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Abstract: In a three-guide coupler with multimode central waveguide more than
two modes of the entire structure participate in the coupling between the outer
waveguides. Using a three mode approximation we found simple conditions for
complete power transfer between the outer waveguides: the device length has to
match certain multiples of the conventionally defined coupling length. The specific
form of the relevant modes allows to design a magnetooptic isolator or circulator with
significantly reduced device length (as compared to the conventional nonreciprocal
coupler). The performance of the proposed devices is simulated by propagating mode
calculations. Estimates for admissible fabrication tolerances for the layer thicknesses
are presented.
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Figure 1: Geometry of planar radiatively coupled waveguides. The central layer (thickness  , refractive index ! 3)
couples the two identical outer waveguides WG1 and WG2 (thickness " , refractive index ! 1). The outer layers are
separated from the central layer by a slab of thickness # and refractive index ! 2. The structure is embedded within a
medium of refractive index ! 0.

1 Introduction

Magnetic garnets are promising materials for the realization of nonreciprocal integrated optical components
(such as isolators and circulators) in the near infrared [1, 2]. Unfortunately, thin garnet films also show
undesirably high optical losses [3]. For the available materials with their limited Faraday rotation design
concepts have to be developed which aim at very short device lengths.

Recent proposals are based on the nonreciprocal phase shift in magnetooptic waveguides [4, 5, 6]. In a
nonreciprocal coupler, the difference of the mode interference patterns in forward and backward directions is
used for separating the counterpropagating waves. The main problem of this concept is the requirement to have
strongly coupled, but spatially well separated optical channels. Recently we proposed to use a three-waveguide
coupler (so-called radiatively coupled waveguides) to overcome this dilemma [7]. In this paper we investigate
such a system in detail, focusing at the regime where mainly three modes participate in the coupling process.
We show that it is possible to design an integrated optical circulator with remarkable characteristics.

Three-guide structures have been investigated by means of coupled mode theory [8], as a system of two leaky
waveguides [9, 10], or as multilayered waveguides [11, 12, 13]. This work is based on the latter approach.
Depending on the thickness of the central waveguide, mainly two or three modes determine the coupling
between the outer waveguides. As for the conventional two-waveguide coupler, a characteristic coupling length
can be defined. The power transferred between the outer waveguides exhibits maxima and minima if the device
length is chosen as a multiple of the coupling length provided that additional conditions on the propagation
constants are satisfied.

These considerations are presented in section 2. In section 3 the concept of the nonreciprocal coupler
[14] is applied to radiatively coupled waveguides. The special form of the relevant modes can be used for an
optimization of the nonreciprocal phase shift to obtain a small device length. In particular, the case with three
relevant modes turns out to be interesting. Section 4 reports on numerical calculations, section 5 contains some
remarks for a realization in rib waveguide form .

2 Three-guide coupler with multimode central waveguide

Fig. 1 shows a cross section of the planar structures discussed in this paper. Each of the two identical outer
waveguides supports only one mode with propagation constant $�% , for given vacuum wavelength &(' 2 )+*-,
and polarization state (TE or TM). To achieve remote coupling between the outer waveguides, . 3 must be
larger than the effective index $/%0*-, . Then the propagation constants $ of the entire structure typically exhibit
a nearly periodic dependence on the thickness 1 of the central waveguide as depicted in Fig. 2.

Assume that the structure with thickness 1 '21 0 supports a mode with propagation constant $ . In
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Figure 2: Effective mode indices for TM-polarized modes versus the thickness of the central layer. Remaining parameters
are: 354 1 6 3 7 m, ! 0 48! 2 4 2 6 18, ! 1 49! 3 4 2 6 30, "54 0 6 8 7 m, #:4 0 6 8 7 m. Only a small fraction of the region allowed
for the mode indices is displayed. Symmetric modes are indicated by continuous lines, antisymmetric modes by dashed
lines. The dotted line shows the level ;=<0>@?A4 2 6 25041.

the central layer the mode function varies sinusoidally along the B coordinate with a spatial period of
2 )+*�C , 2 . 2

3 D $ 2. Therefore, modes with the same propagation constant $ exist in a set of waveguides

with thicknesses 1FEG'21 0 H8I )�*�C , 2 . 2
3 D $ 2 (I ' 1 J 2 JLK@K0K ), too. These modes are symmetric (even I )

or antisymmetric (odd I ) with respect to the reflection BNM D B . The shape of the mode function remains
unchanged apart from the sine or cosine term inserted at 1 E D 1 0.

For each thickness 1 there are either two or three propagation constants close to $:% . The corresponding
modes contribute with large amplitudes to light propagation if the structure is excited by the guided mode of
one outer waveguide. In some cases the coupling behaviour may be well characterized by the interference of
only three modes. Fig. 3 shows the corresponding mode functions and their superposition.

Let us now discuss the coupling of power between the two outer waveguides. Denote by O+E the normalized
(guided) mode functions of the entire structure: PQOSRTJUOVE@WX'ZY0R[E . $\E are the corresponding propagation
constants. The scalar product for TM modes is P^]+J_O`Wa'2bc.�deB/f_g 2 ] % deB/f^OSdeB/fihjB , the inverse permittivity
being absent for TE modes. For sufficiently large gap width k (cf. Fig. 1) this scalar product may serve to
express the orthonormalization of the mode functions ] 1, ] 2 of the outer waveguides WG1 and WG2 as well:Pl] R J�] E Wm'nY R[E . Suppose the TM polarized mode ] 1 of waveguide WG1 with amplitude o 0 is launched into
the coupling region at pq' 0. Reflections at the input will be neglected. The power transmitted to waveguide,r' 1 J 2 at the end ps'ut of the coupling region is given byv RwdetxfS'zy_{ E}| R[E exp d D i$~E�t�f�y 2 with | R[Em'�P^]VRTJUOVE@WVP�O/E�J�] 1 W�J (1)

normalized to an input power $/%wy�o 0 y 2 *Td 2��� 0 fm' 1. Reflections at output are again neglected.
v

1 denotes the
power transfer to the input waveguide (A M B in Fig. 1).

It is a very good approximation to restrict, in (1), the sum over all modes to guided modes of the entire
structure. All devices studied in this paper show only low radiation losses at input and output,

v
1 d 0 f�� 0 K 999.

We therefore prefer to calculate the propagation of fields by representing them as superpositions of guided
modes.

The weights ��E allow to classify the three mode approximation mentioned above. Consider the three modesO g J_O 0 JUO:� with increasingly ordered propagation constants $ g J_$ 0 J_$V� closest to $V% . Their contribution to the
total power transmission is� Rwdetxf:'�y�{E[� gV� 0 � � | R[E exp d D i $~E�t�f0y 2 K (2)

For the structures discussed here,
�

1 d 0 f turns out to be always larger than 0.9 (see Fig. 4).
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Figure 3: (a) Mode functions �:� , � 0, �=� ( ��� 6, ��� 5, ��� 4) for the structure with paramters as in Fig. 2 and �4 6 6 261 7 m. Corresponding propagation constants are ; � 4 10 6 8660 >07 m, ; 0 4 10 6 8772 >07 m, ; � 4 10 6 8864 >�7 m.
The linear combination of � � and � � with weights � � 4N� � 1 � >L� 10 4 0 6 671 and � � 4�� � 1 � >L� 10 4 0 6 754 is similar
to � 0 in the outer waveguide regions, apart from the reversed symmetry (b). The mode function of one outer waveguide
can be approximated by a superposition of all three modes (c).

Figure 4: Contributions of different mode sets to the power transfer for zero device length versus the thickness of the
central layer. (a): power transfer � 1 � 0 � of the entire mode spectrum, (b): contribution   1 � 0 � of the three most exited
modes, (c): power transferred by the two most exited modes. In the neighbourhood of the maxima of curve (c) the
coupling behaviour can be described approximately by the interference of two modes. Next to the maxima of curve (b) at
least three modes have to be taken into account. We call these regions for  the two or three mode regime, respectively.
Note that the power contribution of three modes in the three mode regime is larger than the contribution of two modes in
the two mode regime.
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Admittedly, the three mode approximation is somewhat crude. To obtain better results, more or all guided
modes should be taken into account. However, for the purpose of finding promising points in a multidimensional
parameter space, this ’three closest mode’ approximation serves quite well, and we will elaborate it further.

Because of the symmetry of the entire structure and with the subsequent selection of propagation constants,O 0 and O g J_O:� have opposite parities with respect to the mirror reflection BXM D B . Therefore, by choosing] 2 deBVf�'¡] 1 d D B/f , the scalar products within the outer waveguide modes are related by PQ] 2 J_O E W�'�¢£PQ] 1 J_O E W
for OVEwdeBVfS'¤¢mOVE-d D BVf . If the three modes are supposed to represent the outer waveguide modes exactly, i.e. if�

1 d 0 fS' 1,
�

2 d 0 fS' 0, their mode weights satisfy the equations | 10 H | 1 g H | 1 �¥' 1 and | 10 ' | 1 g H | 1 � .
If $ 0 is closer to $ g than to $V� , define

∆ $X'�$ 0 D $ g J ¦§'¤d^$=� D $ 0 D ∆ $Sf_* ∆ $�J ¨©' | 1 g * | 10 (3)

and

∆ $X'�$V� D $ 0 J ¦§'¤d^$ 0 D $ g D ∆ $Sf_* ∆ $�J ¨©' | 1 �`* | 10

otherwise. ∆ $ denotes the smallest difference between the propagation constants of neighbouring modes. It
defines a characteristic coupling length t�ª©'«)�* ∆ $ . Additionally one amplitude ratio ¨ and the asymmetry
parameter ¦ are sufficient to characterize the power contained in the input waveguide, as we shall see.

With the above definitions the power transfer function
�

1 reads�
1 detxfS' 1

4
y 1 H ¨ exp d i )¬tx*-t­ª®f H d 1 D ¨Tf exp d D i d 1 H ¦+fe)¬t�*wt�ª[f�y 2 K (4)

Obviously, the conditions for the transmission to be complete —
�

1 d®t�fS' 1 — aret9' 2 ¯°t�ª and ¦±' I *-¯XK (5)

Likewise the transmission vanishes —
�

1 detxf:' 0 — ift9'¡d 2 ¯ H 1 fet ª and ¦±' 2I *Td 2 ¯ H 1 f (6)

hold. In both cases ¯ and I must be nonnegative integer numbers. Recall that (5) and (6) refer to the ’three
closest modes’ approximation. Parameters determined in this manner may serve as starting values for an
optimization procedure which takes all modes into account.

The transferred power is minimal or maximal if the device length is an odd or even multiple of tmª ,
respectively. In contrast to the superposition of only two modes, the propagation constants must additionally
satisfy the conditions (5) and (6) with ¦ as given by (3). Defining the usual coupling length t²ª makes sense for
three mode interference, even for nonequidistant propagation constants ( ¦9³' 0).

The corresponding expressions for the two mode regime result for grossly unequally weighted modes O g ,O � , i.e. for ¨5M 1. In this case the conditions (5) and (6) loose their significance, and maximum or minimum
power transfer occurs at each multiple of the coupling length. This situation was investigated in Ref. [10].

Variation of the parameter 1 alters both t�ª and ¦ . In Fig. 5 we have marked points de1§J�t�ª[f where the
condition (5) for total power transfer is met. These points occur rather frequently, thus justifying the continuous
curve t­ª­'ut�ªUde1¥f for design considerations.

3 Magnetooptic layers

We will now assume that one or more layers have a linear magnetooptic effect. If the static magnetization is
adjusted in the film plane and points perpendicular to the direction of propagation (transverse configuration,
[14, 15]), the corresponding dielectric tensor � is��' ´µ¶ . 2 0 D i ·

0 . 2 0
i · 0 . 2

¸®¹º»K (7)
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Figure 5: Coupling length ¼:½ for different thicknesses  of the central layer. Parameters are as in Fig. 2. The line
represents ¼ ½ according to (3). Regions for  with   1 � 2 ¼ ½ �  ¾�l��4 1 according to the three mode approximation are
marked. At such points (5) holds approximately with ¿�4 1, i.e. ¿cÀ �  ¾� deviates from the next natural number by less
than 0.1.

The off-diagonal elements are related to the specific Faraday constant Á-Â by ·F'u.�&�Á�Â�*-) . Scalar equations
for TE and TM polarized modes may be derived just as for isotropic media. In first order, · does not affect the
propagation of TE polarized light, so our further analysis concentrates on TM modes.

It is well known that the time reversal transformation d^k�J�Ã`faM d D k�J�Ã­f , Ä»M Ä , Å¡M D Å , ÆÇM Æ ,È M D È is a symmetry of Maxwell’s equations (using common notation). A wave propagating in the forward
direction becomes a backward travelling wave with otherwise identical properties (reciprocity theorem). In a
medium with linear magnetooptic effect, the static magnetization must change sign as well for the reciprocity
theorem to hold. Since this is not the case, magnetooptic devices may exhibit nonreciprocal effects.

Our structure is mirror symmetric with respect to the B°' 0 plane. Its transmission properties can be studied
by coupling light into the first waveguide only. Likewise, reversing the sign of the imaginary nondiagonal
permittivity entry i · in all magnetooptic layers simulates reversal of the direction of propagation.

The waveguides may be investigated as multilayer structures with gyrotropic layers. Mode propagation
constants and fields differ for opposite directions of propagation. These differences may be calculated by
subtracting solutions for opposite · or by perturbation theory [16], resulting in the following expression.

Suppose the structure consists of É H 2 homogeneous magnetooptic layers. Then the propagation constant$ related to the mode O in the isotropic structure ( ·5' 0) changes to $ H YL$ :YL$X' 1
2

Ê{E_� 0

Ë · E[� 1. 4E_� 1
D · E. 4E\Ì y O`deÍjE@f0y 2 K (8)ÍiE denotes the boundaries of the piecewise constant permittivity profile:de.+J_·jf_d®BVf¬'ÏÎÐÑ ÐÒ de. 0 JU· 0 f if B±Ó�Í 0de.~E-J_·�E@f if ÍiEÔÓ�B±Ó�ÍjE_� 1de. Ê � 1 J_· Ê � 1 f if Í Ê Ó�B K (9)

If the layers of radiatively coupled waveguides are made of magnetooptic material, usually the coupling
lenghts t­Õª 'u)�* ∆ $ Õ for forward and t­Öª 'u)+* ∆ $ Ö for backward light propagation will be different. An isolator
results if the device length t�×ÙØ can be adjusted such that t�×ÚØ©'zÛQt Õª 'nd®ÛÜ¢ 1 fet Öª holds for a positive integer
number Û ,tS×ÙØx' )y∆ $ Õ D ∆ $ Ö y K (10)

If Û is even and light is injected at port A, it will leave the device at port B (see Fig. 1); if light is injected at port
B, it will leave the device at port D. Likewise, if Û is odd and light is injected at port A, it will leave the device
at port C; if injected at C, it will leave at D.
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Figure 6: Absolute field values of the modes from Fig. 3. The refractive index profile is sketched above. The profile
of the Faraday rotation shown below is adjusted to the shape of the mode functions to obtain optimal nonreciprocal phase
shifts.

(10) defines the dependence of t ×ÙØ on the tuning parameter 1 . Note that t ×ÙØ is the length of an isolator
only if t ×ÙØ de1¥f_*-t Õª de1¥f turns out to be an integer. Moreover, the conditions (5) and (6) with multiplicities Û andÛÜ¢ 1, respectively, must hold for both t�Õª and t­Öª , at least approximately. Note that (10) is unnecessarily rigid
because complete power transfer is required only in forward direction.

Using the notation of section 2, (10) may be rewritten astS×ÙØx' )
2 y�YL$=Ý D YL$ 0 y K (11)

To realize a short device, a large difference between the nonreciprocal phase shift of the two most relevant
modes is required. At points B with maximum difference in the absolute values of the mode fields, boundaries
between regions with different Faraday rotation must be inserted (see (8)). The modes O 0 and O:� or O g ,
respectively, show opposite symmetry with respect to Bq' 0. In the central layer their absolute field values are
periodic in B with a period of 2 hsÞu)+* C , 2 . 2

3 D $V% 2. Therefore · should jump at Bq'¡¢ I h , with I ' 1 J 2 JLK@KLK�JyßB:yjÓ�1à* 2.
If the coupling region is made of layers of thickness h with alternating Faraday rotation, the nonreciprocal

phase shift YL$ 0 and YL$=� or YL$ g , respectively, have a different sign. t ×ÙØ can be further reduced if the outer
waveguides are built from double magnetooptic layers as well. In this case the two layers must be ordered
properly to enhance the nonreciprocal phase shift caused by the magnetic grating in the central layer. These
concepts are illustrated in Fig. 6.

4 Numerical Results and Examples

The following discussion assumes two different media. A nonmagnetic medium with smaller refractive index. 0 'á. 2 is used for the cladding and gap layers. The guiding regions are made of magnetooptic material
(refractive index . 1 'n. 3) which can be properly doped to exhibit positive and negative Faraday rotation of
equal magnitude (nondiagonal elements ¢ i · ). These assumptions are realistic, see Ref. [3].

Fig. 7 compares potential device lengthes of isolators based on radiatively coupled waveguides with identical
refractive index profile. The values are estimated with the aid of (11).

If the outer waveguides are made of two layers, the total length can be shortened by a factor of 10 as
compared to magnetooptic single layer outer waveguides provided that 1 is choosen within the three mode
regime. In the case of only two relevant modes, both propagation constants are shifted in the same way because
of approximately equally large amplitudes in the outer waveguides. This is the reason for the poles in curve 2
of Fig. 7. Such large variations vanish if the coupling layer is a magnetic grating. In the three mode regime,
the device is half as long as compared to the double layer stuctures. It is further diminished by a factor of 3 * 4
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Figure 7: Isolator device length ¼¬âÙã versus the thickness  of the coupling layer. Different parts of the multilayer
structures have been modeled to be magnetooptic: (1 – dash-dotted line) only the outer waveguides: single layers with
opposite faraday rotation on both sides, (2 – continuous line) the outer waveguides: double layers of equal thickness
with opposite Faraday rotation, (3 – dashed line) the central region: magnetic grating with alternating Faraday rotation,
(4 – dotted line) the outer waveguides: double layers, additionally alternating Faraday rotation in the coupling layer.
Parameters are as in Fig. 2, ä åiä04 0 6 005. Example profiles of Faraday rotation and refractive index for  �4 6 6 261 7 m are
sketched in the inset.

if both the central region and the outer waveguides consist of magnetooptic layers. The following paragraphs
refer to such structures.

The available material ( . 0 'æ. 2 J�. 1 'æ. 3 J_· ), the light wavelength & and the height Í of the outer
waveguides are assumed to be fixed, the gap width k and the coupler thickness 1 have to be optimized. We
observed the following tendencies:

If k decreases, the modes of the outer waveguides deviate more and more from the modes of the entire
structure which leads to larger coupling losses at input and output. If k increases, the coupling length increases in
both regimes. In the three mode regime the minimal isolator length depends but weakly on k while gradients int`×ÙØ�de1¥f increase for larger k . We are looking for values 1 for which t�Õª de1¥f , t�Öª de1¥f , and t`×ÙØ�de1¥f simultaneously
have their proper meaning as coupling or isolator length. Such values occur less frequently with increasing gap
width k .

For given gap width k , regions with promising thicknesses 1 can be selected from charts like Fig. 7. In
these regions points 1 must be searched which guarantee a proper isolation at a device length t close tot ×ÙØ de1¥f . These simulations must consider all guided modes of the coupler structure to give reliable results.

Larger 1 improves the separation of the input and output waveguides, but the number of magnetic layers,
hence the structuring effort, increases. The relevant propagation constants are more closely spaced, therefore
coupling lengths increase and tolerance requirements for t and 1 become less strict. Also, additional modes
contribute to the coupling process which results in larger transmission loss due to multimode interference.

Table 1 presents three example parameter sets which correspond to well performing isolator devices. We
have calculated the interference of all guided modes, indicated by the symbol

v
instead of

�
which stands for

the ’three closest mode’ approximation. The isolation is defined by 10 log
v Õ1 * v Ö1 , the (forward transmission)

loss by D 10 log
v Õ1 . Reflections at power input and output and the losses due to material absorption are

neglected. The tolerance ∆ ç of a length parameter ç is declared as follows. If all other parameters remain
fixed, then è�ç D ∆ çXJ_ç H ∆ çXé is an interval of values such that isolation better that 20 dB and forward
transmission loss below 0.5 dB are guaranteed. The parameters Í and k have been varied for one of the outer
waveguides only. The coupling region of structures (i), (ii), and (iii) is made up of 10, 16, and 28 layers of
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(i) (ii) (iii)
coupling layer thickness 1 [ ê m] 6.261 10.352 18.719
device length t [ ê m] 1512 1558 1504
isolation [dB] 38 55 38
forward transmission loss [db] 0.15 0.15 0.27
coupling layer tolerance ∆ 1 [nm] 5 7 12
device length tolerance ∆ t [ ê m] 35 40 35
gap thickness tolerance ∆ k [nm] 16 16 20
waveguide thickness tolerance ∆ Í [nm] 3 3 3

Table 1: Example parameters and tolerances for isolators based on planar radiatively coupled waveguides. The remaining
parameters are 3�4 1 6 3 7 m, "c4 0 6 8 7 m, #:4 0 6 8 7 m, ! 0 49! 2 4 2 6 18, ! 1 4£! 3 4 2 6 30, ä åiä04 0 6 005. See Fig. 1 for further
explanations.

ëíì�îëeïiî
Figure 8: Light propagation in structure (i) of Tab. 1. The TM-polarized mode function of one outer waveguide is
used as an initial field in ðc4 0 (a) and ðc4 1 6 5mm (b). In the direction of transmission the power remains in the input
waveguide (a), while in the opposite direction the power is guided to the other waveguide (b). Due to Àiñ­ò 0 an almost
periodic interference pattern emerges in the backward direction (b).

alternating Faraday rotation. Fig. 8 illustrates light propagation in structure (i).
The three sample devices — which have been calculated and optimized with all guided modes — may be

analyzed by the ’three closest mode’ approximation as outlined in section 2. Conditions (10) and (5), (6) for
good isolator performance are met, at least approximately, as demonstrated in Table 2. The ratios of device
to coupling lengths should be integer numbers (4, 4, 2, 5, 3, and 3 in our case). Likewise, the asymmetry
parameters ¦ turn out to be close to fractions of two small integers (1/2, 0, 1, 0, 2/3, and 0).

For comparison, a conventional nonreciprocal coupler (no central layer in Fig. 1) made from the same
materials ( . 0 'ó. 2, . 1, y ·�y ) with the same geometry of the coupled waveguides ( & , Í ) must be longer than
2 K 75 mm. This length results for a gap width k�' 0 and double layer waveguides. It is further enlarged by bends
which are necessary for separating input and output ports. A gap width k�' 0 corresponds to a coupling length
of 11 K 7 ê m, and a tolerance below 0 K 7 ê m for the total device length is required. The coupling region length
increases to 10 K 5 mm for a gap of width 2 km' 0 K 8 ê m. Conventional coupler isolators are highly sensitive to
alterations of the waveguide separation. The optimal value of 0 K 8 ê m must be maintained with a tolerance
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(i) (ii) (iii)t Õª [ ê m] 381 391 739tx*-t Õª 3.97 3.98 2.04¦ Õ 0.504 0.012 1.015t Öª [ ê m] 309 507 522tx*-t�Öª 4.89 3.07 2.88¦ Ö 0.003 0.671 0.002

Table 2: Values characterizing the coupling behaviour for the structures of table 1. The values listed here are the subject
of (5), (6) and (10) for good isolator performance according to the three mode approximation. See the text for further
explanation.
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Figure 9: Concepts for isolator devices based on radiatively coupled waveguides. Cross sections perpendicular to the
direction of propagation ð are shown. Guiding magnetooptic layers are hatched, signs denote the signs of the Faraday
rotation. Both concepts employ TM-polarized light ( ä  �ÿTä�� ä  ���ä ) and the magnetization points into the direction �
parallel to the substrate surface.

better than ¢ 0 K 4 nm as can be estimated from the sinusoidal form of the power transfer and the dependence of
the coupling length on k .
5 Rib waveguide concepts

Real integrated optical structures must guide the light in both transverse directions. Fig. 9 shows two possibilities
how to exploit the advantages of radiatively coupled waveguides in three dimensions.

In (a) the multilayer structure proposed in section 3 is restricted laterally. The central strip and the second
waveguide have been put onto the lower guide. To guarantee the required symmetry, the lower waveguide
protrudes the substrate. In contrast to (a), structure (b) may be used as a circulator because the deviated light
remains guided as well. (b) does not exploit the symmetry difference. The strongly different field amplitudes
of the relevant mode functions in the coupling region and the outer waveguides cause nonreciprocal behaviour.
Layers with opposite Faraday rotation would have to be realized side by side. However, it may turn out that
isotropic outer waveguides in (b) allow sufficiently short devices as well.
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6 Conclusions

Radiatively coupled waveguides offer an attractive alternative to the conventional two waveguide coupler.
Cross-talk between the optical channels is low since they are spatially well separated. Simple conditions for
complete power transfer are obtained for both the two- and the three-mode regimes. An effective circulator can
be designed if the central region consists of a stack of magnetooptic layers with alternating Faraday rotation.
The manufacturing of such structures requires additional technological effort, but the expected significant
improvement of performance characteristics with respect to the conventional nonreciprocal coupler would well
pay off.
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