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Modeling of tuning of microresonator filters by
perturbational evaluation of cavity mode phase shifts

K. R. Hiremath,Member, IEEE, and M. Hammer

Abstract—Microresonator filters, realized by evanescent coupling wavelength. Such wavelength shifts have been analyzed usin
of circular cavities with two parallel bus waveguides, are jpomis- arguments based on energy perturbatibnis [[T], [12] or oiger

ing candidates for applications in dense wavelength divish mul-  finite element simulation§13]. Here we broaden these etudi
tiplexing. Tunability of these filters is an essential featwe for their . .
in the context of add/drop filters.

successful deployment. In this paper we present a framework

for modeling of tuning of the microresonators by changes of pqp the application of microresonator elements as tunable
their cavity core refractive index. Using a reciprocity theorem, a

perturbational expression for changes in the cavity propagtion Wavglength filters, suitable maFerla}Is are mtroducec.iplealmn
constants due to slight modifications of the cavity core refactive @ slight change of the refractive index of the cavity core by
index is derived. This expression permits to analytically alculate  external mechanisms like electro- or thermo-optic effelets
shifts in spectral response of the 2D resonators. Compariss of the modeling of such tuning, in this contribution we propose
tck(')% r‘las(‘;ltangs'h':]ts and spectra_vx;lth direct simulations baed on g evaluate perturbational expressions for phase shifts o
pled mode theory show satistactory agreement. the modes of the bent waveguides that constitute the cavity.
Index Terms—Integrated Optics, numerical modeling, tuning, Similar expressions for the induced phanges of _propagation
bent waveguides, microresonators, coupled mode theory, tipal ~ constants of modes supported by straight waveguides ate wel
filters, whispering gallery modes known [IZ4]. We use reciprocity techniques for the deriva-
tion. When applied to given cavity modes of a resonator
configuration, these phase shift expressions allow to at@lu
|. INTRODUCTION analytically the wavelength tuning range for the respectiv

IGH . i ‘ tensively i t_resonances. These expressions resemble those for the fre-
Q microcavity resonalors areé extensively Inves guency shifts of whispering gallery resonances of circular
gated for a variety of applications like lasers, sensor,

X , ~(Uncoupled, isolated) cavities, obtained by energy pleétion
the study of quantum electrodynamics, or integrated 0bt'°:§rgumentsl]]]5].

communication devices][1]. When such cavities in the form

of circular rings or disks are coupled to single/dual bu# principle, the proposed theoretical framework is apilie
waveguides they act as wavelength filters. Due to high fQr both 3D and 2D settings. Subject to availability of theca
and compactness of these filters, they are explored for deff¥gbent) modes, analytic evaluation of the shifts is alssg-
wavelength division multiplexing in integrated opti€$ [f], Dble. Due to an easy access to 2D analytical bent madés [16], in
[@. The realization and actual performance of the resasatdhis paper numerical results are discussed for the 2D gepmet
are constrained by several factors, e.g. an accurate dafinitturther we discuss use of the perturbational expressions in
of the resonance wavelengths requires a high degree ofotongombination with the semi-analytical 2D model for circular
of the geometrical parameters, temperature dependengebarinicroresonators, which is based on a spatial frequencyagom

in the material parameters detune the spectral responsieeAccoupled mode theory[17]. Preliminary studies can be found i
(e.g. electro/thermo-optical, photobleaching) tuning the Refs. [18], [19]. Within certain limits, the phase-shiftfoulas
resonators greatly relaxes these constralfts [5], [6], TAjs Permit to predict directly how the tuning affects the entire
controllability is also utilized in other devices like lase Wwavelength spectrum. Extension to 3D resonators is outline
optical switches, optical modulators [8]. in the concluding remarks.

In essence, an active tuning is equivalent to a controllable
perturbation. This perturbational viewpoint is often eaygld Il. TUNING OF MICRORESONATORS

for microresonators based bio, chemo-sensdrs [2, [10k I:)"llhe resonators under consideration consist of ring- or-disk

to the sensitivity of whispering gallery modes (WGMs) of th%haped dielectric cavities, evanescently coupled to twalleh
resonators towards the environment in which they are b%lfraight bus waveguides ’as illustrated in Elg. 1. The cayer

up, any slight change in the environment —in the exterior BF the cavities is assumed to be an active region, e.g. leeater

the interior of the cavity— resuits in a .Sh'ft.Of the_ resoranG,, glectrodes are placed on top of it for tuning. We consider
wavelengths, and a change of output light intensity at a ﬂx%dZD geometry in the frequency domain setting, where a time
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of Applied Mathematics, University of Twente, 7500 AE Enedd, the 2 @nd pc_>|a_r coordinates,_e are ierduceq for the spatially
Netherlands. email: m.hammer@math.utwente.n| 2D description as shown in Fifll 1. The entire structure aerd th
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TE- or TM-polarized optical fields are assumed to be constaméive propagation along the cavity. We verify the validity
in the y-direction. of this approximation for the subsequent simulations in-Sec
tion V] where it is used to simplify the computations. Now
besides the wavelength, the cavity mode propagation cansta
also depends on the tuning parameter, fie= G(p, A), with

p = 0 representing the original statg(0, \,,,) = Bn.

As a result of tuning, the resonance of orderis shifted
towards a new wavelengtky,, such that3(p, A, ) = (2mr +
®)/Leav = Bm is satisfied again, i.e. the wavelength shift
compensates the change in the cavity mode propagation
constant due to a nonzero perturbation strengti linear
approximation in the tuning parameter and in the wavelength
differences leads to
< ap < !

B(p;s Am) = B(0, Am) +p e +(Am—Am) 57| = Bm-
Fig. 1. Schematic microresonator representation: A cavity ofus#, core Plox,
refractive indexnc and widthwc is placed between two straight waveguides (1)

with core refractive indexns and widthws, with gaps of widthsg and g o ~
between the cavity and the bus waveguideg.is the background refractive Hence the shift in the resonant wavelength\,, = A, — Ay,

index. Tuning is applied to the core of the cavity. that is effected by the tuning can be written as

To compute the spectral response, we apply a coupled modeAp)\m =—p (8_6) (3_5) - (2

theory (CMT) based model of the resonatdrs] [17]. In this dp ) \ O\
model, the resonator is represented in terms of two bent-

straight waveguide couplers, | and Il as in Hi§. 1, which a®express the propagation constant in terms of vacuum
internally connected by cavity segments of lendthand L wavenumber and effective mode index @s= 27nes/)\; if
(this length is measured outside the coupler regions). T wavelength dependence of the effective index is ndugigi
responses of the couplers | and Il are characterized by thgien

respective scattering matric€s S; whereas the fields in the op 3 Oneft 3

cavity segments are characterized by their mode propagatio 7y = ~ N ~ N ®)
constantsy. Due to the leaky nature of these modes, the pro
agation constants are complex valued, denoted as5 —iq,
where 3 and o are the real valued phase propagation a
attenuation constants.

0, \m

Phe same approximation can also be obtained by homogeneity

arguments[[21] for the propagation constants; alternigtise
ore accurate representation of the wavelength dependénce

the propagation constant in terms of the group effectivexnd

Given input powers?, and/or Py, the through powePr and of the cavity mode can also be derivédl[18]. With the above

the drop powerP, can be calculated in terms 6f S, and~. approximation, the wavelength shift reads

The computation of the spectral response can be sped up using 98 Am

interpolation [I7], where instead of the scattering masic pAm =Po 5 (4)

S, S, which are associated with the couplers defined over a _ .

larger > interval, one uses “reduced” scattering matrisgss’ Note that the Wavele_ngth shift does not explicitly depend on

associated with couplers of a zero length, such that thethengqe length of the cavity.

of the cavity isLcay = 27 R. We use this technique for thewe are interested in tuning by a slight change. of the

subsequent simulations in Sectiod IV. cavity core refractive index. The resultant shifts in resure

As explained in Refs[]18][]20], at resonance the conditiof{avelengths are given by

B = (2mnm 4+ ¢)/Lcay = Bm holds for the cavity mode phase AN — An 9B Am (5)
propagation constani (real part of+), where the integem " “One Bm

gives the order of the resonance, apds the total phase | order to estimate this effect, one must know the deperalenc
contribution due to the coupling. Assume that the wavelengss the propagation constants on the core refractive index.
dependence of the phase constant () is given. Then one |, the next section we derive a perturbational expression

can write3(Am) = 3m, wherel,, is the resonance wavelengthyor the change in the cavity propagation constants due to a
associated with the resonant cavity mode propagation @00styeriurhation of the core refractive index.

Prm-
In principle, the tuning affects both the coupler respons# a |||, A PERTURBATIONAL EXPRESSION EOR BEND MODE
the cavity mode propagation. If the coupler length is short PHASE SHIFTS

enough, then as a first approximation one can disregard the
influence of tuning on the couplers, and assume that a tunifg outlined in Sectiofdl, in the CMT model of the microres-
mechanism, modeled by a paramegeraffects mainly the onators the cavity is segmented into pieces of bent waveguid
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Eq. (@) requires an expression for the derivatives, i.efitlse Note that the above expression can also be written in terms
order changes, of the bend mode propagation constants vathmodal fields (E, H) instead of mode profile$E,fI).
respect to the cavity core refractive index. Here we adhereThen it is evident that the denominator of the fraction on
the 2D setting as introduced in FIg. 1, with polar coordisatehe right hand side of EqLTIL0) is equal #d7%(6), where
(r,y,0) (invariance in they-direction). For a bent waveguide P, (0) is the power transported by the (unperturbed) bent mode
with radial refractive index distribution(r) = \/e(r), let the in the angular direction[[16]. Thus for a mode normalized
full electric (E') and magneti¢ H) field for a given mode be to unit modal power, the change in propagatlon_qkonstant is
=~ = ) directly proportional to the strength (ep—€)E-E rdr,
(5) (r,0,1) = ( ((g’“’ gy]é"))) (@t =7R0) " (6) ie. the shift is the largest if the ({:)E;Ormittivity perturkmti
My, 210 is present at radial positions, where the squared bent mode
where the~ symbol indicates the mode profile. These modgrofile (E|> = E - E*) is strong. For typical well guided
profiles and the corresponding propagation constardéthe modes supported by a cavity ring, a permittivity perturdati
bent waveguides are computed analytically according to the the core layer automatically fulfills this requirement. |
expressions given in Ref_[16]. case of whispering gallery modes (WGMs) of disk-shaped
resonators, the field maximum is in the vicinity of the outer
dielectric layer interface. A slight perturbation in thagion is
élﬁlmediately picked up by the WGMs. Precisely this sengitivi
of the modes is utilized in microcavity based sensors. One
can see a close formal resemblance of Eq. (10) for the change
in the cavity propagation constant to the expression for the

Suppose that the core refractive index is slightly pertdrbed
the perturbed refractive index distribution is giveniby(r) =
Vep(r). Assuming that the mode profile remains unchang
for this perturbation, the corresponding perturbed mod#d fi
(E,, H,) is approximated as

(Ep) = P(9) (E) @) shift of WGMs in microspheres by protein adsorption given
H, H)’ in Ref. [18].
whereP(0) is an unknown function of the angular coordinatghe right hand side of Eq[TLO0) is a pure real number.
0. Therefore this expression, in fact, gives the change in the
By applying Lorentz’s reciprocity theorerfi[14] in polar geo €@l part of the propagation constant only, denoted ByIn
dinates to(E,, H,,¢,) and (E, H,¢), one obtains Ref. [14] a similar expression fqr_th_e change m_the propagat

~ constant for bulk uniform permittivity perturbations ofaght

/ V- (E,x H" +E*x H,) r dr waveguides is derived by means of a variational principle.
0

.00 In the present case of bent waveguides, the use of an asymp-
= fiweo/ (e, —€)E, - E* r dr, totic expansion of Hankel functions of second kinff¥nkr)
0 (see Ref.[[16]) reveals that, if, — ¢ does not vanish for
which upon inserting the ansatkl (7) and after simplifyin%rge radial coordinates, the integrfbfo(ep _ €)E~ B rdr

reduces to is undefined for the upper limitr = oo (obviously the
ap as-(Ex H + E* x H) dr template [[b) for the p_ertu_rbed field does not_ constitute an
do J, acceptable approximation in that case of a uniform altenati
of the properties of the exterior cladding). Still, for a ety
- > « bounded perturbatiote, = dn2 = n2 — n2 of the core
= —iweg P —e)E-E"rd ¢ c cp c
weo /0 (5 =) mEn refractive index, Eq.[[J0) is well defined; in that case it
(8) simplifies to
whereay is the unit vector in the angular direction. Inserting weo on2 f}f E-E*radr
. . . 6 _ - = —We 11
Ege bent waveguide field ansalz (6) and solving/96) leads B R fo as (ExH + E x H)dr (11)
o - s where R — w,. and R define the core interfaces as shown in
P() = Pyexp | —iweo Jo (g —)E-E rdr 0 Fig.Ol, andnc, andn. are the perturbed and unperturbed core
fo‘” ag - (E xH +E xH )ar " refractive index respectively. For a small perturbatioe ean

(9) approximately write

where P, is a constant, the superscriptrepresents the mode 98 = 2nC% ~ anﬁ
profile. Thus the perturbed modal field is One Dec dec
E E o, WEO f]?—w E-E*rdr 1
<H1;>PO (IrI> P (=i (v + 67) ), B nc?foooae-(ExH*—i—E*xH)dr' (12)
and the change in propagation consténtdue to the pertur- Note that the integrals that occur in the above expressien ar
bation is given by well behaved. HereE, H are the electric field and magnetic
o U field of the cavity mode associated with the’th order
5y = weo fo (ep — 6)*E E*Tdr _ (10) unperturbed (untuned) resonance. Using this expressitn wi

R [ Cag- (ExH +E xH)dr Eq. (@), gives desired wavelength shift due to tuning.
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IV. SIMULATION RESULTS 16

First we assess the validity of the perturbation expresgidh
For the moderately lossy bent waveguide configuration con- 1.4}
sidered in Fig[R, the estimation of the change in the phase

propagation constants by the perturbation expressioneagre g “
very well with the values computed directly by the analytica 1.2¢ =
bent waveguide model. TE, .-
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Fig. 2.  Phase propagation constants estimated by the perturbbéspres- 0 - .2 ‘ A=LUo W
sion, for a bent waveguide configuration with width = 0.5 um, R = 5 um '?_2 1.4 1.6 1.8 2
and uniform backgroundy, = 1. Dashed lines denot@/k obtained by direct n

[

calculations[[1], dots are reference points= 1.5 andnc¢ = 1.75, and the

slope of the solid line segments is given by expres{ig). Fig. 3. Phase propagation constants of WGMs evaluated by the patiomal

expression [[A2), for a bent waveguide configuration with= 1.0, w. =
R = 5 um. Interpretation of the curves is as for Hiy. 2. The subse@p 1, 2

As an another example, for Fifl 3 the perturbational expre&0te the order of the modes.

sion [12) is evaluated for WGMs supported by a single curved

interface (meant as piece of a resonator disk). For the moder

ately lossy fundamental and first order WGMs, the agreemehe perturbed configurations separately using the CMT based
is excellent, but for the second order WGMs which are cointerpolation method described in Sectdh II. Let’s assitinae
siderably lossy (e.guc = 1.5, v/k = 1.0422—i 5.7410-10~®  for a slight change of the cavity core refractive index the
(TEz), 1.0339 — i 1.21610 - 1072 (TMy)) there are major coupler scattering matrice$/, S’ do not change much, and
deviations. Apparently, here the changes in the mode psofilte shifts of the resonances are entirely due to the changes i
and the attenuation constants due to the core refractiexindhe cavity mode propagation constants. Then usihd’ of
perturbation are not negligible, such that the anddtz (Apts the unperturbed resonator, and adding the phase propagatio
appropriate for these fields. constant shiftsés to the propagation constantg of the

Having assessed the expressi@dl (12), now we validate H{éoerturbed cavity segments, one can again follow the pre-

resonance shifts predicted by EF] (5) using Eql (12). -I-EbIéIIPUSW de;cribed i_nter;;olatri]on methtgd(jj without recaémﬂg
gives comparison for the shifts for the test case of the riﬁBe scattering matrices for the perturbed resonator. sty

resonator. For the present perturbation, it is evident that a sigr_1ifican_t amount of computational work can be avoided.
shifts predicted by using Eq1(5) using the perturbatioxal eWe will verify this approach.
pression[(IR) agree satisfactorily with direct CMT simiglas. Fig. @ depicts the spectral responses for the perturbed and

the unperturbed resonators. As seen in the top plot, for the

Am {‘g‘légw) AAm i gf)gém' ) A’\mofég‘QéCMT) ring resonator the spectral response computed with theeabov
10413 0.0026 00027 approximation method (solid line) agrees quite well witle th
1.0654 0.0026 0.0027 direct CMT calculation (circles). As far as the resonance

TABLE | positions are concerned, similar agreement is found also in

Comparison of ring resonator TE mode spectral stif?s,, predicted by
Eq. @) (second column) with direct calculations (third column) dostructure
according to Fiddl wittR = 5 um, we = ws = 0.3 um, ns = 1.5,
np = 1.0, g = g = 0.2 um. The cavity core refractive indexig = 1.5 for
the unperturbed setting, ang@, = 1.504 for the perturbed structure.

case of the present multimodal disk resonator, as shown in
the bottom plots. This agreement confirms the previous claim
that the influence of moderate tuning can be reliably capture
by a mere effect on the cavity mode propagation, without
significant changes in the strength of the interaction wlith t
external waveguides. For the disk resonator, minor derati
For the evaluation of the effect of tuning, in principle onare observed in the depths of the resonance dips, in paticul
can compute the resonator spectra for the unperturbed dodthe TE resonances, where apparently the change in modal
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1.2

Ring resonator

1.08

Fig. 4. Spectral shift due to tuning of the cavity core refractivéer, for the

unperturbed structure in combination with the shifts in the
cavity mode propagation constants given by the perturbatio
expression, one can reliably and efficiently predict theespé
response for moderately perturbed resonators.

Even though here the simulation results are discussed for
2D microresonators, the tuning model presented is equally
applicable to 3D resonators. In the latter case the present
integrals over the 1D radial cross section in EGs] (10 (12)
will become integrals over the radial/axial cross sectiame

of the cavity core. Bend mode phase shifts can then be
evaluated on the basis of (necessarily approximate) 2D mode
profiles as provided e.g. by the quasi-analytical bend mode
solver of Ref. [2R]. Further, using a 3D CMT model of
resonators[[43] one can follow similar steps as outlinec her
to predict the tuned spectral responses. Thus extensidmeof t
present framework to a 3D setting should be straightforward
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ring- (top plot,wc = 0.3 pm) and disk-resonator configurations (bottom plot,

we = R = 5um) of Tabldl. The curves of the normalized transmitted power

are calculated by the interpolation method of REf] [17] @logavelengths:
1.015 pm, 1.05 pm, 1.085 pm) for the unperturbed resonator witle = 1.5
(dash-dotted line) and for the perturbed resonator wigh = 1.504 (circles).
Solid lines represent the results of the approximation dasethe perturbation
expressions as outlined in the text.
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