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Abstract: A rectangular dielectric strip at some distance above an optical slab waveguide is be-

ing considered, for evanescent excitation of the strip through the semi-guided waves supported by

the slab, at specific oblique angles. The 2.5-D configuration shows resonant transmission properties

with respect to variations of the angle of incidence, or of the excitation frequency, respectively. The

strength of the interaction can be controlled by the gap between strip and slab. For increasing dis-

tance, our simulations predict resonant states with unit extremal reflectance of an angular or spectral

width that tends to zero, i.e. resonances with a Q-factor that tends to infinity, while the resonance po-

sition approaches the level of the guided mode of the strip. This exceptionally simple system realizes

what might be termed a “bound state coupled to the continuum”.

Keywords: photonics, integrated optics, dielectric resonators, rectangular cavities, strip waveguides,

oblique excitation, ultra-high quality factor, bound state coupled to the continuum.

1 Introduction

Dielectric optical cavities, if based either on total internal reflection, or on finite-sized periodically corrugated

regions (photonic crystals), are always deemed to be inherently lossy [1]. Even in a limit of weak excitation,

these inherent losses establish an upper bound to their quality factors (Q-factors). Among the variety of con-

cepts, we look specifically at dielectric cavities of rectangular shape, such as the resonator device outlined in

Fig. 1(b). If considered in a standard 2-D setting, specific dimensioning is required to obtain resonator elements

of tolerable quality [2–4]. We shall reason in this paper, however, that the — rather arbitrarily rectangularly

shaped — cavity of Fig. 1 supports in fact resonant states of in principle infinite Q (the lossless guided modes

of the dielectric strip, accepting standard idealized theoretical models). The arguments require merely a change

in excitation conditions: As illustrated in Fig. 1(a), we reconsider the resonator device in a “2.5-D” setting,

with excitation of the strip by vertically (x-) guided, laterally (y, z-) nonlocalized waves at oblique angles of

incidence θ.
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Figure 1: Oblique evanescent excitation of a dielectric strip, schematic (a), and cross section view (b). Cartesian coor-

dinates x, y, z are oriented such that x is normal to the slab plane, while y is parallel to the strip axis. The incoming

semi-guided wave propagates in the y-z-plane at an angle θ with respect to the strip normal. Outgoing waves with re-

flectance R and transmittance T are observed under the same angle. Parameters: refractive indices ng = 3.45 (guiding

regions), nb = 1.45 (substrate, gap layer, and cladding), slab thicknesses d = h = 0.22µm, strip width w = 0.5µm,

variable gap g. TE excitation around a vacuum wavelength λ = 1.55µm is considered.

Similar configurations have been investigated previously, partly for other purposes. Among the earlier propos-

als are concepts for interferometers based on semi-guided waves passing a multimode rib segment at normal
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incidence, for application as polarizers [5] or isolators [6], a setting for the observation of lateral whispering

gallery resonances at angled crossings of optical fibers [7], and, quite recently, a setup for the differentiation

and integration of semi-guided beams [8], and for the observation of high-Q resonances [9]. Those latter stud-

ies consider the structure of Fig. 1 in a rib-waveguide form (g = 0), i.e. with the strip resting directly on the

substrate. For more general notions on “oblique semi-guided waves”, and for other device concepts, we refer

to papers [10–14], where a recent overview [15] includes already a preliminary glimpse of the present results.

2 Oblique evanescent excitation of a dielectric strip

A dielectric strip of — within limits — arbitrary width and height is placed at some distance on top of a slab

waveguide. The strip constitutes the cavity that is excited, here potentially at oblique angles, by the semi-

guided waves in the slab, which thus works as our bus waveguide. The parameters given in the caption of Fig. 1

represent values for silicon slab and strip cores in a SiO2 background medium, at a typical infrared wavelength.

This concerns time harmonic fields ∼ exp(iωt) at angular frequency ω = kc = 2πc/λ, for vacuum wavelength

λ, wavenumber k, and speed of light c. Referring to Fig. 1, we consider a semi-guided incoming wave at angle

θ with a functional dependence ∼ Ψ(ky, x) exp(−i(kyy+kzz)). The wave is based on the fundamental guided

TE mode of the slab, with profile Ψ and effective mode index NTE0, propagating with in-plane wavenumbers

ky = kNTE0 sin θ and kz , such that k2N2

TE0 = k2y + k2z holds. Our entire problem is homogeneous along y.

Hence the global solution of the frequency-domain Maxwell equations can be restricted to the single spatial

Fourier component ky as given by the incident wave, or the angle of incidence θ, respectively.

In particular, also any outgoing, guided- as well as nonguided waves share this specific y dependence. Follow-

ing the fairly general reasoning of [13, 15], we consider some particular outgoing wave in modal form, similar

to the incoming wave, with a potentially different effective index Nout, scattered in a direction ζ . That wave is

then characterized by wavenumbers ky and kζ that satisfy the relation k2N2
out = k2y +k2ζ = k2N2

TE0 sin
2 θ+k2ζ .

Depending on the relative magnitude of the effective indices involved, and on the angle of incidence, that par-

ticular outgoing wave is either a propagating mode, or, for k2ζ < 0, it becomes evanescent. In the latter case the

wave does not carry any power away from the region around the strip discontinuity.

Observing that all nonguided, radiative modal fields associated with the structure of Fig. 1 are characterized by

effective mode indices below the limit of the background refractive index nb, one can thus identify a critical

angle θb with sin θb = nb/NTE0, such that, for θ > θb, all these waves become evanescent. Consequently, all

radiation losses are suppressed for excitation of our strip at angles beyond θb. Likewise, the guided TM mode

supported by the slab, with effective index NTM0, can be associated with a critical angle θTM with sin θTM =
NTM0/NTE0. Hence, for excitation at angles θ > θTM > θb, also any power transfer to outgoing semi-guided

TM waves is prohibited. In that regime, the reflectance and transmittance values for the fundamental TE slab

mode strictly add up to one.

3 Solvers

These problems are governed by the Maxwell equations in the frequency domain. For the strictly y-harmonic

incident fields, these can be reduced to a system of two coupled second order equations, for two principal

field components, parameterized by the given wavenumber ky. These equations are to be solved on a 2-D

computational domain that covers the strip region, with transparent boundary conditions that can accommodate

the incoming fields. In fact the expressions are formally equal to the standard equations that govern the modes

of dielectric waveguides with 2-D cross sections [16]. In our case, however, these are to be treated as a scattering

problem, not as an eigenvalue system; the given wavenumber ky replaces the propagation constant (eigenvalue).

The results discussed below are generated with two types of numerical techniques. A quasi-analytical solver,

based on a rigorous vectorial expansion into 1-D eigenmodes along both of the cross section coordinates (vec-

torial quadridirectional eigenmode expansion, vQUEP, [11, 17, 18]) appears to be robust, accurate, and compa-

rably efficient for the present problems. Alternatively, the finite-element (FE) solvers included in the COMSOL

multiphysics suite [19] cover these parameterized 2-D problems as well. Our results on structures with rounded



edges in [14, 20] are based on those tools; for the following examples, the COMSOL suite has been used for

the successful corroboration of the vQUEP results.

Failure of both (probably of any) solvers for large gap distances is to be expected. According to our findings

with the present numerical experiments, we attribute this to two related reasons. On the one hand, the overall

field can be viewed roughly as consisting of two components, the field located around the strip core, and

the waves confined to the slab, including the incoming wave. These interact (are “coupled”) by increasingly

lower levels, relative to the field maximum of the component, of the exponential tails of both fields at the

position of the respective other component. Obviously, at a distance where — if not in an idealized theoretical,

mathematical sense, but for all practical and numerical purposes — the interaction ceases to exist, the amplitude

of the strip mode is no longer determined by the incoming wave in the slab. For such a configuration, any

numerical scheme must eventually lead to an inhomogeneous system of linear equations (with the initially

unknown parts of the optical field represented by the unknowns, and the right hand side given by the known

incoming field) with a system matrix that is singular, i.e. does not have a unique solution. At smaller separations,

for still interacting components, the system will gradually slide into the “singular” regime, with exceedingly

ill-conditioned system matrices for growing gap g.

On the other hand, for increasing gaps, the solutions show increasingly stronger field amplitudes in the strip

region, with the field shape there tending towards the guided mode of the strip. Note that this concerns the

hybrid, vectorial TE-like fundamental mode of the rectangular strip, with potentially diverging fields [21] at the

strip edges. Assuming that, for some given numerical setting, this strip mode is being approximated with limited

accuracy only, errors introduced in this way must be expected, with growing relative strength, to influence the

accuracy of the overall solution. With both solvers we observed an increasing violation of the overall power

balance, in particular for close-to-resonant configurations, when increasing the gap g. To some degree, this can

be compensated by adjusting the computational parameters, i.e. by increasing the spectral density of the modal

basis in case of the vQUEP solver, or by reducing the finite element mesh size for the COMSOL simulations.

For the data as shown, computational parameters have been selected (and have been readjusted over the series

of computations, where necessary) such that, for normalized input, the total outgoing power does not deviate

by more than 2% from unity.

4 Resonator characteristics

Our analysis starts with computing the guided mode of the dielectric strip. For the parameters as given in the

caption of Fig. 1, at a vacuum wavelength of λ = λm = 1.55µm, COMSOL predicts a fundamental guided TE-

like hybrid mode with effective index Nm = 2.4192 (further modes are supported). In line with the discussion

of Section 2, this can be translated to an angle of incidence θm with kNm = kNTE0 sin θm of θm = 58.99◦,

where the propagation constant kNm of the strip mode matches the wavenumber ky of the incident wave. We

can thus expect to find a resonance, if the strip is excited at angles close to θm. Figure 2(a) shows a respective

sweep over θ; the panels of Fig. 3 illustrate some corresponding fields.
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Figure 2: Transmission properties of the strip-resonator of Fig. 1, for gaps g = 100 nm (dashed line), g = 200 nm

(dash-dotted), and g = 300 nm (solid curve). The panels show the reflectance R as a function of the angle of incidence θ,

for fixed vacuum wavelength λ (a), or as a function of the vacuum wavelength λ, for fixed angle of incidence (b), and for

fixed wavenumber ky (c).
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Figure 3: Absolute electric field strength |E| on the x-z-cross section plane, for the dielectric strip resonator of Fig. 1 with

a gap of g = 200 nm, at angles of incidence θ = 0◦ (a, normal incidence), θ = 56◦ (b, still off resonance), θ = 58.02◦

(c, at “half maximum” of the resonance), and θ = 58.27◦ (d, at resonance). The color levels of the panels are comparable;

the contours indicate the levels of 2%, 5%, and 10% of the overall field maximum.

At normal incidence, shown in Fig. 3(a), the incoming wave just passes by underneath the strip, with only minor

disturbance: Even if the incident TE slab mode is phase-matched with the TE slab mode in the strip (slab and

strip are of the same thickness), the width w of the strip is much shorter than the coupling length associated

with the symmetric double-core slab system (a half-beat length of 6.84µm, for g = 200 nm). Radiative losses

are present, but remain negligible. Excitation at angles closer to θm leads to stronger fields in the region around

the strip (plots Fig. 3(b), still “off resonance”, Fig. 3(c), at half resonance, and Fig. 3(d), at resonance). The

field shape there resembles more and more the fundamental TE-like guided mode of the strip. Reflectance

levels raise to a maximum of R = 100% at resonance in Fig. 3(d), where consequently no transmitted waves

can be seen in the slab region. Note that, due to the presence of the slab, the maximum reflectance is reached

at an angle that differs from θm. For the parameters of Fig. 1, the critical angles, as introduced in Section 2, are

θb = 30.9◦ and θTM = 46.3◦. Therefore, with the exception of Fig. 3(a), radiation losses and scattering into

guided TM fields are suppressed for all configurations of Figs. 2–4; TE reflectance and TE transmittance total

to 100%.

When viewing the structure as a resonator configuration, it might appear more natural to adopt the vacuum

wavelength as the tuning parameter. Our focus is on sharp resonances, hence we neglect material dispersion.

Two slightly different settings are considered. On the one hand, with a view to actual experiments, the angle of

incidence θ is set to the value of θm. This implies, however, that the wavenumber ky = kNTE0 sin θ changes,

due to the wavelength dependence of the vacuum wavenumber k and of the effective index NTE0. Both depen-

dences are smooth (i.e. nonresonant) in the wavelength range that is relevant for the observation of the narrow

resonances. Alternatively, as a perhaps theoretically more straightforward constraint, the wavenumber ky is

kept constant at the level kNm of the propagation constant of the strip mode (this then requires to readjust the

angle of incidence). Some respective wavelength scans are shown in Figs. 2(b) and 2(c).

Since the strip cavity itself does not show any radiation losses, the resonance characteristics are determined

solely by the strength of the interaction with the bus waveguide. Resonances can thus be controlled by the

gap distance g. Figure 4 summarizes resonance properties, extracted from scans as in Fig. 2, corresponding

either to the fixed frequency view Fig. 4(a), or to the settings with constant angle or wavenumber Fig. 4(b). For

increasing gap, the resonance angle θr tends to the value θm of the strip mode Fig. 4(a). This is accompanied

by a narrowing angular width ∆θ of the resonance. According to Fig. 4(b), equivalent features can be observed

when varying the vacuum wavelength, for either constant angle of incidence, or constant wavenumber. In line



with the plots of Fig. 2, the “height” of the resonance peaks, the maximum reflectance at resonance, remains at

unity. This has been observed for all configurations discussed in this paper.
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Figure 4: Resonance characteristics for the strip resonator of Fig. 1. Positions θr, λr of the resonances and full-widths-at-

half-maxima ∆θr, ∆λr are shown as functions of the gap distance g, for angular scans with constant vacuum wavelength

(a), and for wavelength scans with either constant angle of incidence θ = θm (continuous lines & markers) or constant

wavenumber ky = kNm (dashed lines) (b). Uppermost logarithmic plots, (a): Absolute square of the electric field strength

Ec at the center of the strip cavity, relative to the field strength E0 at the center of the lower slab (for incoming TE mode

at an angle of 59◦, at λ = 1.55µm), for absent strip. (b) Quality factor Q associated with the strip resonances. Lines:

vQUEP results [11]; markers: FE-simulations (COMSOL [19]).

With a view to potential applications, the ”field enhancement” properties of the structure might become relevant.

According to Fig. 4(a), the ratio of the electric field strength at the center of the rib, at resonance, normalized

to the field at the center of the slab, for absent strip, grows exponentially with the gap between the strip and

the slab. While the plot corresponds to angular scans for fixed vacuum wavelength, matching curves (on the

scale of the figure, not shown) are obtained in respective wavelength scans: At least in a regime of large g the

respective resonant states correspond to a set of parameters λ ≈ λm, θ ≈ θm, ky ≈ kNm, i.e. the corresponding

fields coincide. Further, the upper panel of Fig. 4(b) shows the quality factor Q of the strip resonator [1], here

evaluated as the ratio Q = λr/∆λr. Also in this case an exponential growth Q vs. g is observed. What concerns

extremal levels for Q and the “field enhancement”, we did not observe any limits in our numerical experiments.

The data ranges as given are merely limited by how far we can trust our solvers (cf. the remarks in Section 3).

Finally we add brief thoughts on the formation of these resonances (roughly adhering to concepts from e.g.

[22, 23]). To that end we adopt the point of view of the system with constant wavenumber ky = kNm. The

following “states” can then be distinguished:

1. the isolated bound state, i.e. the guided TE-like mode supported by the strip, for absent slab (or, alterna-

tively, in a limit of “large” g). This bound state is characterized by the real eigenfrequency ωm = 2πc/λm.

2. the incoming semi-guided plane waves supported by the slab, for absent strip. The slab supports a

continuum of these waves in a range of frequencies around ωm.

3. the eigenstate of the composite system of strip and slab, for finite g, and for absent external excitation.

This would be an eigensolution characterized by an eigenfrequency that is complex owing to the leakage

into the slab. Due to the symmetry of the problem, this state necessarily radiates with equal rate into

the semi-guided TE-waves at angles ≈ θm in both the positive and negative z-direction. At finite g the

presence of the slab causes the real part of its eigenfrequency to deviate from ωm (“coupling induced

phase shifts” [24]). For increasing g the level of leakage, and consequently the relative field strength in

the slab core, decreases; the composite state tends towards the former bound state (1).



4. the transmission states realized by the excitation of the composite system by the incoming semi-guided

waves, for finite g, as calculated in our simulations. These can be thought of as superpositions of the

unperturbed incoming semi-guided plane wave (2), and the former composite eigenstate (3), with relative

weights that depend on the excitation wavelength. Off resonance, for growing g, this state separates

into the bound state (1) (with increasingly less well defined amplitude) and the unpertubed normalized

incoming wave (2).

Close to the resonance, this last superposition (4) leads to partly destructive interference of the waves associated

with the states (2) and (3) in the slab region z > 0, i.e. leads to a diminished transmittance and increased

reflectance. At resonance, along with the unit reflectance, complete destructive interference of states (2) and

(3) is observed in the region “after” the strip.

Obviously, all extremal resonance properties rely essentially on the infinite extent of the incoming wave along

the axis y of homogeneity of the structure. Incoming fields with limited lateral width, e.g. in the form of

Gaussian wave packets [8, 13], or in the form of wave bundles adapted to a guided mode of a wide, weakly

etched rib [14], necessarily contain semi-guided waves with some range of relevant ky wavenumbers. The

strip-resonators will then act as (extremely narrowband) filters, or beam dividers [8], respectively.

5 Concluding remarks

Accepting the setting with fixed y-wavenumber and variable vacuum wavelength / frequency, for a configuration

with large distance g, this would be an explicitly simple way to realize a system with a bound state (the

rib mode, nonradiating in the limit of infinite g), and a wave continuum (the waves supported by the slab)

in a range of frequencies that cover the (real) eigenfrequency of the bound state. Respective features have

attracted substantial attention elsewhere [25–28] in the more recent past. Note that, in the present context of

photonics, those phenomena appear to be most frequently discussed in a framework of elaborately tailored

periodic structures / of photonic crystals.

Among the many proposals, the structures of [9, 29] are perhaps closest to our present configurations. Systems

of strip-loaded waveguides [29], and a ridge waveguide with oblique excitation by semi-guided waves [9], are

investigated. In both cases the singular resonant states are identified by tuning the width of the strip/ridge

to particular values, where the — elsewhere broader — resonances associated with the leaky modes of the

waveguide shrink to zero angular width. The height of the resonances remains at unit reflectance. This is

attributed to specific symmetry and phase properties of the waves that carry the directional leakage in the

lateral slab.

What concerns our strip with oblique evanescent semi guided excitation, we just as well observe fully formed

resonant states (both in the angular and spectral setting) of a width that tends to zero, if one tunes the gap

distance g to the specific value of infinity. A symmetry argument does not apply, though; further, with a view

to the “definition” of the special states from [26], one could doubt whether the (large) spatial separation of the

bound strip mode and the continuum of semi-guided waves in the slab qualifies for a “coexistence” of states.

Hence, here the notion of a “bound state coupled to the continuum” might perhaps be more adequate.
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