [,QNMs and associated
complex eigenvalues can be viewed as a proper model fomgptiae problem of
energy leaking out of open structures, see [2,5-7] andarbéess therein.

Our aim is to use the characterization of the optical micvigatructures in terms
of quasi-normal modes to describe approximately the regaraponse to external
excitation in the frequency domain and the related field [@®fi
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For specific configurations the complex QNM eigenvalues apfzecorrespond to
the position and quality of resonances in the spectral m&gson. Although this
holds when spectral resonances are sufficiently far apamt #ach other, this is
not a general property and real frequencies of transmissggnances can be quite
different form the real parts of the complex QNM eigenfreagies in the given
frequency range [8].

Field representations using QNMs have been investigatg3-it?], on the basis of
guasi-normal mode theory as established in [6], foundedeotainn completeness
properties and a linear-space structure for QNMs [13—-1B8hdgonality of QNMs
is expressed with a specific bilinear form that includes lolauy terms and in con-
trast to the usual inner product does not define a real, pesigfinite norm [16,17].
An eigenfunction expansion based on this bilinear formQ§,2sed as a means for
projecting functions onto the QNM basis, can furnish a fi@dresentation only
over a finite spatial domain (due to exponentially growingetopes of QNM basis
functions) and under certain conditions necessary for ¢et@pess, as detailed in
[13]. The completeness properties of QNMs have been adsttedso in [18,19].

When applying a QNM expansion method to transmission proklssveral points
are important. First, individual QNMs do not satisfy the peo boundary condi-
tions for the transmittance problem directly. The incomiaye contribution in the
transmission problem is introduced via time dynamic equigtifor the expansion
coefficients. Frequency domain equations are obtained byidtaransform [11],
[20]. Second, as detailed in reference [20], an expansisedaolely on QNMs
can represent the internal cavity field up to the boundanhefanclosed region,
with exception of a set of measure zero (the boundary poifitss means that
QNM expansions permit convergence in the mean but not p@atvhis situa-
tion arises specifically when the relevant field does noslathe same outgoing
wave boundary conditions as the QNMs. Hence, despite thelebemess prop-
erty, in these cases finite, truncated QNM expansions legmbooly converging
field representations. Only after applying certain sumamatules following from
the completeness relations [6,20] a better convergenchetinegachieved. Still, ad-
equate approximations of the fields usually require sunonatover many basis
modes (although this hardly ever seems to have been obsexpéditly, perhaps
due to comparisons of intensity shapes in place of field g®filln addition some
caution is necessary when taking into account contribgtidm single resonance in
the field representation based on QNM expansion, as emgldasizhe reference
[20]. This holds even in a spectral region of isolated, defieduced transmission
resonances in the bandgap, where one would expect thatrmdg QNMs with the
real parts of their eigenfrequencies in this frequencyaegire sufficient.

Alternative approaches in describing leaky optical stices are reported in litera-
ture and field representations in open 1D cavity structuresansidered, see [21]
and references therein. These methods primarily consigimtgm theory of open
systems and do not establish a direct connection betwessntitiance (scattering)



problems and QNMs for general structure.

As far as we are aware no adequate generalizations to 2D arsdr@@ures are

reported in literature of the above mentioned approachas.i$ also true for PBG

(photonic bandgap) structures that we are primarily irsimein. Some attempts to
use a QNM-like (eigenmode) description for 2D and 3D PBG stmes are those

related to a scattering-matrix approach as reported i2B2and [24].

It is the purpose of this paper to establish a quantitatiletion between the de-
scription of the structure under external excitation wiveg fixed frequency (the
transmittance problem) and the eigenvalue problem for QNdgphasizing the na-
ture of realistic open structures. Our method specializ@eptical defect structures
where high-Q resonances are present inside the photonitghpnAs detailed in
this paper, it turns out that the variational form of the sramssion problem offers a
resourceful alternative to existing methods when appbetescription of the fields
and transmission responses of the localized defect mode®ébinside the pho-
tonic bandgap. Our method does not rely on any completemepsipies of QNMs

nor on a bilinear form for projecting fields onto the QNM basis

The approach proposed in section 2 uses a combination ofahégap field of
the structure (without defect) and only one/few relevant\@s) as a template. By
restricting a specific functional one obtains approxinraitor the spectral power
transfer and the optical field related to the transmissioouiph the defect structure.
In section 3 we analyze single and multiple defect cavitre$inite 1D periodic
structures for both symmetric and non-symmetric layerrayeanents. Real world
structures are bound to be finite and this feature is exilicitorporated by the
present approach, in contrast to techniques that rely dirceait periodization in
Bloch-type analysis and supercell methods that can int@doaphysical and spu-
rious solutions, although usefulness and applicabilityhelse methods is proven
and well established in practice [2,3].

2 Theory

We consider problems in 1D for structures with arbitrarycpigise constant refrac-
tive index distribution:(z) within a finite domainc € (0, L) and assume that the
structure is enclosed by two semi infinite domains with camistefractive indices
Nin, Nowt @S depicted in Fig. 1 .

We choose a harmonic time dependence for the electric field
E(z,t) = B(z)e ™" (1)

Therefore, the response of the structure under externghéra is described by
the Helmholtz equation
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Fig. 1. The (defect) grating is a finite periodic structure consisting of two maievith
high indexny and low indexn .. The layer thicknessds;;, Ly, are quarter-wavelength for
the target wavelength. Optical defects are introduced as changesothégknesses. The
grating is surrounded by two semi-infinite media of indiegsandn ;.

O’E(z) + K*(2)E(z) =0 (2)
with a transparent influx boundary condition at the side efgtructure where the
incident wave ;. = A;,.c™**) impinges, and a transparent boundary condition
at the other side

(0r + ikin) Eloeo = 2ikinAine, 3)

(aac - ikout) El:v:L =0, (4)

wherek(z) = w?n?(x)/c?, kin = Nimw/c andky, = new/c , for given amplitude
of the incident wavel,,. and frequency. This is the transmittance problem, where
the field distribution inside and outside the structure foeq real frequency of
the incident wave is to be determined. For a solution of 82)Y4) the transmittance
is the ratio between the time-averaged Poynting vectorbenréspective media
of incident and output regions. This is the ratio betweendigiet and transmitted
power for time-harmonic electromagnetic fields

T _ Pout _ %nout | E(L) ’2

(5)

In this context, a transmission resonance can be definedasalathaximum of the
transmittance in a selected frequency region of othervasegtlansmittance.

Alternatively, a finite structure can be viewed as an opetesywith transparent
boundaries which permit leakage of energy to the extent ds before, the be-
havior of the electric field in the interiar € (0, L) is governed by the Helmholtz
equation

PQ(x) + K*(2)Q(x) =0 (6)

now with outgoing wave boundary conditions

(0:Q() + ik Q(2)) ,g = 0 (7)
(axQ(x) - ikoth($))x:L = O (8)



This constitutes an eigenvalue problem for the frequeneg the complex eigen-
value and the electric field)(z) as eigenfunction, called Quasi-Normal Mode.
QNMs appear as discrete infinitely countable set of solstiohthis eigenvalue
problem [6]. They are unbounded functions that blow-upifer +oo, so they are
essentially different from resonant field solutions of ttemsmittance problem.

A finite, but internally periodic structure, i.e. a finite rtildyer grating possesses
a QNM spectrum that appears to be related to the bandgapgws&uand reso-

nance properties of the transmission / reflection spectrardRentations in terms
of QNMs for finite, periodic structures have been invesggah [9-11]. The posi-

tions of complex eigenfrequencies in the complex plane aenged in such way

that suggest the presence of bandgap regions in the traaso@tresponse. Occur-
rence of the bandgap is to be expected for slices in the confidguency plane

where eigenvalues are not present. The edge of the bandgapse terms can

be estimated by taking real parts of the eigenfrequencidseatnds of separated
arranged sets of eigenvalues [9-11]. The introduction aéfadl in an otherwise

periodic multilayer results in isolated QNMs with the reak{s of their complex

eigenfrequencies inside the bandgap region, as showntios&c

In [9,11] it has been noticed that the squared modulus of a QM complex
frequencyw, is similar to the field intensity inside the structure for alfeequency
w ~ Re(w,). This is a good approximation in particular for high-Q tranission
resonances and for QNMs with eigenfrequencies with smabimary parts. Still,
a proper approximation of the field (not intensity) in thengmission problem re-
quires many terms in an expansion based solely on QNMs.

2.1 Solutions by transfer-matrix method

We consider multilayer structures with piecewise constafractive index distri-
bution inside the finite spatial domain. Method for solvihg transmittance (and
eigenvalue) problems is the well known transfer matrix mdtGTMM) [4]. So-
lutions of the Helmholtz equation are given as combinatioheft- and right-
travelling waves in thg-th layer

E](I) = Ajeikj(z_lj—l) + Bje—ikj(at—lj_l) (9)

for x € [l;_1,1;] in a region of constant index; wherek; = n,w/c is the wave
number in this layer. To connect the fields inside all layeesimpose continuity
conditions at the interfaces between consecutive layers,

E;(l;) = Eja(ly), (10)

and
0. B;(l;) = 0. Ej 11 (1) (11)



These conditions lead to a system of equations that relapditades of left- and
right- traveling waves in different layers. They can be esgnted in matrix form.
Ordered multiplication of the relevant matrices conneatplgudes in each layer
of the structure, as well as the amplitudes in the incidenckoaitput regions:

12 (W) Aout

Ain mu(w) m
B, mzl(w) mao (w) Bt

(12)

The transmittance problem with incoming wave from the le&alved withB,,; =
0 for specifiedA;, (amplitude of the incoming wave) with given real frequency
w € R. The amplitude transmission and reflection coefficienteapeessed as

t(w) = i?“t, (13)
r(w) = i (14)

If we choose conditiond;,, = B,.; = 0, i.e. restrict the exterior solutions to purely
outgoing waves, the eigenvalue problem with outgoing wamendary conditions
is addressed . With these conditions the system of equatiam$e nontrivially
satisfied if

my(w) = 0. (15)

Analytic continuation of transfer matrix into the completape enables us to find
solutions of (15) as complex eigenvalueg24]. By substituting the eigenvalue
into the field representation (9) we obtain the correspanpdigenfunction, up to

a complex constant. To solve (15) we apply a numerical iangprocedure of

Newton type. In cases when that method fails to converge auwosely spaced
eigenvalues, we use a more powerful technique for detengnicomplex solutions,

based on the argument principle method from complex arsa]28i.

2.2 Field template and variational formulation for trangtance problem

We specialize to finite periodic structures that possesstngsion properties with
a bandgap, i.e. with a region of frequencies of very low tnaission. Introduction
of suitable defects leads to a resonant transmission resposide the bandgap of
the underlying periodic structure. We choose a field terediat the transmittance
problem as

N
E(z,w) ~ Epnp(z,w) + Y ay(w)Qp(z), (16)
p=1
wherep is an index countingV relevant QNMs . We take the relevant QNMs as
those with the real part of their complex frequency in theegifrequency range.



We show, in terms of the successful application of the tetaflkb), that the trans-
mission resonance associated with the defect, appeasitgithe bandgap, is trig-
gered by the "mirror” fieldE,,, ; of the periodic structure without defect, which for
frequencies inside the bandgap is an almost completelycteflevave with only a
weak tail that extends into the interior of the structure.

Note thatE,,; satisfies correct boundary conditions of the form (3) for tilags-
mittance problem, while a superposition of QNMs can not ctive contribution of
the incoming wave directly. The incoming field has to be ideld by other means
when expansion into the complete set of QNMs is considergf The inclusion
of E,,,; (or some similar object) is essential in our approach as aswearepresent
the incoming wave. The mirror field does not extend far intorébgion of the defect
where the contributions of the relevant QNMs are expectdxttdominant.

Hence, according to template (16) the forced resonancemsspof the structure
appears because the incident wave possesses a real freglosecto the real part
of the complex eigenfrequency of a suitable QNM supporteitheylefect structure.

Obviously (16) constitutes only an approximate model fer tilansmittance prob-
lem in specific frequency regions, since neitthgr, nor () satisfy all of equations
(2)-(4). The residuals can be viewed as contributions frémoQNMSs in the com-
plete set supported [13] by the defect structure, that atrenctuded in (16). We
shall see, however, that the template (16) leads to ext¢efroximations for the
configurations of section 3.

To determine the decomposition coefficieatsn our field template we employ a
variational form of the transmittance problem. The trart&ance problem corre-
sponds to the equation and natural boundary conditiorsngrirom the condition

of stationarity of the functional [25]:

L) = | " % (0. E@))” — K(2) B*(x)) da (17)

1 1

— 5z'kmE2(0) — §ikmE2(L) + 2ikin Aine E(0).

If L becomes stationary, i.e. if the first variation bf£') vanishes for arbitrary
variations ofE, thenE satisfies (2), (3), and (4) as natural boundary conditions

Restricting the functional (17) to our field template (16)hecomes a function of

1 The functional obtained from (17) by setting,,. = 0, is formally related to the bilinear
form (inner product), in which QNMs are orthogonal [6]. Howevee tlrequency plays a
different role in both cases: while in the functional (17) it is a given pest&r, the bilinear
form of [6] operates on objects that include the eigenfrequenciegamants.



the coefficients:,, for given £, ; and(,,.. The stationarity conditions then read:

8L<a17 ag, ..., aN)
da,

=0,q=1,...,N. (18)

The optimal coefficients can be obtained as solutions oft@sysf linear equations
A-a=—b, (19)

wherea = [ay, as, ..., ax]T is the vector of coefficients to be determined. The com-
ponents of the matriA = [4,,]y.~ and vectob = [by, .., by]" are

to= [ (2000, - 0,0, ) s (20)
JO &
17 (12 Qu(0)Qp(0) + 1w @y (D)Q,(L)

and

b= | ’ (axEmfagﬁQq - WEWQ,]> d (21)
i 1 (0)Q(0) + o B D)@y 1)) + 20 A 0).

By solving the system of equations (19) for each value of théfrequencyw the
decomposition coefficients in the field representation lier transmittance prob-
lem are obtained. This enables approximation of the sgettgmasmittance and
reflectance and the related field profile. The transmittaeads:

2
_ Nout ,,«  Nout Emf(L) + Z;f)vzl ap(w)QP<L)
T(w) = "2 = A .
Nin Nin inc

(22)

The field in the region of incidence can be seen as a supedrositincident and
reflected waves

E(x) = Apee™n™ 4 1 Agnee™ M7, (23)

wherer is the amplitude reflection coefficient, related to the réflece (power
reflection defined as the ratio between the Poynting vecfoeslected and incident
waves)

2

Ens(0) + Zﬁ/[:l ap(w)Qy(0) _1 (24)

Az’nc

R=rr"=



3 Resultsand Discussion

We specialize to structures with piecewise constant raveaendex distribution
of high ny and low refractive index.; layers, with quarter-wavelength optical
thicknessed.y, L at a target frequenay,. High index layers are denoted 3y,
low-index layers byL and defect layers by). Thus a finite symmetric periodic
structure is represented Y7 L)~ H, where N is the number of the layer pairs.
The defects are introduced as changes of the thickness dfispgayers, but the
method can handle defects introduced as changes of rg&antices of certain
layers as well. In examples below we use oh}y2 and3 most relevant QNMs
corresponding to single-, double- and triple-cavity dinues.

When single high-Q resonances inside the bandgap are coedjdicomposition
coefficients depend weakly on the frequency, apart from threhtzian approxi-
mation (eqgns. (28,29)). Then the transmittance profile @oldtained analytically
for the major part of the bandgap region around resonanagqodf the full fre-
quency dependence is includedhh, ; as described so far, then computational cost
is comparable to direct TMM computations for the full sturet, but captures ade-
guately the deviation from the Lorentzian approximatiamrtker, we earn a certain
degree of interpretability by being able to observe therpiéy between the QNM
basis modes.

3.1 Symmetric single cavity structure

We consider a layer arrangeméit L) D(LH)?, as an example of a single cavity,
with ng = 3.42 n;, = 1.45, enclosed within two semiinfinite media of the same
refractive indexn;, = n.,, = 1.0. The defect is introduced as a change of the
thicknessLy; in the central layer with high refractive index; with L, = 2L .
The QNM spectrum for the original periodic structure and shecture with the
defect is depicted in Fig. 2A). The QNM frequencies cleahgw an arrangement
in the complex plane, that reflects the presence of the bandghe transmittance
response presented in Fig. 2B). For the defect structure gleanfrequency in
the QNM spectrum appears in the position of the transmisssnnance in the
bandgap (see Fig. 2A). The field profile of the transmissisomance and the pro-
file of the QNM corresponding to the defect structure havealampattern as de-
picted in Figs. 2 C) and D). The difference between the QNM aadsmission
resonance field is clearly visible in Fig. 2E), arising froiffedent boundary con-
ditions (aroundr = 0, the transmittance field represents inwards travellingevav
and QNM outwards travelling wave), consequently leadingrtirely different be-
havior in the region where the incident wave is present. \ke the mirror field in
the template as the solution of the transmittance probletheoktructure without
defect at each frequency in the considered bandgap regppro&imating both the



mode structure and the correct boundary conditions for #lé fepresentation of
the TRM (transmission resonance mode Fig. 2C ), using the QaiMsthe mir-

ror field in Fig. 2F) leads to an excellent agreement betwlemapproximation
obtained form the field template and the exact TMM solutios ¢can be seen in
Fig. 2G). An acceptable agreement between the approxinfiatdgrofile and the
TMM reference (exact solution) is valid in the whole bandffaguency range. The
field template including an exciting field, together with treiational procedure,
provides a constructive quantitative way to relate QNMs BRis.
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Fig. 2. A) Complex frequencies (eigenvalues) for periodic and singlaycstructure B)
Transmittance for periodic (dashed) and single cavity structure (coniEu®) Field pat-
tern for a (defect) frequency at the center of the bandgap, realmaaginary parts D)
Quasi normal mode corresponding to the complex eigenfrequegci) Comparison of

the QNM forw,, (solid line) and the transmission (defect) field (dotted line) in the region
aroundz = 0 where the incoming field is present. F) Mirror field for the (periodic) stmgctu
without defect forw = Re(wjs) G) Field associated with the transmission resonance in the
defect structure obtained via variational approximation based on mirfdrdiiel relevant
QNM and compared with TMM reference.

The transmittance (22) is compared with the TMM referendeutation, as shown
in Fig. 3A). We observe an excellent agreement between tpeogpnation and
the TMM calculations. Fig. 3B) shows the frequency dependeriche decompo-
sition coefficienta,, for this structure. The resonant response is clearly reftect
in this dependence, showing that the transmission reserniamonnected with the
excitation of the internal dynamics represented by thevagieQNM.

A common assumption made in the literature is that the spldcansmission for the
single resonance situation, as described, is of a Lorentiriashape. Our method
can analytically justify this assumption. We consider tbatdbution of a single
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Fig. 3. A) Transmittance obtained from field representation using QNMsTafid refer-
ence B) Decomposition coefficients C) Non-resonant part of the deasitign coefficient.

QNM in the field template (16). The equation for the decomjpmsicoefficient
then reads

Aa(w) +b=0. (25)
After partial integration (21) can be given the form
2 [Fni(z) —n’(x)
b=w /O C—2Emequ (26)

with ny being the refractive index distribution for the finite pelio (unperturbed)
structure. After partial integration, (20) reads

A= (wg — w2> /OL nQC(f)dea: + Z,(wqc—w) (ang(O) - nothZ(L)) )

The amplitude transmission coefficient can be approximased

Enp(L) +a(w)Qy(L)  a(w)Qy(L)
Ainc N Ainc

t(w) = , (27)

assuming that the periodic structure represents a "goosbriwwvith the property
E..¢(L) ~ 0. The frequency dependence of the transmission ampliteedbmes
from the decomposition coefficient

a(w) = ~ , (28)



where

o [ o,
T~ £ . (29)
2

alw) = .
Qe + = (nn@3(0) + nouiQ3(L))

(w + w,) /0

Term (29) is non-resonant in character; in the case of a varyow resonance
w ~ Re(w,) and Im(w,) < Re(w) can be shown to depend weakly on the
frequency, see Fig. 3C). Therefore, in the framework of oyraximate model
equation (28) represents the Lorentzian like shape as sirowig 3B). This re-
sult agrees with those obtained previously in literatur@ I®20,7] Here it follows
from a completely different approach and further suppdmsaonclusion that our
method adequately captures the resonance character oatisenission.

3.2 Asymmetric single cavity

Now the internal structure of the previous example is eredasgithin two semiinfi-
nite media of different refractive indices,, = 1 andn,,; = 5 (as a somewhat
artificial example to emphasize asymmetric nature of thecsire). The QNM
spectrum and transmittance shown in Fig. 4A) and 4B) and th& @kbfile in
Fig. 4C) suggest that the difference between the symmetd@aymmetric struc-
tures is reflected in the shift of frequency positions in tbmplex plane. The same
gualitative behavior can be seen as in Fig. 2A) and 2B), i.englesresonance
appears in the bandgap region when the defect is introdunosd with the lower
transmittance level (corresponding to the reflection andéerface between media
with indicesn;,, andn,,; [4]). A similar field template as for the symmetric struc-
ture is used. This choice is further confirmed by the exceligmeement between
the approximation of the transmittance with the TMM ref@epalculation shown
in Fig. 4D).

3.3 Double cavity structure

For this example, we consider a layer arrangenéhit)* D(LH)?LD(LH)*, where
two defects are introduced as changes of thicknesses aElaye= 2L, where
np = ny. The refractive index outside the structure is the same dmdides. The
values of the refractive indices are the same as in sectibnTBese defects are
forming two FP (Fabry-Perot like) resonant cavities enetblsy two identical mir-
rors and one separating mirror. The resonant response dbth®e-cavity structure
is represented by two complex frequencies in the bandgaprrag shown in Fig.
5A). The corresponding transmittance plot shows two distiransmission reso-
nances in the bandgap region Fig. 5B). The QNMs for these tiecterduced
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Fig. 4. A) QNM spectrum and B) Transmittance for the asymmetric periodghgtd) and
defect (continuous) structure C) QNM for the defect structure Dpdmattance obtained
from the field representation using QNMs and the TMM reference.

eigenfrequencies are shown in Fig 6C) and 6D). Symmetric ked-symmetric
behavior of the eigenfields is present, arising form the @Veymmetry of the

structure.
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Fig. 5. A) QNM spectrum B) Transmittance for periodic and double caviticsire; QNMs
corresponding to complex frequencies in the bandgap region C) QNM;f&) QNM for
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Fig. 6A) and 6B) shows the decomposition coefficients and pipecximated trans-
mittance response that is in excellent agreement with TMidremce. The field
template based on the mirror field of the structure withodécts and linear com-
bination of the two relevant QNMs enables an excellent fiefsteésentation of the
transmission resonance modes as can be seen from Figs. 66Dand

A) B)
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Fig. 6. A) Decomposition coefficients. B) Transmittance obtained from tie répresen-
tation using QNMs (dashed) and TMM reference (continuous). C) dnayiproximated
field obtained from the field representation using QNMs (marker) and Tkference for
the frequency of transmission resonance (solid line,fes Re(wy) and)w = Re(wg).

This example can be considered as a case of strongly couplezhWties where
the interaction is sufficient to introduce a significant safian of the resonance
frequencies. This is reflected in the positions of the def#éM eigenfrequencies
of the defect structure. Our approximation method enabidis &n accurate field
representation and predicts the proper resonant transmiss

3.4 Multiple cavity structure with flat-top narrow-band transsion

As last example we choose an asymmetric triple cavity siractwith layer ar-
rangement coded d$/ L)' L(HL)’L(HL)’L(HL)*, nyg = 2.1, ny = 1.45, n, =
nowt = 1.52, Ly, Li-quarter-wavelength [26]. This structure introducesd¢toem-
plex eigenfrequencies in the bandgap region, as shown in7Ag The important
feature is that it provides a narrow-band flat-top transioisgside the bandgap
region as can be seen in Fig 7B). The closely spaced eigerinetpgs and the
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corresponding QNMs are shown in Fig. 8. The proximity of tbenplex frequen-

cies reflects weak coupling between the three individuald&hties formed by the

defects. Fig. 9 shows the decomposition coefficients andpipeoximated trans-
mittance (compared with the TMM reference). The close prityi of the eigenfre-

guencies is reflected in the substantial overlapping of ibguiency regions where
all three decomposition coefficients contribute. The fieddkgrn in this region is

clearly produced by the combination of three relevant QN®Isviously all three

QNNMs play a significant role over the whole transmission bding approximated
field profiles for the transmission pass-band and the imnediandgap region
agree well with the TMM reference, as shown in Fig. 10.

We wish to point out that direct TMM calculations are not able for estimating

the resonance origin of the transmission band.Also, sontkeoinethods used in
literature, that estimate complex eigenfrequencies bychirag the transmittance
spectrum to the Lorentzian lineshape functions and estiremfenfields through
association of the TRMs with the QNMs, see [27] and referetiveein, are not
efficient in this case. Neither can estimates of the compiganérequencies and
QNMs based on FDTD (finite difference time domain) simulasideal easily with

this type of structures with flat-top transmission, see [&] aeferences therein.
In contrast our model permits to observe directly the reieeaof the individual

QNMs at different frequencies (i.e. the magnitude of theamgion coefficients
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4 Conclusions

We proposed a constructive way of connecting a quasi-nomoale (eigenmode)
description with transmission resonance properties fticapdefect microcavities
in 1D multilayer structures. The approach is meant spedifit@ approximations

of the defect induced transmission modes existing in theldpam of otherwise pe-
riodical structures.

The field representation using a mirror field and the mostvagieQNMs enables
very accurate field representations for field profiles in thegmittance problem.
The approximated spectral transmittance agrees exdgl\eith the TMM refer-
ence. We emphasize the open and finite nature of the stradiyréirectly charac-
terizing resonance properties via an investigation of t@sgnormal mode spec-
trum.

Numerical examples suggest that the method is valid foleiagd multiple cavity
structures in both symmetric and nonsymmetric layer aearents and both weak
and strong couplings between defects. Moreover, our mesiiod's to examine
directly the resonance nature of the transmission resgartseses where it is very
hard to establish this from exact solutions of the transimmsproblem, such as
provided by the TMM method.

The approach quantifies directly the physical viewpointemehthe defect cavities
are regarded as externally forced oscillators. The fieldasmtations obtained us-
ing QNMs have a better foundation in the physics and natuteeofealistic, finite
structures, when compared with methods that assumes mehkodndary condi-
tions for the structure.

We believe that our approach can be generalized to 2D and 18Dtgtes as an
acceptable characterization for both fields and responsifuns. Provided that
suitable QNM basis fields can be made available by analysicalmerical means,
generalizations could be based on the functional reprasens of the frequency
domain Maxwell equations for higher dimensions [28],[29].

4.0.0.1 Acknowledgment Thiswork is financially supported by NanoNed, flag-
ship NanoPhotonics, project TOE.7143.
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Fig. 8. A) Complex eigenfrequencies of defects induced QNMs in the tcigléty struc-
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