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Full resonant transmission of semi-guided planar waves

through slab waveguide steps at oblique incidence

Manfred Hammer∗, Andre Hildebrandt, Jens Förstner

Theoretical Electrical Engineering, University of Paderborn, Germany

Abstract: Sheets of slab waveguides with sharp corners are investigated. By means of rigorous

numerical experiments, we look at oblique incidence of semi-guided plane waves. Radiation losses

vanish beyond a certain critical angle of incidence. One can thus realize lossless propagation through

90-degree corner configurations, where the remaining guided waves are still subject to pronounced

reflection and polarization conversion. A system of two corners can be viewed as a structure akin to

a Fabry-Perot-interferometer. By adjusting the distance between the two partial reflectors, here the

90-degree corners, one identifies step-like configurations that transmit the semi-guided plane waves

without radiation losses, and virtually without reflections. Simulations of semi-guided beams with

in-plane wide Gaussian profiles show that the effect survives in a true 3-D framework.

Keywords: integrated optics, slab waveguide discontinuities, thin-film transitions, 90-degree wave-

guide corners, vertical couplers, numerical/analytical modeling.

PACS codes: 42.82.–m 42.82.Bq 42.82.Et 42.82.Gw 42.15.–i

1 Introduction

In a conventional 2-D setting, any abrupt discontinuities in a high-contrast dielectric optical slab waveguide

typically lead to pronounced radiative losses. This applies also to waveguides with sharp corners. Smooth

transitions in the form of waveguide bends [1, 2] help to reduce the losses, but also increase the size of the

structures. Perhaps this is why the intriguing propagation characteristics [3] of defect waveguides in photonic

crystals, and of 90◦ bends made of these, attracted so much attention, despite their complexity what concerns

simulation, design, and experimental realization. With this paper we intend to show that very similar effects can

be achieved by much more modest means. To this end, corner and step-like structures as illustrated in Figure 1

are considered, for out-of-plane guided, in-plane unguided plane waves at oblique angles of incidence.
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Figure 1: Oblique incidence of vertically

guided, laterally unguided plane waves on

a 90◦ corner in a slab (a), and on a step-

discontinuity consisting of two of these cor-

ners (b); incidence at angle θ. These are

meant to be ±y-±z-infinite slabs, folded once

(a) or twice (b).

Section 2 introduces a rather general setting of a slab waveguide “discontinuity”, comprising an interior region

with in principle arbitrary permittivity, that connects half-infinite slab waveguides at arbitrary positions and

angles, but aligned such that the entire structure is homogeneous along one lateral coordinate (the y- axis in

Figure 1). A general form of Snell’s law applies to pairs of slab modes supported by these access channels.

Depending on the modal properties of the incoming and outgoing slabs, one identifies critical angles of inci-

dence that border on regimes with vanishing radiative losses, or on regimes with single-polarization or single

mode propagation. Constituting the basis for early concepts of integrated optics [4, 5], this effect has been

known for more than four decades (cf. e.g. Refs. [6, 7, 8, 9, 10]), but, to the best of our knowledge, has never

been applied to configurations other than simple waveguide facets or transitions between co-aligned slabs with
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different cross sections, in particular not to configurations with orthogonal access slabs, such as for the present

corners or steps.

In Sections 3, 4 we specialize this to high contrast silicon / silicon-oxide slabs. The numerical simulations rely

on the vectorial implementation of a scheme for 2-D quadridirectional eigenmode propagation (vQUEP) as

described in Ref. [11], based on a former scalar QUEP-variant [12], and building on the bidirectional concepts

of Refs. [6, 7]. To investigate in how far the concepts extend to a more practical 3-D setting with at least

weak lateral confinement, the propagation of semi-guided, laterally wide Gaussian wave bundles is considered

in Section 5. The vQUEP solver [11] has been extended accordingly. A preliminary account of the present

findings, highlighting the mechanism for full-transmission across the step, has been given in Ref. [13].

For the present paper our primary interest is in the fundamental effect itself. However, structures as discussed

here could e.g. enable power transfer between layers at different vertical levels in an 3-D integrated optical

environment, e.g. in a framework of silicon photonics [14, 15]. Beyond the standard evanescent wave interac-

tion [16] between the layers, leading to devices measured in centimeters, for vertical distances below 250 nm

[16], or to shorter devices, but for a vertical separation of merely a few tens of nanometers [17], other concepts

for vertical coupling include specifically tapered core shapes [18, 19], radiative power transfer through grating

couplers [20], or even resonant interaction through vertically stacked microrings [21]. We believe that the con-

cepts from the present paper could offer here a viable, simple and robust alternative, in particular for situations

where large lateral extensions of optical channels can be afforded, or if entire layers at different levels need to

be uniformly “flooded” by light, e.g. for purposes of optical pumping of active devices.

2 Slab waveguide discontinuities at oblique incidence

We start with an abstract look at a “discontinuity” in a slab waveguide, as introduced in Figure 2. The structure

comprises the slab that supports the incoming and possible reflected waves, possible further slabs that support

outgoing waves, and a central region with — what concerns the arguments in these paragraphs — arbitrary

properties, hinted at by the dark patch in panel 2(a). In case of the configurations of Figure 1, that region covers

the actual corner, or the corners and the vertical segment, respectively. The entire structure is supposed to be

constant along the lateral y-axis; we choose the z-direction as the axis of the incoming waveguide.

z
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ξ2 z
θ
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kNin

θ
kz

ky kNout

θout

kξ(a) (b) (c)

ky

Figure 2: Oblique incidence of semi-guided plane waves on a general “discontinuity”, the darker central region; (a) cross-

section (side-) view, (b) top view of the input waveguide, and (c) generic “top view” of any of the output slabs. Cartesian

coordinates x, y, z are oriented such that the incoming wave propagates with effective mode index Nin at an angle θ in the

horizontal y-z-plane, with a mode profile that depends on the vertical x-coordinate. Outgoing waves with effective mode

index Nout are observed at angles θout propagating in the y-ξ-planes, where ξ represents a local coordinate along the slab

core in the x-z-cross-sectional plane. The structure is constant along the y-axis.

This concerns time harmonic fields ∼ exp(iωt) with angular frequency ω = kc = 2πc/λ, for vacuum

wavenumber k, vacuum speed of light c, and vacuum wavelength λ. For the incoming semi-guided wave

we assume a polarized guided mode with vectorial profile Ψin(ky;x) (see Refs. [7, 11]) and effective mode

index Nin, supported by the incoming slab, propagating at an angle θ in the y-z-plane (cf. Figure 2(b), also

Figures 1, 3, 6). The incoming wave thus relates to a field dependence

∼ Ψin(ky, x) exp(−i(kyy + kzz)), (1)
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with ky = kNin sin θ, kz = kNin cos θ, and k2y + k2z = k2N2

in. Due to the homogeneity of the problem along y,

this harmonic y-dependence applies to all electromagnetic fields, at all positions; i.e. the global solution can be

restricted to a single spatial Fourier component with wavenumber ky, here given by the angle of incidence θ.

Next we look at a particular outgoing mode with profile Ψout and effective index Nout. As hinted at in

Figure 2(a), this can be an actual guided mode supported by one of the slabs with coordinates ξ1, ξ2, or

ξ4 = −z, but just as well some non-guided, radiated wave propagating in the y-ξ3-plane. The outgoing field

(cf. Figure 2(c)) is of the form

∼ Ψout(ky , . ) exp(−i(kyy + kξξ)), (2)

where the wave equation [11] requires k2N2
out = k2y + k2ξ for the cross-sectional wavenumber kξ , still with

ky = kNin sin θ fixed by the incoming field.

Depending on the angle of incidence, and specifically for each outgoing mode, one thus has to distinguish

between two cases. If the effective mode index Nout is sufficiently large, i.e. if k2N2
out > k2y , the outgoing field

propagates at an angle θout with wavenumber kξ = kNout cos θout, where the effective indices and the angles of

incidence and refraction are related by Snell’s law:

Nout sin θout = Nin sin θ. (3)

Depending on the properties of the supporting slabs, outgoing waves are thus observed each at its own specific

angle.

If, on the other hand, the effective mode index Nout is smaller, i.e. if k2N2
out < k2y , the outgoing field becomes

evanescent with an imaginary wavenumber kξ = −i
√

k2y − k2N2
out. For the cross-sectional problem, these

waves decay with growing distance ξ. In particular, these evanescent outgoing fields do not carry optical

power [22] (but note that they contribute significantly to the total field around the discontinuity).

An increase of the angle of incidence θ, starting from normal incidence θ = 0, can thus cause a change of a

mode’s type from ξ-propagating to ξ-evanescent. For an outgoing mode with effective index Nout < Nin, this

happens if k2N2
out = k2N2

in sin
2 θ. Hence, for given input field and for each individual outgoing mode, by

sin θcr = Nout/Nin (4)

one can define a characteristic angle θcr, such that this outgoing mode does not carry power for incidence at

θ > θcr beyond that critical angle.

With a view to the corners and steps of Figure 1, we now consider a structure where simple symmetric three-

layer dielectric slabs, with core and cladding refractive indices ng and nb, constitute the (identical) access

waveguides (cf. Figures 3, 6). The dimensions are assumed to be such that merely the fundamental modes of

both polarizations, with effective indices NTE0 and NTM0, are guided, where ng > NTE0 > NTM0 > nb. The

structure is excited by the fundamental TE mode. In line with the former arguments, one can then conclude:

• All modes of these waveguides that relate to radiative waves, with oscillatory behaviour in the cladding

regions (“cladding modes”), have effective indices below the upper limit nb of the radiation continuum.

Their characteristic angles (4) are smaller than the critical angle θb, defined by sin θb = nb/NTE0, asso-

ciated with the background refractive index. Consequently all radiation losses vanish for incidence at

angles θ > θb.

• All TM polarized modes supported by these waveguides have effective mode indices below NTM0. Their

characteristic angles (4) are thus smaller than the critical angle θm, defined by sin θm = NTM0/NTE0,

associated with the fundamental TM wave. Consequently, for incidence at angles θ > θm, all incoming

optical power is carried away by outgoing fundamental guided TE waves.

Note that these arguments, as well as the former less specific statements, rely solely on the modal properties

(1), (2) of the access waveguides, i.e. the reasoning applies to configurations with — in principle — arbitrary

interior and arbitrary extension of the region that connects the slab waveguide outlets.
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2.1 Formal problem

We complement these more general considerations with a brief look at the rigorous equations, as discussed in

Refs. [23, 11]. The problem is governed by the Maxwell curl equations in the frequency domain for the electric

field Ẽ and magnetic field H̃ , for uncharged dielectric, nonmagnetic linear media with relative permittivity

ǫ = n2, for vacuum permittivity ǫ0 and permeability µ0:

curl Ẽ = −iωµ0H̃ , curl H̃ = iωǫǫ0Ẽ. (5)

The properties of a y-homogeneous structure ∂yǫ = 0, and of a corresponding harmonic y-dependence

(

Ẽ

H̃

)

(x, y, z) =

(

E

H

)

(x, z) exp(−ikyy) (6)

of all fields, with the wavenumber ky = kNin sin θ given by the incident wave, then lead to a system of vectorial

equations on the x-z-cross section plane, here formulated for the two “transverse” electric field components,







∂x
1

ǫ
∂xǫ+ ∂2

z ∂x
1

ǫ
∂zǫ− ∂z∂x

∂z
1

ǫ
∂xǫ− ∂x∂z ∂2

x + ∂z
1

ǫ
∂zǫ







(

Ex

Ez

)

+ k2ǫeff

(

Ex

Ez

)

= 0, (7)

with an effective permittivity ǫeff depending on the angle of incidence:

ǫeff(x, z) = ǫ(x, z)−N2

in sin
2 θ. (8)

Eqs. (7), (8) are to be solved on a 2-D domain, with boundary conditions that are transparent for outgoing

guided and nonguided waves, and that can accommodate the given influx. Note that the problem coincides

formally with the equations for the modes of channel waveguides with 2-D cross sections. The wavenumber ky
appears in place of the channel mode propagation constant. Here, however, the equations need to be solved for

the nonstandard boundary conditions, and need to be treated as a nonhomogeneous problem with the influx as

a right-hand side, not as an eigenvalue problem as in the case of channel mode analysis.

Details of the quasi-analytical solver (vQUEP, [24]), that has been applied to generate the numerical results of

this paper, can be found in Refs. [12, 11]. In all cases the numerical parameters have been selected such that

results are converged on the scale of the figures as given, where the power balance (conservation of energy)

serves as one of the criteria for convergence. With the exception of the configurations with pronounced radiative

losses (small angles of incidence in Figure 4), relatively tight computational windows are sufficient, still with

transparent-influx-boundary-conditions that incorporate the incoming waves (other non-guided, radiated fields

are suppressed). Similar to guided mode analysis, also here the optical fields are well confined around the

guiding cores.

The vanishing of radiative losses for wave incidence beyond the critical angle can be understood just as well in

terms of these formal equations [23]. In regions with local constant permittivity ∂xǫ = ∂zǫ = 0, Eqs. (7) reduce

to the scalar Helmholtz equation
(

∂2
x + ∂2

z

)

φ+k2ǫeffφ = 0, valid separately for all components φ = Ej ,Hj of

the optical electromagnetic fields, with the angle-dependent effective permittivity (8). Wave incidence beyond

the critical angle θb then leads to a negative local effective permittivity, and consequently to evanescent wave

propagation, in the cladding regions with refractive index nb.

The problem (7) should be distinguished from the standard 2-D Helmholtz problems for TE and TM waves,

where the global solutions can be represented by a principal scalar field. The latter emerge from Eqs. (5) if

both the structure and the solutions are assumed to be constant along one coordinate axis. In our case that

corresponds to normal wave incidence θ = 0. Still the familiar scalar TE- and TM-slab modes constitute local

solutions of Eq. (7), if their vectorial mode profiles are properly rotated [7, 11], and if their cross sectional

propagation constants kz , kξ are modified according to the global wavenumber ky .
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3 Corner discontinuity

Next we specialize to the corner configurations. Figure 3 introduces a set of parameters that relate to silicon

thin film cores in a silicon-oxide background at a typical near infrared wavelength.

R

T
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θ
z

0

R

T

d

nb

z

d

ngnb

y

x

(a) (b)

Figure 3: Slab waveguide with a straight fold, incidence of ver-

tically (x) guided, laterally (y, z) unguided plane waves at angle

θ, cross-section (a) and top view (b). Parameters: incoming TE-

polarized light at vacuum wavelength λ = 1.55µm, refractive in-

dices ng = 3.4 (guiding regions), nb = 1.45 (background), core

thickness d = 0.25µm.

Figures 4, 5, and Table 1 collect the results of a series of rigorous vQUEP simulations for the corner structures.

Figure 4 shows the variation of the reflectances RTE, RTM and transmittances TTE, TTM of the fundamental

polarized modes with the angle of incidence. As to be expected, only moderate levels of reflection and trans-

mission (cf. Table 1) are observed at normal incidence θ = 0, with most of the optical power being lost to

radiated fields. Pronounced radiative losses are also present at larger angles below θb, where similar amounts

of power are carried upwards by TE- and TM-polarized waves.
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Figure 4: For the corner of Figure 3: relative reflected (R, dashed)

and upwards transmitted (T , solid) guided power carried by TE (upper

panel) and TM polarized waves (lower panel), as a function of the angle

of incidence θ. The critical angles θb = 30.45◦ and θm = 51.14◦ are

indicated.

As predicted in Section 2, radiation losses vanish entirely RTE + RTM + TTE + TTM = 1 for θ > θb, beyond

the critical angle θb for propagating waves in the cladding. Power conversion to outgoing TM waves reaches a

strong maximum in between θb and θm, and is suppressed entirely beyond the critical angle θm for propagating

TM waves, where all outgoing waves are purely TE polarized: RTE + TTE = 1 for θ > θm. For even higher

angles of incidence one observes a maximum in the TE transmission, which vanishes for grazing incidence as

θ approaches 90◦.
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Figure 5: Field profiles |E| for the corner discontinuity of Figure 3, for angles of incidence θ = 0◦, 26◦, 41◦, 68◦.

Figure 5 provides a few examples of fields observed for these typical cases. The plots show absolute values

of the electric field vector |E|, with the color scales adjusted such that variations in regions with small field
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strengths become visible. Note that, irrespective of the critical angles, these rigorous solutions contain con-

tributions from the complete sets of local vectorial slab modes, of both polarizations, which are used as the

expansions bases [11]. If beyond a related critical angle, however, the then evanescent modes stay localized

around the corner region, not contributing to the “far-fields” in the outlets.

While pronounced radiative losses are evident in parts (a) and (b) for θ < θb, all fields remain confined around

the core regions in (c) and (d) for angles θ > θb. Outgoing TM waves lead to strong electric fields immediately

outside the cores of the vertical channel (“highlighted” core edges) in panels (b) and (c), but are absent for the

scalar problem at normal incidence (a) and for θ > θm in (d).

Table 1 compares values for reflectances and transmittances, together with selected parameters, for the config-

urations of all field plots in this paper. Although here we consider the corners merely as building blocks for the

steps of the next sections, a lossless corner structure as the one of Figure 5(c), that channels a total of 74% of

the horizontal input into the vertical, might be of practical interest in its own.

corner step u-turn, bridge, stair, s-bend

θ, θ0 0◦ 26◦ 41◦ 41◦ 68◦ 68◦ 41◦ 41◦ 41◦ 68◦ 68◦ 68◦ 68◦

h/ µm n/a n/a n/a n/a n/a n/a 1.83 1.83 1.83 2.15 2.15 2.15 2.15
Wy/ µm ∞ ∞ ∞ 13 ∞ 27 ∞ 13 60 ∞ 27 481 ∞
Wcr/ µm ∞ ∞ ∞ 10 ∞ 10 ∞ 10 45 ∞ 10 180 ∞
RTE 0.12 0.01 0.25 0.25 0.72 0.72 < 0.01 0.20 0.02 < 0.01 0.66 0.03 < 0.01
RTM 0 0.01 0.01 0.01 0 0 < 0.01 < 0.01 < 0.01 0 0 0 0
TTE 0.09 0.17 0.07 0.07 0.28 0.28 0.97 0.78 0.96 > 0.99 0.34 0.97 > 0.99
TTM 0 0.21 0.67 0.67 0 0 0.02 0.02 0.02 0 0 0 0
Figure 5(a) 5(b) 5(c) 9(a) 5(d) 9(b) 8(a) 10(a) 10(b) 8(b) 10(c) 10(d) 11(a, b, c, d)

Table 1: Reflectance and transmittance values RTE, RTM, TTE, TTM for the polarized fundamental slab modes / for wave

bundles made of these, and varying parameters (angle of incidence θ, vertical layer distance h, bundle widths Wy , Wcr

along y and along the beam cross section) for the configurations relating to the field plots in this paper.

4 Step discontinuity

Combination of two of the former corners gives a step structure that connects optical layers at different ele-

vations. Figure 6 introduces coordinates and parameters. Aiming at efficient power transfer, we focus on two

of the lossless cases from Section 3, for θ = 41◦ (Figure 5(c), this will be named configuration C0) and for

θ = 68◦ (Figure 5(d), labeled configuration C1). Both relate to transmission maxima in Figure 4. For each case

we assume that the two combined corners are identical.

R
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nbd ng
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R

T

y
(a)

(b)

Figure 6: A step configuration, cross-section (a) and

top view (b). Parameters are as given for Figure 3,

with an additional value h for the vertical core dis-

tance.

With the vertical distance h between the horizontal layers, only one new parameter appears. Parts (a) and (c) of

Figure 7 show the transmittance and reflectance of the step as a function of this distance, calculated by rigorous

vQUEP simulations for the full step structure. For both configurations, the angles of incidence exceed the

critical angle θb, hence the steps are lossless.

We look at configuration (C1) first. Since the related corner structures (cf. Figure 5(d), entry in Table 1) trans-

mit and reflect only TE waves, only the upward and downward propagating versions of the fundamental TE

mode mediate between the two corners in the vertical part of the step. One might thus compare the step with

a standard Fabry-Perot interferometer [25], where the corners play the role of the (identical) partial reflectors.

Consequently, the scan over the vertical separation h reveals multiple-beam fringes resulting from the interfer-

ence of the repeatedly up- and downwards reflected TE modes. Maxima with virtually full transmission appear

for certain equidistant heights.
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Figure 7: For the steps of Figure 6, TE-input: polarized modal transmittance (TTE, TTM) and reflectance (RTE, RTM)

versus the step height h (a, c) for given incidence angle θ, and versus the angle of incidence for given step height (b, d).

Thin dash-dotted lines indicate the values θ = 41◦, 68◦ and h = 1.83µm, 2.15µm selected for the configurations (C0)

and (C1) of Figure 8.

Figure 8(b) shows the field pattern for an optimum configuration with full TE-to-TE transmission over a vertical

distance of h = 2.15µm. The field is confined around the core regions, without any beating pattern, i.e. with

purely forward waves, in the horizontal segments, and with strong resonant, mostly standing waves in the

vertical slab.
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Figure 8: Field profiles |E| for two step configurations as in Figure 6, with (almost) full transmission. For the fundamental

guided slab modes one observes transmittance and reflectance levels as given in Table 1.

Regarding configuration (C0), at θ = 41◦ and for TE input, the corners transmit the fundamental modes of

both polarizations (with a dominant TM part, cf. the entry of Figure 5(c) in Table 1). Hence, in a step structure

made of these corners, one must expect that TM as well as TE waves play a role in the interference in the

vertical segment. Accordingly, the scan over the vertical separation in Figure 8(a) shows a much less regular

dependence. Still, for a distance h = 1.83µm, a lossless configuration with virtually full transmission can be

identified. The transmission is mostly TE polarized (reciprocity arguments apply [11]), with a TM contribution

of about 2%. The field plot in Figure 8(a) shows a major TM contribution to the resonance in the vertical slab,

visible through the strong electric field contributions next to the vertical core edges, similar to Figure 5(c).

In principle, given the properties of the constituting corners in the form of scattering matrices, optical transmis-

sion through the step structures can be analyzed analytically. For configuration (C1), where propagating TM

waves are suppressed, the corners are represented by a 2× 2 matrix that relates to incoming- and outgoing TE

waves. Configuration (C0) requires a 4×4 matrix to accommodate TE as well as TM waves. The model would

be applicable to steps of sufficient height, where evanescent fields around the corner regions do not play a role.

As a resonant effect, the property of full transmission must be expected to be sensitive, to some degree, to all

parameters that enter. With a view to Section 5 we select the input angle for a further parameter scan. According

to panels (b) and (d) of Figure 7, although less perfect in peak performance, configuration (C0) might turn out

to be more robust than (C1), here concerning variations of the angle of incidence.
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5 Semi-guided beams

All examples discussed in Sections 3 and 4 concern semi-guided plane waves that extend infinitely in the ±y
direction. We now look at bundles of the former solutions, for a typically small range of angles of incidence,

or of wavenumbers ky , respectively, with the aim of modeling the incidence of semi-guided, laterally wide but

localized beams on the corners and steps. These are wave packets of the form

(

E

H

)

(x, y, z) = A

∫

exp

(

−(ky − ky0)
2

w2

k

)

·
{

Ψin(ky;x) exp (−ikz(ky)(z − z0)) + ρ(ky;x, z)
}

exp (−iky(y − y0)) dky, (9)

with a Gaussian weighting of half width wk, centered around a primary wavenumber ky0 = kNin sin θ0, for

primary angle of incidence θ0, and an (arbitrary) amplitude A. Phase factors have been introduced to position

the focus in the y-z-plane at (y0, z0). The central term in curly brackets represents the numerical 2-D vQUEP

solution, formally separated into a contribution of the incoming field with mode profile Ψin, and a remainder

ρ. The integrals are evaluated by numerical quadrature [26]. We thus arrive at approximations of y-localized

true 3-D solutions, as a basis for the results in Figures 9 and 10.
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Figure 9: Optical electromagnetic energy density for incidence of Gaussian wave bundles (Eq. (9)) with a cross section

width Wcr = 10µm on a corner discontinuity as in Figure 3, for principal angles of incidence (a) θ0 = 41◦ and (b)

θ0 = 68◦. The panels show cross section views (i), bottom views (ii), and views of the plane through the center of the

vertical slab (iii). Further parameters, and transmittance and reflectance levels for the bundles are given in Table 1.

For a proper choice of wave packet parameters it is instrumental to evaluate the incident part (everything except

ρ) of Eq. (9) a little further. Assuming a small spectral width wk, and neglecting the effect of the rotation of

the vectorial mode profile (by replacing Ψin(ky;x) by Ψin(ky0;x)), the incident field can be expressed as
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Figure 10: Optical electromagnetic energy density for incidence of Gaussian wave bundles (9) with cross section widths

of Wcr = 10µm (C0n, a), Wcr = 45µm (C0w, b), Wcr = 10µm (C1n, c), Wcr = 180µm (C1w, d), on step discontinuities

as in Figure 6, for principal angles of incidence θ0 = 41◦ (C0, a, b) and θ0 = 68◦ (C1, c, d). The panels show cross

section views (i), views of the plane through the center of the vertical segment (ii), and bottom views at the levels of the

lower (iii) and of the upper slab (iv). Modal transmittances and reflectances for the bundles are given in Table 1.
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(

E

H

)

in

(x, y, z) ≈
√
π
2A

Wy

exp






−

(

(y − y0)− ky0
kz0

(z − z0)
)2

(Wy/2)2







· Ψin(ky0;x) exp (−i(ky0(y − y0) + kz0(z − z0))) , (10)

with kz0 = kNin cos θ0. In the y-z-plane this is a Gaussian beam with fields of full width Wy along y at 1/e-

level, where Wy = 4/wk . By introducing the cross section position c and longitudinal position l, relative to the

focus, as new coordinates through y = y0 + l sin θ0 + c cos θ0, z = z0 + l cos θ0 − c sin θ0, one can write the

incoming field in the more succinct form

(

E

H

)

in

(x, c, l) ≈
√
π
2A

Wy

exp

(

− c2

(Wcr/2)2

)

Ψin(ky0;x) exp (−ikNinl) . (11)

Here the cross-section-width Wcr (full width of the field at 1/e-level, at focus, in the direction perpendicular

to the beam axis) is related to the y-width by Wcr = Wy cos θ0. Both quantities might be practically relevant,

hence both values are listed in Table 1.

Figures 9 and 10 collect corresponding results for our corner and step structures. The plots show the electro-

magnetic energy density (ǫ0ǫ|E|2 + µ0|H |2)/4 as a physically more relevant quantity. Uniform color scales

have been adopted for all three or four panels that relate to different views of the same configuration. In some

cases the strong resonant fields visible in the longitudinal views lead to rather dark incoming/outgoing beams

(although these carry power of unit order). The single contour at 2% of the energy density maximum is meant

to better accentuate the form of these beams.

According to the values in Table 1, both corner configurations work almost identically for bundles with cross

section width Wcr = 10µm and for incoming plane waves. The reflected and transmitted beams in Figure 9

remain nicely confined. This can be explained by the mere weak angular dependence of the transmission curves

in Figure 4 around the maxima selected for the corner configurations (C0) and (C1).

In contrast, for the same wave bundles of width Wcr = 10µm, the performance of the step structures de-

teriorates, when compared to the case of plane wave incidence. Here the strong angular dependence of the

resonant transmission maxima in Figure 7 becomes relevant. The reflected beams in parts (a, iii) and (c, iii) of

Figure 10 show pronounced sidelobes. Merely the central part of the incoming bundle appears to be transmit-

ted. The effect is more pronounced for configuration (C1) than for (C0) due to the narrower transmission peak

in Figure 7(d).

Hence we choose wider input beams for both configurations as our last examples. The cross section widths

of Wcr = 45µm (C0) and Wcr = 180µm selected for panels 10(b, d) roughly correspond to an angular

range around θ0 with TE-transmission above 90%, i.e. wk, and Wy , Wcr, respectively, are adjusted such that

TTE(θ) > 90% for all θ ∈ [θ0−∆θ, θ0+∆θ], for ∆θ = wk/(kNin cos θ0). According to Table 1, for incoming

beams this wide, the step configurations come reasonably close to their ideal plane-wave performance.

6 Concluding remarks

Semi-guided plane waves at sufficiently high angles of incidence propagate across arbitrary straight slab wave-

guide discontinuities without any radiation losses. This effect can be understood in terms of a variant of Snell’s

law, that relates effective mode indices and angles of incidence and refraction in pairs of access channels. For a

quantitative analysis of these configurations, the frequency-domain Maxwell equations reduce to a vectorial 2-

D system, to be solved on a computational window with transparent-influx boundary conditions. Our rigorous

quasi-analytical solver enables the convenient analysis of structures with general rectangular permittivity distri-

butions. Simulations of high-contrast Si / SiO2 corners lead to the identification of two example configurations

with local transmission maxima. A Fabry-Perot-like resonance effect permits to combine two identical corners

into step configurations with full transmission of the incoming semi-guided plane wave, i.e. with (numerically)

ideal behaviour. Bundles of the former solutions can serve as examples of what happens to semi-guided, lat-

erally localized beams, when incident on the corners or step structures. Our examples show that transmission

properties very close to the laterally infinite case can be realized with beams of sufficient width.
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Once a working step configuration has been identified, extension to further, perhaps also intriguing examples

is obvious. Due to the waveguide symmetry, the transmission properties of the corners is not affected if one

changes their direction. This enables u-turn-like structures as in Figure 11(a). Resonant vertical segments in

the form of steps or u-turns can be connected by pieces of horizontal slabs of arbitrary length. One is thus led

to the bridge-, staircase-, or s-bend-like configurations of Figure 11(b, c, d). Our vQUEP simulations predict

transmittance levels T > 99% in all cases.
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Figure 11: Field profiles

|E| for u-turn, bridge,

stair, and s-bend -like

structures, each made of

double-corners with pa-

rameters as for configura-

tion (C1) of Section 4

(θ = 68◦, h = 2.15µm),

with an (arbitrary) z-

distance of 3µm between

the vertical sections in (b,

c, d).

With the exception of the height scan of Section 4, design of the step structures is straightforward, without the

necessity of further tuning of parameters. Still there is ample room for optimization: Apart from variations of

layer thicknesses, other shapes could be investigated for the refractive index profile of the corner regions. One

might aim at a higher transmittance of the single corners, and consequently at a wider angular range of high

transmittance for the steps with higher transmission of narrower bundles, preferably for single polarization

configurations such as the present (C1). One might also consider structures with true lateral guiding. This

would require the preparation of wide channels with weak lateral contrast (e.g. by shallow etching, indiffusion,

direct laser writing, or other processes) along the path of the present beams.
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slab waveguides. Optical and Quantum Electronics, 37(1-3):37–61, 2005.

[3] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. High transmission through sharp

bends in photonic crystal waveguides. Physical Review Letters, 77:3787–3790, 1996.

[4] R. Ulrich and R. J. Martin. Geometrical optics in thin film light guides. Applied Optics, 10(9):2077–2085, 1971.

[5] P. K. Tien. Integrated optics and new wave phenomena in optical waveguides. Reviews of Modern Physics,

49(2):361–419, 1977.

[6] T. P. Shen, R. F. Wallis, A. A. Maradudin, and G. I. Stegeman. Fresnel-like behavior of guided waves. Journal of

the Optical Society of America A, 4(11):2120–2132, 1987.

11



[7] W. Biehlig and U. Langbein. Three-dimensional step discontinuities in planar waveguides: Angular-spectrum rep-

resentation of guided wavefields and generalized matrix-operator formalism. Optical and Quantum Electronics,

22(4):319–333, 1990.

[8] S. Misawa, M. Aoki, S. Fujita, A. Takaura, T. Kihara, K. Yokomori, and H. Funato. Focusing waveguide mirror with

a tapered edge. Applied Optics, 33(16):3365–3370, 1994.

[9] D. N. Chien, K. Tanaka, and M. Tanaka. Guided wave equivalents of Snell’s and Brewster’s laws. Optics Commu-

nications, 225(4–6):319–329, 2003.
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