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Abstract: Phase matching between the fundamental TE and TM modes is an essential condi-
tion for complete polarization rotation in magnetooptic waveguides with longitudinally directed
magnetization. This condition can be satisfied with embedded square waveguides or with raised
strip waveguides, provided that the core dimensions are suitably chosen. Based on coupled mode
theory for the vectorial modes of rectangular isotropic waveguides, we numerically simulate
the performance of such devices in an experimental isolator setup, including birefringence and
optical absorption. Fabrication tolerances with respect to all relevant parameters can be evalu-
ated by simple perturbational expressions. Numerical verification shows that these formulas are
accurate enough for practical purposes. The tolerances qualify the traditional polarization rotator
setup as competitive to recent proposals for integrated optical isolators based on nonreciprocal
interferometry.
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1 Introduction

Besides a series of proposals exploiting the nonreciprocal phase shift in magnetooptic waveguides, most
theoretical and experimental work on integrated optical isolators was concerned with setups analogous to
microoptic devices where the waveguide is used as a nonreciprocal polarization rotator between two polarizers.
One of the major problems with this concept in integrated form is to overcome form birefringence: usually
the propagation constants for modes of different polarizations are different. This limits the maximum power
transfer ratio and thus deteriorates the isolation. To achieve phase-matching for TE- and TM-like modes, a
number of techniques were proposed. Among these are the periodic reversal of the magnetization [1], the use
of anisotropic top layers [2], of multilayered waveguide structures [3], growth induced birefringence [4], the
application of stress [5], Dammann’s geometry [6], and thickness tuning for planar [7] and ridged waveguides
[8].

In contrast to planar waveguides, for rib waveguides there are certain configurations where the wavenumbers
for modes of both dominant polarizations are exactly equal. This can be realized as follows. For a planar-like
raised strip waveguide with a thin and wide core, usually the propagation constant of the fundamental TE mode
exceeds that of the fundamental TM mode. If the rib is continuously narrowed and raised, the device becomes
a planar-like waveguide again, but with the role of the transverse axes exchanged. Consequently there is an
intermediate configuration with almost square core and phase matched modes. This paper gives a detailed
numerical analysis of the effects relevant for isolating performance with emphasis on fabrication tolerances.

The coupled mode theory as formulated in the following section is based on vectorial modes of isotropic
lossless cores, with the linear magnetooptic effect, linear birefringence, and isotropic absorption considered
as perturbations. Sec. 3 fixes a model for an isolator setup. In Sec. 4, first order expansions of the degree
of polarization conversion lead to simple perturbational expressions for fabrication tolerances of all structural
parameters. These formulas are applied to a series of raised strip waveguides and compared to directly
numerically evaluated tolerances in the main part of Sec. 5.

Obviously a direct way to achieve phase matching is to use a square core embedded in a homogeneous cladding.
Sec. 5.2 reports on our results for such waveguides.�
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2 Vectorial coupled mode theory
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Figure 1: A simple raised strip waveguide. Structural parameters are
the height � and width � of the rib and the permittivities 	 s, 	 f, 	 c of the
substrate, the guiding film, and the cover material, respectively. 
 and �
denote the cross section coordinate axes, with the � -direction parallel to
the substrate surface. Light propagates along the � -axis.

Fig. 1 sketches the rectangular waveguides with piecewise constant permittivity investigated in this paper. We
assume the substrate and cover layers to be made of lossless isotropic material with homogeneous permittivities


s ��� 2
s and 
 c ��� 2

c . The permittivity tensor for the magnetooptic core region 
 f ��� 2
f � ∆ 
 is split into the

contribution of an isotropic lossless refractive index � f and a residual ∆ 
 , a perturbation. ∆ 
 is again a sum of
several terms which are specified in Sec. 2.1 – 2.3. Without them, the guided electric and magnetic fields �
and � are superpositions���������������! !" �$#&%$' % �(�)" 1* +,%.- % �(���/�0" exp � i 12 3"��4�5�(�6�������0�3 !" �5#7%8' % �(�9" 1* +,%;: % �(���/�0" exp � i 12 !" (1)

of the hybrid mode fields - % , : % with coefficients ' % �(�)" �<' % 0 exp ��= i > % �)" that include the harmonic
dependence on the propagation distance.

+6%
is the power assigned to mode ? . The > % denote the propagation

constants at a frequency 1 corresponding to the vacuum wavelength @ and wavenumber A � 2 BDCE@ � 1GF 
 0 H 0,
for vacuum permittivity 
 0 and permeability H 0.

The unperturbed mode fields are of the form - % � �(I %(J ��I %(K � i I %(L " , : % � ��M %(J ��M %(K � i M %�L " , with real valued
components. Due to the symmetry of the guiding profile with respect to the reflection �ONP=�� , the components
have a definite parity. In this paper, we call a mode with even components M %(J , I %(K , M %�L and odd componentsI %(J , M %�K , I %�L symmetric, one with reversed symmetry antisymmetric. For modes propagating in the same
direction the orthogonality property

1
2

QRQ �(I %(J MTS K =UI %(K MTS J " d � d � �$V % S + % (2)

holds, with V % S � 1 for ? � A , V % S � 0 otherwise.

Assuming that the guided field in the waveguide with the full permittivity 
 f can be expanded into the unperturbed
guided modes as well, the superposition (1) remains valid, but the amplitudes are no longer of simple harmonic
dependence on � . With the help of Maxwell’s equations, the following reciprocity identity can be derived
straightforwardly [9]:

div �W�PXY� �% =Z�[X\� �% " � i 1 
 0 � �% ∆ 
 �^] (3)

Here � % , � % denote the mode fields with additional time and space dependence _ exp � i 12 0= i > % �9" . Integration
over the � - � -plane, insertion of (1), and use of (2) yields equations for the coupled mode amplitudes` L ' % � = i > % ' % = i # S$a % S ' S � (4)

where the coupling coefficients a % S are given by

a % S � 1 
 0
4
* +,%&+ S QbQ)c - �% ∆ 
 - S d � d �R] (5)

The box d indicates integration over the core region where ∆ 
 differs from zero. Note that in general the
diagonal coefficients a %e% do not vanish. In fact, Eq. (5) resembles the common perturbational expression for
the propagation constant shift due to a permittivity variation, which has been applied frequently e.g. in the
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simulation of nonreciprocal phase shifters [10, 11, 12]. Thus the coupled mode approach allows to investigate
the polarization rotating and phase-shifting effects of an arbitrarily directed magnetization simultaneously.

We now specialize to the case of only the fundamental hybrid symmetric and antisymmetric mode. This is
justified if either the waveguide supports these two modes only, or if the initial amplitudes of the remaining
ones and their coupling to the fundamental modes is negligible. Both assumptions will be checked numerically
for the multimode waveguides in Sec. 5. The I K component of the fundamental symmetric mode turned out to
be much larger than I J , thus it may be called TE-like, with the TE-direction defined by the substrate surface.
The fundamental antisymmetric mode has the roles of I K and I J reversed, so its commonly called TM-like.
We are interested in relatively high and narrow cores, thus frequently the propagation constant of the TM-like
mode exceeds that of the TE mode.

For Hermitian ∆ 
 (remarks on lossy core material will follow below), the coupled mode equations reduce to` L ' 1 � = i >6f1 ' 1 = i a ' 2 � ` L ' 2 � = i >�f2 ' 2 = i a � ' 1 � (6)

with > f% � > % � a %W% and a � a 12. Their solution isg ' 1' 2 h �(�9" � exp ��= i
> f1 � > f2

2
�)"jikkl cos m0�j= i

∆ > f
2 m sin m9� = i am sin m0�= i a �m sin m0� cos m9� � i

∆ > f
2 m sin m9�

n�oop g ' 10' 20 h � (7)

where m is defined as m �rq � ∆ > f C 2 " 2 �$s a s 2. Projection on an initial field � - in � : in "!��������" exp �/= i 12 !" gives
the amplitudes ' % 0 at � � 0:' % 0 � 1

2
* +t% QbQ �(I %(J M �in,

K =uI %(K M �in,
J " d � d �G] (8)

The device will be used as a polarization-rotator. Starting at � � 0 with all power concentrated in mode 1, after
a distance � the relative power v��(�)" � s ' 2 �(�9"!C ' 10 s 2 carried by mode 2 isv��(�)" � v max sin2 m9� with v max � s a s 2� ∆ > f C 2 " 2 �ws a s 2 ] (9)

The power transfer ratio v reaches its maximum v max at the position of the conversion length x c � ByC 2 m . Note
that the mismatch ∆ > f � > f1 =U> f2 between the phase-shifted propagation constants determines the upper limit
of the polarization conversion.

2.1 Magnetooptic core

The core permittivity contribution ∆ 
 mo due to the linear magnetooptic effect can be written

∆ 
 mo � i z ikl 0 cos { = sin {= cos { 0 0
sin { 0 0

n op|] (10)

It represents the effect of a static magnetization adjusted at an angle { with respect to the � -axis in the � - � -plane
parallel to the substrate. z is related to the specific Faraday-constant ΘF by s z s �}� f @ ΘF C~B . Symmetry
arguments allow to split the coefficients as

a mo%e% � z sin { 1 
 0
2
+t% QbQ c I %�J I %(L d � d � (11)

and a mo% S � i z cos { 1 
 0
4
* +,%�+ S QRQ)c ��I %�J I S K =UI %�K I S J " d � d � for ?^�� Aj] (12)
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(11) is the nonreciprocal phase shift for the TM-like mode. This shift remains small since the integrated product
of the I J - and I L -fields almost vanishes. For the TE-like mode the phase shift is two orders of magnitude
smaller due to its tiny I J -component. The off-diagonal coupling coefficients a � a 12 � a �21 (12) drive the
mode coupling. They combine only those parts of the fields which are in the core area. Therefore the conversion
length in the waveguide exceeds the length x bulk

c �$� f @tC 2 z � BDC 2ΘF for plane waves in a bulk medium.

An inclination of the magnetization with respect to the � - � -plane adds a tiny contribution to the coupling
coefficient, but it does not lead to a phase shift (which would be proportional to ��� c I %(K I %�L d � d � ), since the
coupled I K - and I L -fields are of different symmetry. This argument applies to both TE and TM modes, but it
is no longer valid for a nonsymmetric structure, e.g. for a waveguide with a vertical domain wall at the center
of the rib [12].

Changing the sign of the frequency simulates backward light propagation. Maxwell’s equations are satisfied,
if for unchanged electric fields and propagation constants the signs of all magnetic fields are reversed. Since z
is proportional to the static magnetization, its sign must be changed as well. With respect to the polarization
rotation, propagation of the backward travelling modes over a negative distance =�� becomes equivalent to
the propagation of the forward modes over the distance � . At the same time the magnetooptic phase shift is
reversed due to z^N =�z (formally in the denominator of Eq. (5) the negative root of s +D%�+ S s appears which
cancels the negative sign of 1 ). Thus we can model backward light propagation using Eq. (7) with positive � ,
with unchanged a � a mo

12 , but with the signs of a mo%e% reversed.

2.2 Diagonal anisotropy

For a typical YIG-film grown on a (111)-oriented GGG-substrate, growth- and stress-induced anisotropies
cause the diagonal component at the � -position of the permittivity tensor to be different from the elements on � -
and � -positions [13]. We account for this effect by a dimensionless anisotropy parameter � in the corresponding
permittivity perturbation:

∆ 
 anis � �
2 ikl = 1 0 0

0 1 0
0 0 1

n op ] (13)

While ∆ 
 anis does not contribute to the coupling coefficients a due to the mode symmetry, it is responsible for
additional phase shifts

a anis%e% � �
2 � % with � % � 1 
 0

4
+ % QbQ c ��= s I %�J s 2 �ws I %(K s 2 �ws I %(L s 2 " d � d �G] (14)

2.3 Absorption

If the core material attenuates the intensity of a plane wave according to _ exp ��=����)" with a small attenuation
constant � , this effect can be modeled by an isotropic but imaginary permittivity perturbation ∆ 
 abs � = i � f ��C�A .
According to Eq. (5), the propagation constants > % get imaginary parts

a abs%e% � = i � % C 2 � with � % � ��� 
 0H 0

� f

2
+ % Q�Q)c s - % s 2d � d �R] (15)

If we adopt the approximation of equal attenuation for both modes, the propagation equations (7) transfer to
the lossy system. Both amplitudes ' % must be multiplied by a factor exp �/=����)C 2 " , where � is the average
attenuation � � �(� 1 � � 2 "!C 2, and the device of length x shows an additional power loss _ exp ��=��Dx�" .
This approximation amounts to neglecting terms �(� 1 =U� 2 "3C 4 s a s and _ ∆ > f �(� 1 =Z� 2 "!C s a s 2. The latter vanish
for phase matched waveguides. The former should have an effect comparable to a phase difference ∆ > f C 2 s a s .If one can tolerate an error in v up to 10 � 3, then �(� 1 =\� 2 "!C 4 s a s must not exceed 0.03. This condition is indeed
fulfilled, as we will show in Sec. 5.

However, for larger differences in the mode attenuations � 1, � 2, Eqs. (7) have to be modified. This will be
necessary for materials with higher losses, if the relevant mode fields differ considerably, or if the damping
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must be assumed anisotropic. The latter may be the case, if the absorption related to the Faraday rotation
(magnetic circular dichroism) turns out to be nonnegligible. Note that the type of damping introduced here
models the intrinsic material absorption only.

3 Simulation of an experimental setup

The isolator setup employs a magnetooptic polarization rotating waveguide of total length x � x c C 2 which is
set between a front polarizer adjusted to the TE-position and a back polarizer at an angle of 45 � with respect to
the � -direction.

Simulation of forward propagating light starts with a TE-polarized Gaussian beam (input power
+

in) whose
diameter and maximum location has been adjusted to the mode profile average. It passes the front polarizer
without modification. Overlap (8) with the mode profiles yields the initial amplitudes for coupled mode
propagation along a distance x � x c C 2. The output power

+ f
out is then determined by projecting � on a unit

vector � � � sin � o � cos � o � 0 " in the direction of the back polarizer at � o � 45 � ,+ f
out � 1

2
� 
 0H 0

QbQ s ���(���/�.�/x��! 3".�7� s 2d � d ��] (16)

We assume that the total power behind the polarizer is detected.

Backward light propagation starts with a 45 � polarized Gaussian beam of equal shape and input power
and ends with the projection (16) on a unit vector according to the front polarizer at � i � 0. With the
backward output power

+ b
out, isolation and transmission loss are defined as IS � = 10 log � + b

out C + f
out " and

LO � = 10 log � + f
out C + in " .

The significant refractive index contrasts of the materials under consideration cause these simulations to be
somewhat questionable. Neither is the input Gaussian profile a valid electromagnetic field in the waveguide
region, nor are the mode fields solutions of Maxwell’s equations in the homogeneous region behind the
waveguide end. With the simple overlap model, no realistic estimation of the power transition can be expected
since the amounts of reflection, transmission, and radiation at input and output are not known with sufficient
precision. A way out may be advanced modelling of the waveguide/air-transitions e.g. by means of more
complex overlap integration [9] or least squares techniques [14] In this paper we do not tackle this problem.
Besides, exact modelling of the rather artificial setup sketched above is not useful for a Faraday rotator in an
integrated optics chip, e.g. in hybrid form [15].

However, at the two junctions the coefficients for reflection, transmission and radiation should be approximately
equal for both directions of light propagation. Thus they cancel in the expression for the isolation, and we will
obtain more realistic results.

Ideally in the backward direction the light that has passed the back polarizer should excite the modes of both
polarizations with equal amplitudes. But at least in the case of the non embedded waveguides the profiles of
TE- and TM-like modes differ slightly, and the initial amplitudes will be different as well, resulting in a small
amplitude of the TE-like mode at the front polarizer. Additionally the hybrid TM-like mode has a small I K
component, and consequently at the front polarizer its contribution can not be completely suppressed.

4 Fabrication tolerances

An idealized treatment should be sufficient for estimating the fabrication tolerances. Assuming the final
mode amplitudes of the forward analysis to be equal to the initial amplitudes of the backward simulation, the
combined light paths are equivalent to a coupled mode propagation over twice the device length 2 x . In the
forward direction no power is lost,

+
in � + f

out � s ' TE � 0 " s 2, while the power transmission in the backward
direction is given by the final amplitude of the TE-like mode as

+ b
out � s ' TE � 2 x�" s 2 � + f

out � 1 =[v�� 2 x�"3" , with
TE and TM substituted for the mode indices in Eqs. (7, 9). Thus the deviation ∆ v � 1 =$v�� 2 x�" of the
polarization conversion from unity becomes relevant. The effects mentioned at the end of the last section
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contribute another small fraction � + f
out of the power input to the backward output power, such that the total

isolation is IS � = 10 log � ∆ v � �E" .
Our model structures are formulated first in terms of parameters � s, � f, � c, � , � , @ , which determine the
wavenumbers and the shape of the basic modes. Then there are the quantities z and { which are responsible
for mode coupling and related to the length parameter x . Finally, perturbations like the diagonal anisotropy� must be checked. We will separately consider the influence of each of these parameters � , while all other
quantities are kept fixed to their optimum values. If � is optimally adjusted as well, we have a phase matched
waveguide of length x c, � C 2 with v � �(x c, � " � 1. Changing � to � � V � results in a lower conversion v �(�t��� �(x c, � " .
The maximum deviation ∆ � for a given limited conversion degradation ∆ v � 1 =�v �(� ∆ � �(x c, � " is defined as the
tolerance of the parameter � .
4.1 Basic mode parameters

Assume � to be one of � , � , � s, � c, or � f (where we keep z constant). In first order perturbation theory, a
variation V � does not affect the shape of the basic mode fields and the coupling coefficient a Eq. (5). At the same
time, small propagation constant shifts � ` � > f% " V � detune the phase matching according to ∆ > f���;��� � � ` � > fTE =` � > fTM " V � . Expanding v ���t��� ��x c, � " up to second order gives v ���t��� ��x c, � "G� 1 =[� ` � > fTE = ` � > fTM " 2 V � 2 C 4 s a s 2.
For this quantity to be larger than 1 = ∆ v , the parameter � may vary by no more than

∆ � �8� 2 s a s F ∆ vs ` � > fTE = ` � > fTM s ] (17)

Obviously, along with a , the tolerances for rib height, rib width and the refractive indices scale linearly with
the off-diagonal permittivity z , i.e. linearly with the Faraday rotation ΘF. Thus materials with improved
magnetooptic effect will not only lead to shorter devices, but also to relaxed tolerance requirements.

For an evaluation of Eq. (17), expressions must be supplied for the gradients of the propagation constant.
Regarding the refractive indices, one can directly use Eqs. (5) for the coefficients a %W% , with a diagonal permit-
tivity perturbation 2 � s,f,c∆ � s,f,c and with the integration extending over the substrate, core, and cover regions.
Regarding the rib dimensions � and � , the continuity requirements of the electromagnetic fields at dielectric
boundaries must be taken into account explicitely. Expressions for the variation of the propagation constant
due to the shift of boundary locations have been investigated in [16]. According to those formulas, ∆ � and ∆ �
are approximately inversely proportional to the relevant permittivity differences.

The coupling coefficient can be written as s a s � 2 � fΘF � with a dimensionless factor � . Therefore, if we
neglect in � the variation of the mode shape with respect to a wavelength alteration, a remains fixed in first
order, and Eq. (17) applies to the wavelength parameter @ as well. Observing that the propagation constants> are homogeneous functions of degree = 1 in the relevant dimensional parameters, i.e. >��(�,@,�/�.�������t" �> �!@��������t"3C�� , their derivatives with respect to the wavelength can be expressed in terms of the � - and � -
gradients:`)¡ > � = 1@ �W> � � `E¢ > � � `¤£ > ";] (18)

Note that Eqs. (17,18) applied to � � @ assumes all material parameters to be fixed. A pronounced wavelength
dependence of � s,f,c, ΘF, or � must be taken into account by a combination of perturbation formulas or by
explicit numerical evaluation.

4.2 Device length and magnetooptic parameters

The optimum length for a phase matched device is given by x � ByC 4 s a s . An alteration V x changes the power
transfer ratio at the end of the relevant light path to v�� 2 �(x � V x�"!"�� 1 =¥�(B V x�C 4 x�" 2. Thus the tolerance for
the device length is

∆ x �8� 1
2 s a s * ∆ v �8� 1B x c

*
∆ vR] (19)
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∆ x is the only tolerance that turns out to be reciprocal to the Faraday rotation.

Regarding ΘF itself, expansion of v§¦ �t� ¦��(x c, ¦7" � sin2 �(BD� 1 � V z¤C�z¤"3C 2 " leads to the tolerances

∆ z �8� 2B z * ∆ v or ∆ΘF �8� 2B ΘF
*

∆ v�] (20)

Assuming the Faraday rotation to be the parameter with the most pronounced temperature dependence
`�¨

ΘF,
an otherwise optimally tuned device should operate properly in a temperature range of

∆ © �8� 2B ΘF`E¨
ΘF

*
∆ vR] (21)

By evaluating v ��ª �(x c,0 " � sin2 �(B cos � V {«"!C 2 " , the magnetization angle { can be shown to be the least critical
quantity:

∆ { �8� 2F B � ∆ v�" 1 ¬ 4 ] (22)

If one admits ∆ v � 0 ] 001 (0 ] 01), { may deviate from the optimum 0 � position by � 11 � ( � 20 � ). While formally
the nonreciprocal phase shift at an angle {^�� 0 must be considered as well, it turns out to be negligible when
compared to the phase mismatch due to a detuned geometry (cf. the corresponding paragraph in Sec. 5.1).

4.3 Anisotropy

Changing the anisotropy parameter by V � shifts the propagation constants by V � � % C 2. Consequently, � must
be known with a tolerance of

∆ � �­� 4 s a s F ∆ vs � TE = � TM s ] (23)

Compared to a device with isotropic core and dimensions � and � , a waveguide with anisotropic core achieves
phase matching with slightly modified geometry, e.g. for parameters � and � � V � withV � � = ��� � TE = � TM "

2 � ` £ > TE = ` £ > TM " ] (24)

5 Numerical results

For this investigation mode fields and propagation constants for the isotropic, unperturbed structures were
computed with the fully vectorial version of a recently proposed mode solver [17, 18]. It is based on local plane
wave expansions for regions with constant permittivity. The semianalytical mode fields take the continuity
requirements at dielectric interfaces explicitely into account and allow for a convenient evaluation of the
various line- and surface integrals that arise from the perturbational theoretical treatment presented in the
previous section.

Due to the extreme sensitivity of the phase matching condition this is one of the few occasions, where we have
observed the semivectorial approximation [19] to be insufficient. With this approximation the shape of curves
for the polarization conversion v (e.g. in Fig. 2(i)) remains, but the positions of the maxima are shifted by
amounts exceeding the tolerances to be calculated. Therefore we used only fully vectorial, hybrid mode fields
as a basis for the numerical experiments of the following section. Although our mode solver [18] is close to
the state of art [20], the results for waveguide dimensions in Table 1 and the limit for the maximum achievable
isolation should be looked upon with caution. However, the observed tendencies and estimates for fabrication
tolerances seem to be reliable.
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5.1 Raised strip waveguides

Device design starts with identifying suitable geometries where the fundamental modes are degenerate. For
four arbitrarily chosen values of the waveguide width, the top left inset of Fig. 2 shows the rib height dependence
of the fundamental effective mode indices. The curves for TE- and TM-like modes cross at a height � which
is slightly smaller than the prescribed width � . Analogous curves can be drawn for the variation of the width
for given rib height (top right inset).

Figure 2: Propagation constants ® (top) and polarization conversion ¯ (bottom) versus the rib height � (left) and the rib
width � (right) for waveguides as sketched in Fig. 1. For the four fixed values of the rib width (left) and rib height (right)
see Table 1. In the top charts, continuous lines correspond to hybrid TE-like modes, dotted lines to modes with dominant
TM polarization. Continuous lines in the bottom chart show the polarization conversion ¯E°²± c ³ at the fixed lengths ± c
as given in Table 1, while the dotted lines indicate the maximum achievable conversion ¯ max at a length adjusted to the
detuned height or width. The remaining parameters are the refractive indices ´;µj¶ 1 · 95, ´)¸�¶ 2 · 302, ´�¹b¶ 1 · 0, the
nondiagonal permittivity element º�¶ 0 · 005, anisotropy »�¶ 0, and the vacuum wavelength ¼j¶ 1 · 3 ½ m.

Table 1 summarizes the geometry data for the phase matched waveguides indicated by the crossing points.
The tolerances for applications in an isolator setting can be evaluated by directly calculating the mode fields
for a detuned geometry. Figs. 2 (bottom insets) and 3 show the dependences of the power transfer ratio v on
rib height and width and wavelength variations. In the bottom parts of Table 1 these results are contrasted
to perturbational values estimated with Eq. (17). There is good overall agreement, with the most pronounced
differences occurring for the wavelength parameter @ . While the relevant derivatives

`.¡ > % can be accurately
evaluated by Eq. 18 with a deviation below 1%, they are large (compared to

` ¢ > % , ` £ > % ) and nearly equal.
Therefore Eq. (17) with � � @ gives the correct order of magnitude only, which should be sufficient since the
wavelength turns out to be an uncritical parameter. Note that the limiting values for the polarization conversion
∆ v can be translated into limits for the isolation IS � = 10 log � ∆ v�" of 30 dB, 20 dB, 13 dB, 10 dB.

Regarding the parameters not listed in Table 1, we have observed the following tendencies. Influence of the
cover refractive index is less significant. Due to the small field amplitudes at the rib/air-interface and to the low
refractive index ( V 
 � 2 �tV~� ) the tolerances ∆ � c are roughly six times the values for the substrate refractive
index.

If the magnetization offset-angle { is regarded as a perturbational parameter, the polarization coupling is not
affected in first order, while the TE/TM phase difference ∆ > is slightly altered. This alteration turns out to be
very small: for the four waveguides of Table 1, the nonreciprocal TM phase shift for a maximum angle of 10 �
can compensate the phase mismatch for a geometry deviation of about 1Å only. In the limit of a transversely
adjusted magnetization the phase shift difference is equivalent to a geometry deviation still below 1 nm. Thus
varying the direction of the magnetization cannot be used for tuning the phase matching (which can be achieved
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(i) (ii) (iii) (iv)�¾C H m 0.8 1.0 1.2 1.4�,C H m 0.6340 0.8260 1.0118 1.1975x c C H m 357 325 315 309
∆ v � 0 ] 001
∆ �tC nm 0.5 1.2 2.2 3.9
∆ �jC nm 0.4 1.0 2.1 3.8
∆ @;C nm 3 2 12 4 25 10 ¿ 40 21
∆ � s C 10 � 3 1 2 4 7
∆ � f C 10 � 3 1 3 5 8
∆ x�C H m 4 3 3 3
∆ v � 0 ] 01
∆ �tC nm 1.5 1.7 3.2 3.7 6.3 7.0 11.2 12.2
∆ �jC nm 1.5 1.4 3.5 3.3 6.8 6.6 12.1 11.9
∆ @;C nm 9 6 38 16 ¿ 40 34 ¿ 40 66
∆ � s C 10 � 3 4 4 9 8 16 14 25 23
∆ � f C 10 � 3 3 4 10 8 17 15 26 26
∆ x�C H m 11 10 10 10
∆ v � 0 ] 05
∆ �tC nm 3.5 3.9 7.3 8.3 14.2 15.7 25.1 27.3
∆ �jC nm 3.4 3.1 7.9 7.3 15.3 14.7 27.1 26.6
∆ @;C nm 19 14 ¿ 40 35 ¿ 40 76 ¿ 40 149
∆ � s C 10 � 3 8 8 21 17 36 31 56 52
∆ � f C 10 � 3 7 8 22 18 37 34 58 58
∆ x�C H m 25 23 22 22
∆ v � 0 ] 1
∆ �tC nm 5.2 5.4 10.6 11.7 20.5 22.2 36.0 38.6
∆ �jC nm 5.0 4.4 11.3 10.4 22.1 20.9 38.7 37.7
∆ @;C nm ¿ 20 20 ¿ 40 49 ¿ 40 108 ¿ 40 210
∆ � s C 10 � 3 11 11 29 24 51 44 80 74
∆ � f C 10 � 3 11 11 31 26 52 48 80 82
∆ x�C H m 36 33 32 31

Table 1: Optimum dimensions � , � ,
conversion length ± c ¶ 2 ± and admis-
sible fabrication tolerances for raised
strip waveguides as sketched in Fig. 1
used as nonreciprocal polarization con-
verters. Parameters not listed are as giv-
en for Fig. 2. Tolerances printed in ital-
ic style are determined by perturbation
expressions, while the roman numbers
have been read off from curves ¯«°ÁÀ ³ ,
with ÀG¶[�.Â���Â�¼.Â�´ f,s as in Fig. 2, with
the smaller difference taken in case of a
nonsymmetric curve. See the text for a
concise interpretation of the tolerances.

Figure 3: Polarization conversion ¯ versus the operation
wavelength ¼ for waveguides (i) to (iv) of Table 1. The
degree of conversion ¯ is evaluated at the fixed conversion
lengths ± c corresponding to a wavelength of ¼\¶ 1 · 3 ½ m.
See Table 1 and the caption of Fig. 2 for parameters.

for one direction of propagation only, and is therefore less useful for isolator applications). On the other hand
precise adjustment of this direction is less important. A larger deviation from the longitudinal direction will
show up mainly in a conversion length alteration, where, for waveguides (i) to (iv), values ∆ x c = 2∆ x below
6 H m (20 H m) are tolerable. According to Fig. 4, { must be adjusted to � 11 � ( � 20 � ) to guarantee ∆ v�Ã 0 ] 001
(∆ v�Ã 0 ] 01). The same result can be obtained with the perturbational formula (22).

For ∆ v below 0 ] 001 (0 ] 01), the nondiagonal permittivity element must be kept at z � 0 ] 005 with tolerances
of � 1 ] 0 � 10 � 4 ( � 3 ] 2 � 10 � 4). This corresponds to tolerances for the Faraday-rotation ΘF � 3000 � C cm of
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Figure 4: Conversion length ± c versus the angle Ä of the
magnetization with respect to the longitudinal direction, for
the four waveguides of Table 1.� 60 ��C cm ( � 191 ��C cm). For a typical temperature coefficient

`
ΘF C ` © � 3 ] 19 �/C cmK at room temperature

[21], the temperature should deviate by no more than 19 K (60 K), if the temperature coefficients of all other
material parameters are neglected.

In contrast to the phase shifts induced by refractive index changes, the shifts (13) due to a variation of the
anisotropy parameter � have different signs for the modes of different dominant polarizations. Thus � must
be known with accuracy one order of magnitude higher. According to Eq. (23), ∆ ��C 10 � 4 evaluates to 3, 10,
22, 31, for given ∆ v of 0.001, 0.01, 0.05, 0.1, and uniformly for waveguides (i) - (iv). To compensate for
anisotropy, the basic geometry must be significantly changed. From Eq. (24), we obtain values for � V �tC���"!C H m
of 1.8, 3.8, 7.1, and 12.3 for waveguides (i) to (iv). For an anisotropy � � 0 ] 01, the rib height of device (iv)
should deviate by 123 nm from the value given in Table 1 to restore phase matching. In this case consideration
of anisotropy is indispensable.

Figs. 5, 6 illustrate the relevant components of the normalized fundamental modes in waveguides (i) and (iv).
The I J -components of TM-like solutions appear almost equal in magnitude and shape to the I K -components
of the TE-like modes, with only small deviations, caused by dielectric discontinuities. There the field strength
and thus the absolute difference is more pronounced for the small core of waveguide (i). As can be seen by
inspecting Eqs. (5, 17), this results in larger differences of the wavenumber derivatives, and thus in the tight
tolerances, of (i) compared to (iv).

According to Fig. 5 even for device (i) almost all of the mode power is concentrated in the core region. Thus by
Eq. (15) the attenuation constants � % C�� evaluate to a value close to unity, with differences of about 5% (i) and
1% (iv) between TE- and TM-like modes. With typical values for � as low as 1 cm � 1 [22], for waveguides (i)
to (iv) the relevant quantity �(� TE =Z� TM "!C 4 s a s remains below 10 � 4. Attenuation of both fundamental modes
is almost equal and will not deteriorate the isolation.

Due to the similar mode profiles, an initial field that has passed a polarizer at an angle of 45 � excites both
modes with identical amplitudes. For backward propagation, the amplitude ratio s ' TE C ' TM s 2 is indeed below
10 � 5 in the numerical simulations of setups for waveguides (i) to (iv).

Nevertheless, we obtained numerical upper limits for the isolation of about 25 dB, 30 dB, 32 dB, and 35 dB
for these devices. These bounds are due to the hybrid nature of the modes. In the backward direction at the
position of the front TE-adjusted polarizer, almost all of the inserted power is carried by the TM mode. In
our model, the polarizer blocks its large I J -part, but the power in the small I K component passes. As it
should be, the ratios �7� s I K s 2d � d ��C �7� s I J s 2d � d � for the TM modes of the four waveguides evaluate to the
above given numbers for the maximum isolation. Note, that these values depend crucially on the model for
the waveguide-air transition. For the TE modes we have observed ratios of the powers assigned to � - and� -components that are almost reciprocal to the ratios given above, thus changing to TM input will not enlarge
the peak isolation.

(i) and (ii) are single mode waveguides. For (iii) and (iv), both rib height and width are enlarged, thus they
support a total of six modes, one additional mode with a horizontal and one with a vertical nodal line for
each polarization. Due to their asymmetric shape and differences of propagation constants, coupling with the
fundamental modes will not occur. If higher order modes are excited, about half of the power passes the device
in both directions and degrades the isolation. However, by means of properly focused input beams it should be
possible to suppress this phenomenon. With circular Gaussian fields adjusted to the fundamental mode shape,
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Figure 5: Mode intensity profiles for the dominant field components of the fundamental modes for waveguides (i) (top)
and (iv) (bottom) in Table 1. The contours show the squared ÊÌË -components of symmetric, TE-like modes (left) and the
squared Ê Í -component of the antisymmetric, TM-like modes (right).

Figure 6: Profile sections of the dominant field components of the fundamental modes for waveguides (i) and (iv) in
Table 1. Continuous lines correspond to Ê Ë -components of symmetric, TE-like modes, dotted lines to the Ê Í -component
of the fundamental antisymmetric, TM-like modes. For the left chart, fields have been evaluated on horizontal lines at
j¶ 0 · 26 ½ m (i) and 
j¶ 0 · 55 ½ m (iv), close to the amplitude maxima. The right chart shows the mode amplitudes along
the waveguide symmetry plane at ��¶ 0.

the power fraction assigned to higher order modes could be kept well below 10 � 3 in our simulations.

If a polarization rotating waveguide is to be used in an integrated isolator device, e.g. in a hybrid setup [15],
the relative adjustment of the components will be important. The effects of the two polarizer angles are easily
accessible from our model. Fig. 7 shows their influence on the isolation. For an isolation larger than 20 dB,
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both polarizers may not deviate by more than � 5 � from the optimum 0 � and 45 � positions, respectively. Both
charts show the maximum levels of the isolation. Due to the small difference between the shapes of TE and TM
modes, the locations of the maxima are slightly shifted from the 0 � and 45 � positions. Obviously this effect
can well be neglected even for strongly guiding cores.

Figure 7: Isolation IS versus the angles Î i, Î o, of the polarizers at input (left) and (output) of an isolator setting employing
the Faraday rotating waveguides of Table 1. An angle of 0 Ï corresponds to linear polarization in the � -direction.

5.2 Embedded waveguides

For embedded waveguides surrounded by a homogeneous cladding the phase matching condition is realized if,
apart from the magnetooptic effect, the core material is isotropic. Fig. 8 summarizes results for a series of such
waveguides with varying core dimension and for parameters as in Sec. 5.1.

Figure 8: Effective mode indices ´ eff, conversion length ± c (left) and geometry tolerances ∆ � , ∆ � , ∆ ± (right) versus the
height and width � , � of the core for embedded waveguides of square shape. Parameters are ´ µ ¶Z´ ¹ ¶ 1 · 95, ´ ¸ ¶ 2 · 302,ºb¶ 0 · 005, ¼j¶ 1 · 3 ½ m (see Fig. 1). The allowed polarization conversion deviation ∆ ¯ is the curve parameter in the charts
on the right.

According to Fig. 8, up to a width of about 0 ] 8 H m the waveguides support only one mode for each polarization.
For larger cores higher modes appear, all are twofold degenerate. The closely spaced dotted lines correspond
to four first order modes with one nodal line in the dominant electric component, in a direction parallel or
perpendicular to the polarization. Therefore they are not fourfold degenerate.

For smaller cores less power is guided inside the magnetooptic region. Thus the mode coupling weakens, the
conversion length x c increases. The bigger cores convert the polarization along a distance already close to the
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length x bulk
c � 300 H m for plane waves in a magnetooptic bulk medium.

Since we have kept constant the value of the Faraday-rotation, the conversion length tolerances ∆ x c are also
similar to the results for the uncovered strips. At the same time, the lower permittivity contrast relaxes the
tolerance requirements ∆ � , ∆ � significantly. Core height and width alterations have equal effects. Scaling the
waveguide does have little influence on the polarization conversion, deviation of the core shape from a square
matters. The tolerances give the maximum allowed absolute difference between the core width and height.

Due to the symmetry of the problem, in the lowest relevant order the dependence of the polarization conversion
on refractive index and wavelength variations vanishes. Thus these tolerances are much larger than those
worked out in Sec. 5.1.

For the embedded waveguides one can again evaluate the isolation limits caused by the small mode components.
As shown in Fig. 9, these values do not deviate much from those for the raised strip waveguides of comparable
height and width.

Figure 9: Limit for the achievable isolation IS for square embedded
magnetooptic wavguides versus height and width � , � of the core.
Parameters are as in Fig. 8.

6 Conclusions

Phase matching as a condition for complete polarization rotation can be realized with selected geometries
of raised strip waveguides or embedded square waveguides. In the framework of coupled mode theory for
magnetooptic cores we have considered linear birefringence and absorption as well as the influence of geometry
and wavelength variations via simple and efficiently implementable perturbational expressions. Agreement
with directly calculated values is sufficient for the purposes of tolerance estimation in an isolator setting.

The accuracy requirements for embedded waveguides are less critical than for simple raised strips. At the same
time, manufacturing will be more involved, and the waveguides are not accessible for additional tuning steps.

Unfortunately, most tolerances turn out to be very strict. Ab initio fabrication of a waveguide with 30 dB
isolation in a conventional experimental setup is difficult. Postfabrication tuning, such as suitable annealing or
etching the rib surface, will be necessary. Alternatively, proper performance can be achieved simply by lining
up more than one isolating section. This requires input and output polarization to be equal, thus optical active
waveguide sections must be added. Then substituting the polarizers by polarization splitters results in an all
integrated optical device, where input and output channels are guided modes. In that case problems like the
limited isolation due to hybrid mode fields or reflections and losses at the waveguide-air interfaces do not occur.
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