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Abstract

We investigate a system of two waveguides with leaky modes sharing a common
substrate (radiatively coupled waveguides). The main advantage of such a system is
the possibility of remote coupling. A perturbation theory is developed for both TE-
and TM-polarization. Numerical calculations of dispersion curves and of the coupling
length allow to determine the limitations of the perturbation theory. The influence
of multimode interference on the process of beating is studied by considering the
propagation of a given initial field. Finally, a new design for an effective integrated

optical TE/TM polarization splitter is proposed.
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1. INTRODUCTION

Directional couplers have many applications in the field of integrated optics and optoelec-
tronics, such as switches, power dividers, filters, or modulators'™. The conventional princi-
ple of coupling is based on the existence of evanescent mode fields outside the waveguides. In
this case, the coupling coeflicient falls off exponentially with the separation distance, and an
acceptable coupling length can be achieved only if the waveguides are sufficiently close. This
complicates the realization of devices based on coupled waveguides. Remote coupling can be
achieved by using antiresonant reflecting optical waveguide (ARROW) structures® 2. Re-
cently a possibility of remote coupling in a system of two waveguides with leaky modes shar-
ing a substrate (see Fig. 1), the so-called radiatively coupled waveguides, was demonstrated®.
We believe that such a system is worth considering it for integrated optical applications.
The purpose of this paper is to theoretically investigate a system of two radiatively coupled

waveguides in detail.

The paper is organized as follows. Section 2 explains the operation principle of radiatively
coupled waveguides. In section 3 a perturbation theory of radiatively coupled waveguides
is developed for both TE- and TM-polarized modes. Numerical investigations in section 4
allow to determine the regions of applicability of the perturbation theory and to gain further
insight into the properties of radiatively coupled waveguides. The influence of multimode
interference on the coupling process is studied in section 5 by analyzing the propagation of
a given initial field. Finally, in section 6 we propose a new design for an effective integrated

optical TE/TM polarization splitter.

2. RADIATIVELY COUPLED WAVEGUIDES

Consider two identical slab waveguides to be coupled. Each waveguide consists of a film

(refractive index n;) of thickness h sandwiched between a cover (refractive index ng) and



a substrate (refractive index ny) (see Fig. 1a). It carries a guided mode with an effective Fig. 1

mode index n*. In the following we consider both TE and TM polarizations.

The conventional coupling of spatially separated but optically coupled waveguides is based
on the existence of evanescent mode fields outside the guides. The refractive index of the
medium in the coupling region is smaller than the effective mode index. For radiatively
coupled waveguides, as shown in Fig. 1c, the refractive index n3 in the coupling region is
larger than the mode index. We call this radiative coupling due to two reasons. First, the
modes of individual waveguides are leaky and radiate power into the surrounding medium
with a large refractive index nj (see Fig. 1b). Second, similarly to radiation modes, the
mode fields of interest show oscillatory behavior along the x-axis in the coupling region.
The entire structure is a multimode multilayered waveguide, and its guided (bound) modes
have no radiation losses. Figure 2 shows mode profiles for typical waveguide parameters Fig. 2
taken from Ref. 10. The symmetric and antisymmetric modes of interest (TM4 and TM;;
in Fig. 2) are not the fundamental modes of the entire structure, but those with mode indices
n, and n, closest to the mode index n* of a basic slab waveguide. Contrary to other modes,
these two modes have small wave amplitudes inside the central layer (see Fig. 2), and their
superposition matches the mode field of a basic slab waveguide well. Therefore, one can
expect that in the case of excitation at the end of one waveguide, mainly these two modes
will be important. Since they have different propagation constants, it is expected that after

a distance equal to

A

Lo=— 2
¢ 2n, — ng

(1)
the radiation will be transferred from the first to the second waveguide. A stands for the
operation wavelength. We call L, the coupling length, although L. and the real distance
after which the radiation is transferred from one waveguide to another can be different.
Obviously, L., as defined by Eq.(1), has its physical significance only when the coupling

process is dominated by only two modes, symmetric and antisymmetric®. However, one can



always formally define L. as in Eq.(1) assuming that n, and n, are the effective mode indices

of symmetric and antisymmetric modes closest to n*.

Figure 3a shows dispersion curves for typical waveguide parameters. Obviously, the mode
spectrum is enriched for thicker central layers. The propagation constants of the modes of
interest lie between n; and no likewise for the basic slab waveguide. This region is shown
enlarged in Fig. 3b. The behavior of the dispersion curves in Fig. 3b is remarkably similar

to an ARROW-coupler (compare Fig. 3b with Fig. 2b of Ref. 7).

3. PERTURBATION THEORY

If the thickness ¢ of the buffer layer is sufficiently large (A = exp[—2k(n*? — n2)'/?t] < 1)
one can consider the presence of medium 3 as a perturbation to the basic slab waveguide!®
and obtain the effective indices of the symmetric and antisymmetric TM-modes of interest

as corrections to the mode index n* of the basic slab waveguide:

Nsa = n* + §Re((snlk;) + 5ns,a ) (2)
with
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Here k is the wavenumber in vacuum and h.g is the effective waveguide thickness!. dny, is
the correction to n* due to the finite thickness of the buffer layer 2 (see Fig. 1b). In this case
the real part of dny, gives the change of the mode index due to the leakage, while Sm(dny)

determines the radiation loss coefficient ;44 of a leaky mode!?:

Apad = k %m(&nlk) . (6)

dns,q are additional corrections for symmetric and antisymmetric solutions. The derivation
of Egs.(2)-(5) is explained in the Appendix. Previously published results for TE modes'®

can be obtained by substituting 7, — 1 (i =0, ..., 3).

Formulas (3) and (4) are rather complicated. However, already a first look at them allows
us to draw important conclusions. First, it can be seen that due to the tan-function in (4),
the perturbation theory predicts a periodical dependence of n,, on H. This result is at
least qualitatively confirmed by Figure 3b, and we shall see below that there is quantitative
agreement as well. Second, the perturbation theory breaks down if (65 ,/2 + ) ~ 7/2+7m
(m is integer), since then dn,, — oo. This condition provides the quantitative criterion
for regions where three modes have to be considered such that two-mode approximation is

definitely invalid®.

4. DISPERSION CURVES: COMPARISON OF ANALYTICAL AND NUMERICAL

RESULTS

The theory presented in the previous section is an approximation. It is aimed at describ-
ing modes with propagation constants only slightly different from n*. In this section we
investigate the region of applicability of the perturbation theory in more detail. This is
achieved by comparing the dispersion curves and the coupling length as calculated by using
formula (2) and numerically. The result is depicted in Figure 4 for two different regions

of the variation of the thickness H. The perturbation theory works very well for index

Fig. 4



variations |ns, — n*| < 0.01 in the region H < 5 pm, while for larger H the differences
become clearly pronounced. The comparison for L. is given in Fig. 5 . The perturbation
theory predicts a periodical dependence on H. The numerical calculations show an almost
periodical dependence on H, and the maximum of L, within one period grows with H. The
coupling process is best described by two modes® in the regions close to the local maxima of
L.(H)-curves. The conclusion to be drawn from comparing perturbation theory and numer-
ical results is apparent: the perturbation theory provides good results for small thicknesses
of the central layer and its applicability deteriorates with the growth of H. The application
of the perturbation theory to the case of very thick central layers (e.g. H ~ 95 um'?) seems

to be unjustified.

5. INFLUENCE OF MULTIMODE INTERFERENCE ON THE COUPLING PRO-

CESS

As was already seen in Fig. 3, the system of radiatively coupled waveguides can support
many modes. Real initial fields can not always be well represented as a superposition of
only two modes. Therefore, an excitation in just one of the outer sections unavoidably
leads to several modes being excited. Assume that the fundamental mode of the basic slab
waveguide is launched as an initial field into the section 1 (WG1). Such an experimental
situation was realized in Ref. 10. The optical power carried by the mode is normalized to
unity. To calculate the propagation of the initial field we use a Propagating-Mode Analysis

(PMA)!*14 based on the expansion of the propagating fields into the local modes of structure:

F(z,2) =) ¢pn Fn(z) expifnz, (7)

where ¢, is the amplitude of mode m and F the principal electric (TE) or magnetic (TM)
field component. The mode field profile F,,(z) is normalized, such that |c,,|? is the power

carried by the mode. In all our calculations the initial field was very well represented by

Fig. 5



such a superposition : 1> 3 |e,|? > 0.98.

The accuracy and reliability of the PMA calculations were controlled with the finite-
difference Beam-Propagation Method'®'¢ (BPM). The results of the PMA and BPM calcu-
lations agreed well, since the amount of initially radiated power was very low. The PMA is
significantly faster than the BPM, especially for large thicknesses of the central layer when
a large number of points is required to simulate the oscillatory behavior correctly. Addition-

ally, the PMA generates exact multimode interference patterns for arbitrary distances.

During propagation the optical power is transferred from the first waveguide to the second.
Therefore, it is concentrated not only in the outer sections but also in the central layer.
To evaluate the power in the outer sections we work out the overlap integrals with the

fundamental modes of these waveguides:

Pi(z2) = [(F(z,2), $1(2))[*,  Pa(2) = [(F(x,2), ¢2())]*, (8)

where ¢; and ¢; are normalized mode fields in sections 1 (denoted as WG1 in Fig. 1c)
and 2 (denoted as WG2), respectively. (F, @) stands for the proper scalar product for each
polarization state!”. The total optical power in outer sections P = P, + P, is a measure of

”useful” power which can be coupled out of the system.

Figure 6 shows the variation of the power in sections 1 and 2 as well as of the total power
P, + P, with the propagation distance z for different thicknesses of the central layer. These
thicknesses were chosen in such a way that the theoretical coupling length calculated from
the perturbation theory was 1 mm. It is seen that for thin (H < 5 um) central layers the
physical situation is excellently described by the coupling of only two modes. For thick
(H ~ 20 pm) layers multimode interference results in a complicated picture of intermode
beating. The distance after which the power is transferred form the first waveguide to the
second is larger than 1 mm. In general, a sizeable amount of power can be contained in the
central layer and therefore cannot be coupled out of the system if the device length is not

properly chosen. The power contained in the central layer at the output of the device plays
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the role of intrinsic losses of the system.

Note that although the entire mode spectrum is excited, only a small number of modes whose
propagation constants are close to n* determine the propagation picture. This is illustrated
in Fig. 7. It is seen that the interference of the four main modes (TMy; - TMy,) is practically
indistinguishable from the case when all modes were taken into account (compare Figs. 6¢

and 7c).

6. APPLICATION: TE/TM POLARIZATION SPLITTER

There is a growing interest in new concepts for integrated optical polarization splitting
devices'®723. We propose to use radiatively coupled waveguides for the design of a TE/TM
mode splitter?*. The device is based on the difference in the beat length of the two polariza-
tion states (see e.g. Fig. 5). To estimate the required waveguide parameters the perturbation
theory is used. The maximum coupling length L7**® is inversely proportional to the optical
loss coefficient a,44'%, and the splitter operates close to this maximum. a,.q can be calcu-
lated with the help of Egs. (3) and (6). The waveguide parameters are selected in such a way
that LmaeTM jpmazTE — oTB /qTM — ()8 Therefore, it is expected that after 5 half-beat
lengthes of the TM-polarized waves (or, equivalently, 4 half-beat lengthes of TE-polarized

waves) the different polarization states will be directed into different output channels (see

Fig. 8) .

Very strict fabrication tolerances with respect to the waveguide thickness are a general
property of all polarization splitting devices??. To evaluate the performance of the proposed
polarization splitter and to estimate the allowed fabrication tolerances, we calculate the

extinction ratios ER; and ER,%?2:

PTM PTE
ER;, = 10log;y =— and  ER, =10log,y —>—. (9)
Py P

Figure 9 shows the variation of the extinction ratios FR; and EF R, with the propagation

Fig. 7

Fig. 8

Fig. 9



distance z. For a good polarization discrimination the device length should be chosen in
such a way that both extinction ratios are below -20 dB (or above +20 dB)??. These levels

are shown by dashed lines.

Table 1 gives values of the device length L, and the allowed fabrication tolerance for the
thickness of the central layer corresponding to different values of H. Remaining waveguide
parameters are as in Fig. 8. Since L. varies almost periodically with H, there is also an
almost periodical set of possible values of H, where the polarization discrimination occurs.
For the used waveguide parameters these possible values of H can be expressed by H ~
(0.661 + n - 0.411) pm (n > 0 is integer). Table 1 shows the allowed tolerances for three
typical values of H. The general trend is that the allowed tolerances for H improve for
smaller H. At the same time, the required tolerances for h and t are practically independent
of H and are approximately equal to 10 nm (see Fig. 10). The tolerance & 40 um for L,

also remains constant.

A tolerance of + 10 nm is a significant improvement if compared with + 1 nm as required
for the design of Thyagarajan et al.2!. A recently proposed ARROW structure design?? is
slightly less critical (& 15 nm), but more complicated, since it contains more layers. The
allowed tolerances in the proposed structure are reasonable and better than for polarization
splitters based on asymmetric conventional waveguides??. The search for waveguides with
other technologically feasible sets of parameters and improved fabrication tolerances seems

to be promising.

Tab. 1

Fig.10



7. CONCLUSIONS

e A system of two radiatively coupled waveguides, when the modes of the individual
waveguides are leaky, has been studied in detail. The main advantage of such a
system over the conventional directional coupler is that coupling between rather remote

channels can be achieved.

e Approximate expressions for the effective mode indices of the two (symmetric and
antisymmetric) modes of interest are presented for both TE- and TM-polarizations.
This perturbation theory works very well for sufficiently thin central layers. It allows
to conveniently design a TE/TM mode splitter. For thick central layers, numerical
calculations have to be used. An application of the perturbation theory to extremely

remote (H ~ 100 pum) waveguides is unfounded.

e Although coupling between two remote channels is possible, multimode interference

leads to a complicated picture of beating during the propagation.

e We propose an integrated optical TE/TM polarization splitter based on radiatively
coupled waveguides. Our device is as efficient as the three-waveguide splitter of Thya-
garajan et al.?!, but the fabrication tolerances in comparison with the latter design are
considerably improved. Although the required tolerances are somewhat smaller than

1‘22

in a recent proposal by Trutschel et al.*“, our design is considerably simpler because

it consists of only a few layers.
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APPENDIX

Assuming harmonic time dependence of the form exp(—iwt) the mode magnetic field in a

layer [ can be represented as a sum of upward and downward traveling waves

Hy, = a; - {exp[—ikN)(z — z;)] + R, exp[ikN;(z — ;)] } exp(ikn*z),

where N; = (n? — n*2)Y/2. If n* > n; we must replace N; by i|N;|.
i

R, are the reflection coefficients of the TM waves at the surface £ = z;. In multilayered

structures they are related by the following recursion formula:

~ mNi(L+ Rig1) — My N (1 = Riyq)

_ exp 21k N 10
mNi (1 + Rypq) + my1 Ris1(1 — Riyq) P . (10)

l

where 7, = nl_2 and h; = x; — 2741

First, we consider the slab waveguide of Fig. 1a as an unperturbed structure. Application

of boundary conditions to the TM mode field yields the well-known dispersion equation:

D= ’r]()N()(l + Rl) —+ 7]1N1(1 — Rl) =0.

To find én* in the framework of perturbation theory, we demand that the variation of D
vanishes, 6D = (noNy — mN1)0R1 + (0D/0n*)én* = 0. After some algebra we obtain the
following correction to n* due to the change JR; in the reflection coefficient R; caused by

the presence of the central layer:

N1 mNy —noNg

on* = —
21n*kheﬁ‘ 771N1 + T]()NO

SR, . (11)

The entire system of radiatively coupled waveguides is symmetric, thus R3 = exp (i, ,) with
0; = kN3H, 8, = kNsH + 7 for symmetric (s) and antisymmetric (a) modes of interest.
The known values of R3 allow to calculate 0 R; using the relationship (10) and to obtain the

corrections 6n; o from (11).
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FIGURES

Fig. 1. A basic slab waveguide (a) and a slab waveguide with leaky modes (b) are shown. If
two waveguides with leaky modes share a substrate they form radiatively coupled waveguides
(c). Note that the refractive index ng of the central layer is larger than the effective index of
the waveguide mode n*. Arrows illustrate the power flow. H = 0 corresponds to conventionally

coupled waveguides.

Fig. 2. Field profiles of some TM-modes for two radiatively coupled waveguides. The fields are
normalized as [ e !|H,|> dz = 1. Parameters ng = 1,n; = 1.49,ny = 1.46,n3 = 1.52, h = 1.35 pum,
t = 0.8 pum and A = 0.6328 um are taken from Ref. 10. The thickness H of the central layer is

12.5 pm. The entire structure supports 61 TM-modes.

Fig. 3. (a) Effective mode index 3/k of the TM-modes versus the thickness H of the central
layer. Parameters are the same as in Fig. 2. (b) Part of the dispersion curves from (a). The modes

are designated. Solid lines denote symmetric modes, dashed lines denote antisymmetric modes.

Fig. 4. Effective mode index 3/k of the TM-modes as calculated using the perturbation theory
(solid lines) and numerically (dashed lines) versus the thickness H of the central layer for different
regions of the variation of H: 0 < H <5 pym (a) and 15 < H < 20 pm (b). Only the effective

mode indices close to n* = 1.4789 are shown. Parameters are the same as in Fig. 2.

Fig. 5.  Coupling length L. of TM and TE modes as calculated using the perturbation theory
(solid lines) and numerically (dashed lines) versus the thickness H of the central layer for different
regions of the variation of H: 0 < H <5 pm (a) and 15 < H < 20 pm (b). The maximal coupling

length L7*** according to the perturbation theory is shown. Parameters are the same as in Fig. 2.
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Fig. 6. Power P; (solid lines), P» (dashed lines) of TM-waves in WG1 and WG2, respectively,
and the total power P; + P, (dotted lines) versus the propagation distance z for different values
of the central layer thickness H. Note that the given values of H correspond to the same value of
LT™ — 1 mm accordingly to the perturbation theory. The total number of modes supported by the

entire structure increases with H. The structure supports 15, 32 and 87 TM-modes, respectively.

Parameters are the same as in Fig. 2.

Fig. 7. Power P; (solid lines), P» (dashed lines) of TM-waves in WG1 and WG2, respectively,
and the total power P; + P, (dotted lines) versus the propagation distance z if a different number
of propagating modes is taken into account. H = 19.855 pym, remaining parameters are the same

as in Fig. 2.

Fig. 8. Propagation of the TE-polarized wave (a) in comparison to the propagation of the
TM-polarized wave (b). The properly polarized mode of a basic slab waveguide was launched
into WG1 at z = 0. Accordingly to the theoretical prediction, light with different polarization
states is directed towards different output channels. Parameters are ng = 1.51065, n; = 1.52,
ng = 1.512, ng = 1.70, h = 1.50 pm, t = 0.77 pum, A = 0.6328 pym and H = 10.108 ym. The total

length of the device is Ly, = 4548 pm.

Fig. 9. Extinction ratios ER;, E Ry versus the propagation distance z for the structure of Fig. 8.

Fig. 10. (a) Extinction ratios ER;, ERy versus the thickness of the central layer H (a), the film
thickness h (b) and the thickness ¢ of the buffer layer (c). In each figure the remaining parameters

are as in Fig. 8.
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Table 1.

H [nm]|L,, [pm]||+AH [nm)]
2305 | 4428 20
4361 | 4464 17
10108 | 4548 15
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Figure 3
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Figure 5
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Figure 6
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Figure 9
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Figure 10
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