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Abstract: Passing across an abrupt junction from a thick vertically bimodal waveguide to a thin-
ner single mode segment, guided light can undergo complete destructive interference, provided
that the geometry and the phases of the modes in the initial segment are properly adjusted. We
propose to employ this effect to realize a simple polarizer configuration, using a strip that is
etched from a planar waveguide. A beam of light is made to pass the strip perpendicularly. The
light enters from the single mode waveguide outside the strip into the strip segment, which is
configured to support two modes. At the end of the strip, apart from reflections, the amount
of power that is guided in the following lower segment depends on the local phases of the two
modes. These phases are different for TE and TM light, hence we may expect a polarization de-
pendent power transfer, resulting in polarizer performance for a properly selected geometry. The
paper describes in detail the modeling of the device in terms of rigorous mode expansion. De-
sign guidelines and tolerance requirements for geometric and material parameters are discussed.
For typical Si � N � /SiO � materials, our calculations predict a peak performance of ��� dB polariza-
tion discrimination and �
	 � dB insertion loss for a device with a total length of about �
��� m that
selects TE polarization at a wavelength of ��	 ��� m.

Keywords: integrated optics, numerical modeling, optical interferometer, optical polarizer
PACS codes: 42.82.–m 42.82.Et

1 Introduction

Planar or quasiplanar waveguides based on higher refractive index films between substrate and cover layers
with lower refractive index form the basic element for most integrated optical circuits. Even if the involved
materials are isotropic, guided fields of different polarizations propagate at different phase velocities; hence
almost all devices relying on mode interference are sensitive to the light polarization. Where an optimization
aiming at a polarization independent performance (e.g. by a compensation of polarization effects) or parallel
light processing (by applying polarization splitters) is complicated, impossible, or unnecessary, the device is
usually restricted to single polarization operation. This necessarily involves the inclusion of polarizers.

Most concepts for guided wave polarizers are based on trying to exclusively attenuate one of the basic TE or TM
modes. Among the variety of proposals are overlays of strongly absorbing, metallic [1, 2] or amorphous [3, 4]
materials, the inclusion of metallic thin films [5, 6, 7], or thin composite, highly dichromatic metallic layers
[8, 9, 10], and highly refracting or birefringent transparent overlays [11, 12, 13]. Alternatively, the overlays can
be substituted by parallel waveguide segments [14, 15]. A number of interferometric concepts for polarization
splitters employ directional couplers [16, 17], Mach-Zehnder interferometers [18, 19], other multiwaveguide
geometries [20, 21, 22], or recently a birefringent Y-junction [23]. Besides in terms of polarization discrimina-
tion and insertion loss, an integrated device must be rated with respect to its length. Since a polarizer is usually
not meant as a device of its own, but as a component of a larger circuit, the design should be adaptable to a
large variety of basic material systems, requiring no extra materials or complicated processing steps at best.

In this paper we address the task using a particularly simple kind of interferometer. Figure 1 sketches the geom-
etry of the planar configuration and introduces the relevant dimensional and material parameters. Depending
on the technological framework, the design should be an alternative to the formerly referenced concepts with
respect to either of the above criteria, provided that only polarizer performance is desired.

Following the introduction of some notation and basic relations in Section 2, the analysis in Section 3 starts
with a basic overlap model of the interferometer involving only forward traveling guided modes. In Section 4
we take a closer look at the two waveguide junctions by means of a rigorous approach that includes reflected�
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Figure 1: The planar waveguide configuration. � and � denote the cross section coordinate axes, with the � -direction
normal to the film plane. Light propagates along the � -direction, perpendicularly to a wide strip that has been etched into
the guiding film. � s, � f, and � c are the refractive indices of the substrate, the film, and the cover; the geometry is fixed
in terms of the total film thickness � , the etching depth � , and the length � of the thick segment. Roman numbers I, II,
III, and i, ii identify the three longitudinally homogeneous waveguide sections and the two junctions at ����� and ����� ,
respectively.

and radiated parts of the field on a computational window of suitable extension. Additionally, the results are
verified by a comparison with time domain beam propagation simulations that are completely independent from
the former modeling.

Subsequently, Section 5 considers the entire structure again. The mode expansion on a finite window can still
be formulated quite rigorously, if one assumes that only guided modes are responsible for the forward and
backward power transfer between the junctions. Finally, Section 6 sketches the optimization procedure for the
polarizer and shows a simulation of the resulting device.

2 Mode expansion

The structure under investigation consists of three longitudinally homogeneous waveguide sections. Hence the
local electromagnetic field is assumed to be a superposition of modes, i.e. electric � and magnetic fields  of
the form (in common complex notation)�"!$#&%(')%+*+,.-0/1!$#�, ei 23*54 i 67' %  8!$#7%(')%+*(,9-0:;!$#�, ei 23*54 i 67'�< (1)/ and : are the complex electric and magnetic parts of the mode profile, 6 denotes the corresponding propa-
gation constant. The frequency 2 is usually given in terms of the vacuum wavelength =1-?>A@ c B�2 , where c is
the speed of light in vacuum. The modeling shall be restricted to two spatial coordinates, with the permittivity
and the fields assumed to be constant in the C -direction. A solution of the Maxwell equations in the form (1) is
called a forward traveling propagating mode, if 6EDGF . A backward traveling propagating mode satisfies 6EHGF .
The corresponding mode profiles can be chosen such that the transverse components IKJ , I�L , MNJ , and MNL are
real, while I�O and MPO are imaginary. Evanescent modes have imaginary propagation constants 6Q-?4 i R , with
real R . Those with RSDTF , i.e. in positive ' -direction exponentially decreasing fields, shall be called forward
traveling, others with RUHTF are called backward traveling. Here all electric components of the mode profile
may be real, while the magnetic components are purely imaginary.

For convenience we collect the in general six components of a mode profile into a single quantity VXWY . If
applicable, it is decorated with a superscript ZN[E\ I % II % III ] that identifies the waveguide segment to which the
mode belongs, and by a subscript ^ that specifies the mode index. This notation transfers to the propagation
constant 6 WY and to the parts of the mode profile. For this paper, only configurations with numerable sets \_V Ì ] ,\_V IIY ] , \_V IIIa ] , are of interest, either because the discussion is restricted to guided fields, or because the mode
spectrum is discretized by using a finite transverse computational window.

For each mode with profile V and propagation constant 6 a mode can be constructed, which travels in the
opposite direction. The profile V r has the I O , M J , and M L components multiplied by 4cb , the propagation
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constant is 6 r -d4e6 . If relevant, forward and backward traveling modes will be given upper indices f and
b, respectively. In that case, the numbering shall be applied separately to forward and backward propagating
modes, such that VfW ,bY -g!hViW ,fY , r.
Since this deals with planar structures, the mode spectrum splits into a TE part, where only the IiL , MjJ , and MPO
components are present in the mode profiles, and into a second TM part, where these components of the mode
profiles vanish. Occasionally, an additional index TE or TM indicates the polarization.

For purposes of field decomposition and power summation, we employ the following product of two general
electromagnetic fields VT-T!k/1l�%m:?ln, and op-?!k/rqs%m:Uq_, :

!hVPtnoe,u-g!k/vl�%m:?l�tm/wqs%m:Sq_,3- bx y !hI �lzJ MPq{L�4�I �lzL Mjq{J�|}I�q{J~M �lzL 4�I�q{LsM �lzJ , d # < (2)

Here the asterisk denotes complex conjugation. Note that (2) combines only the transverse electric and magnetic
components.

Defining the mode powers

� WY -���� !hV WY t(V WY , � % if mode ^ is propagating,� !hViWY t_!hVfWY , r , � % if mode ^ is evanescent,
(3)

the following orthogonality relations hold for uniformly polarized modes belonging to the same segment Z :
!hV W ,f` t(ViW ,fY ,9-0� ` Y � WY %!hV W ,b` t(VfW ,bY ,3-T4�� ` Y � WY %!hV W ,f` t(ViW ,bY ,3-?!hV W ,b` t(ViW ,fY ,3-�F�%f���� if mode ^ is propagating,

!hV W ,f` t(ViW ,bY ,3-U� i � ` Y � WY %!hV W ,b` t(VfW ,fY ,3-U� i � ` Y � WY %!hV W ,f` t(V W ,fY ,9-?!hV W ,b` t(V W ,bY ,3-�F�% ���� if mode ^ is evanescent.

(4)

� ` Y -db , if ��-�^ , otherwise � ` Y -�F . The statements imply that products between a propagating and an
evanescent mode vanish. The upper signs in the fourth and fifth line of Eq. (4) apply to TE polarized fields, the
lower to the TM case.

As a consequence, the total power � W - Re ��!h� W�� !� W , � ,�O d #�BA> (the integrated longitudinal component of
the Poynting-vector) attributed to the mode superposition� � �� W !$#&%(')%+*+,9-U� Y�� WY b� � WY V W ,fY !$#�, ei 23*54 i 6 WY ' | � Y�� WY b� � WY V W ,bY !$#�, ei 23*�| i 6 WY ' (5)

in waveguide segment Z is

� W - �Y�  propag.¡ � � WY � q 4 � � WY � q£¢ � i �Y�  evanesc.

!+! � WY , � � WY 4 � WY ! � WY , � , < (6)

This clarifies at least the naming ’forward’ and ’backward’ for the propagating modes, which are included in the
first summation. Forward / backward traveling evanescent modes are in the positive ' -direction exponentially
decreasing or increasing fields, respectively. A — longitudinally constant — contribution to the total power
does only arise, if both types are present simultaneously.

In the derivation of Eq. (6), one rewrites � W as � W -¤!h��%{ Ut(��%{ ¥, . Observing that expression !k>
, vanishes!hV TE; V TM ,3-0F with a TE field V TE and a TM field V TM inserted (even if the modes do not belong to the same
waveguide), this justifies completely separated simulations for TE and TM polarization: TE and TM modes do
not interfere, the powers related to both polarizations may be computed separately, and added afterwards.
While this applies only to homogeneous segments, e.g. by reading through the following paragraphs one can
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quickly check that transisitions between adjacent waveguide sections can be (rigorously) expressed in terms of
products (2) between the local modes on both sides. Hence there is no interaction between the polarizations at
the junctions likewise.

Naturally, the mode expansion technique initiated in this section resembles the formulations given e.g. in Refs.
[24, 25, 26]. However, for a polarizer design we necessarily have to consider both polarizations. The present
formalism applies to the TE and TM cases, which are dealt with separately in the two latter references. The
more abstract approach in terms of general modes and products of modes, rather than handling the scalar basic
components of TE and TM fields, has turned out to be very convenient for the numerical implementation. In
particular, it enables a compact formulation of the propagating mode analysis for the long cross strip segment.

3 Cross strip interferometer: Overlap model

Assuming that only the forward traveling guided modes are present, the total fields in the three waveguide
segments are given by expression (5), restricted to the single input and output terms V I¦ , V III¦ in sections I, III,
and to the two guided modes V II¦ , V IIl of the strip segment (the superscript f will be suppressed here). Given
the input mode amplitude � I¦ in terms of the input power � I - � � I¦ � q , we are interested in the intermediate
amplitudes � II¦ , � IIl , and in the output power � III - � � III¦ � q .
Since the transverse electric and magnetic fields are required to be continuous on the planes of the junctions,
putting the local expressions for the adjacent fields equal allows to extract the outgoing mode amplitudes by
projecting on the incoming fields. Note that only the # - and C -components which are tangential to the ' -
discontinuity may be set equal. But only these are required to evaluate (2). Provided that the fields on both
sides satisfy the Maxwell equations, the curl relations imply the continuity of the ' -components of the magnetic
field and of the dielectric displacement.

For junction i, the projection yields

� IIY - � I¦ !hV IIY t(V I¦ ,§ � IIY � I¦ % ^¨-�F©%�b < (7)

Using identical modes V III¦ -�V I¦ for the input and output segments, the output power evaluates to

�ª-¥� III -¥� I ¡h« q¦ | « q l |p> « ¦ « l­¬£®
¯s!$6 II¦ 4°6 IIl ,�± ¢ with « Y - ²² !hV IIY t(V I¦ , ²² q� IIY � I¦ < (8)

� varies harmonically ³ with the strip length ± , oscillating between the maximum value � I ! « ¦ | « ln, q and
the minimum � I ! « ¦ 4 « l
, q with the half-beat length or coupling length ± c -T@7B©!$6 II¦ 4�6 IIl , . The maximum
(minimum) power is transfered if ± matches an even (odd) multiple of ± c.

Consequently, the model predicts a vanishing throughput, if one can dimension the waveguides such that « ¦ -« l , which must be considered a major requirement for the interferometer. According to Eq. (7), the incoming
power is then equally distributed between V II¦ and V IIl at junction i. In the cases of extremal power transfer,
these modes excite junction ii with equal absolute amplitudes, but with zero relative phase difference, or with a
difference of @ , respectively.

For a certain range of thicknesses * we have found that a dimensioning aiming at « ¦ - « l is indeed possible
by choosing a proper etching depth ´ . The freedom in the strip thickness * can be exploited to optimize« ¦ | « l , i.e. the maximum power throughput. Figure 2 shows examples for the resulting mode profiles and
the relevant superpositions. Note that in general the thickness tuning is not possible simultaneously for TE and
TM polarized light.µ

Precisely this variation has been observed in Ref. [2] in the framework of an investigation concerning metal clad waveguide
polarizers. But, regarded as an undesired feature, the effect was not further exploited.
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Figure 2: For structures defined by the material parameters and wavelength of Table 2 with thicknesses and etching depths�����
	 ¶���·�·�� m, �K���¸	 �A¹�·_º�� m (TE, left column) and ���°�¸	�»�»_»¼º�� m, �½���
	 �_����·�� m (TM, right column):
Top: Basic field components ¾9¿ (TE) and À�¿ (TM) of the modes Á IÂ of the input/output waveguide, and the profiles
coresponding to Á IIÂ , Á IIÃ in the coupling segment. Bottom: With suitable amplitudes Ä"��Å IIÆ �ÈÇ É Æ �°�¸	 ¶�º_· (TE) and�¸	 ¶�·�� (TM), for unit input power, the modes of the thicker waveguide form fields Ä©ÊËÁ IIÂ½Ì Á IIÃÎÍ that are orthogonal to the
output profile, or fields Ä©ÊËÁ IIÂÐÏ Á IIÃ Í that are reasonably close to the output modes. The shading indicates the permittivity
of the coupling segment, while the vertical lines mark the boundaries of the input/output core.

While optimized for a vanishing minimum power transfer, the parameters given for Figure 2 yield a maximum
relative throughput ! « ¦ | « l
, q -Ñ!k>AÒ q , q of ÓAF¸Ô (TE) and Ó~Õ
Ô (TM). One can observe, that these losses are
much lower for other material parameters or basic geometries, e.g. if one forms the cross strip in a two layered
guiding film with a slightly increased refractive index of the top layer Ö . However, since the polarizer design
should be as simple as possible and adaptable to the underlying circuit, where the additional layer won’t fit, for
this paper we stick to the single layer configuration.

4 Waveguide junction: Mode expansion

Since totally neglecting the influence of radiation and reflection at the abrupt waveguide junctions may be ex-
pected to be insufficient, we consider the junctions a second time, now including these effects by expanding
into a larger mode set. For this purpose, the interesting region on the # -axis is enclosed by a computational
window. The mode spectrum becomes discrete, if the basic mode components ( I½L for TE, MjL for TM po-
larization) are set to zero on the window boundaries. If these are sufficiently far apart, such that the guided
exciting and outgoing fields can well be neglected beyond the boundaries, in the plane of the junction the total
electromagnetic field will be localized around the waveguide, with radiated fields approaching the boundaries
only at some distance from the junction. By virtue of the orthogonality relations (4), one may expect correct
results for the reflection and transmission coefficients of the guided modes in the limit of many terms in the
mode decomposition, even with a finite window. Close to the junction, where reflections from the window
boundaries are not relevant, the field computed in this way should be a good approximation to the field in the
open structure.

Again the electromagnetic field on both sides of junction i is searched in the form (5), now with forward
and backward, propagating and evanescent terms present. Using (2) on the equated transverse components,
projection onto either segment I or segment II allows one to extract the mode amplitudes. The mode overlaps×

A two layered structure made of garnet materials (bottom layer: refractive index Ø�ÙÛÚ+Ü
Ý , thickness Þ_Ù ß£Ümß­à m, top layer: refractive
index Ø�Ù Ø
ÝnÜ , thickness Þ�Ù Ü
Üná)à m, substrate: refractive index Ú
Ù á£Ü , cover: air, etching depth Þ_Ù â£Þ
Üãà m) allows for vanishing minimum
power transfer with a maximum throughput of á
ä
å , for TM polarized light at a wavelength of Ú
Ù æ)à m.
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are stored in the matrices

!{ç Wè�é , ` Y -?!hV W   è` t(V W   éY , and !zê è�é , ` Y -?!hV II, è` t(V I, éY ,n% (9)

where indices Z}- I % II specify the segment, ë3%mìT- f % b identify a propagation direction, and ��%+^ extend
over the range of the terms in the mode expansions. Putting additionally the mode normalizations into the
amplitudes í WY - � WY B � � WY , î WY - � WY B � � WY and combining these to amplitude vectors ï�W , ðÎW , one finds
the latter related as� ï Ið I � -?ñ I

� ï IIð II � % � ï IIð II � -?ñ II
� ï Ið I � % (10)

with transfer matrices ñ W given by

ñ I -?!{ç I ,mò l ê � % ñ II -?!{ç II ,mò l êQ% for ç W - � ç Wff ç Wfbç Wbf ç Wbb � % êó- � ê ff ê fbê bf ê bb � < (11)

Here the asterisk denotes the adjoint matrix.

If one considers the single junction i excited by the forward traveling modes on left segment, then ï I (the input
amplitudes) is prescribed, ð I (the reflection coefficients) and ï II (the transmission coefficients) are unknowns,
and ð II is zero (there is no light coming in from the right). Splitting now ñ W as

ñ W - � ñ Wff ñ Wfbñ Wbf ñ Wbb � % (12)

the unknown mode transmissions and reflections can be computed:

ï II - ¡(ô 4õñ II
fb ñ I

bf
¢ ò l ñ II

ff ï I % ð I -?ñ I
bf ï II % � WY - � � WY í WY % � WY - � � WY î WY < (13)

Note that this formalism does not require the number of expansion terms in segments I and II to be equal [24],
in contrast to the formulations in Refs. [25, 26].

Figure 3 illustrates the results for the parameters found to be interesting in the last section (the data of Figure 2).
The plane of junction ii has been shifted to the origin, where we have to stretch the notation somewhat with
respect to the numbering of the segments. Only the forward traveling guided fields on the left of the junctions
are incident: � I¦ -db in (a), � II¦ -ö� � IIl -db_B~÷ > in (b) and (c), respectively; the remaining entries in ï I

or ï II were set to zero. For a more quantitative assessment, Table 1 summarizes the relative mode powers of
the reflected and transmitted guided fields. The mode expansion simulations use

x F~F terms on each side of the
junctions, on a computational window extending from #ø-?4cb�ùúë m to #v-?b¼F5ë m. The given values are found
to be converged with respect to enlarging the window and to increasing the number of expansion terms.

Despite its simplicity, the predictions of the overlap model of Section 3 turn out to be surprisingly good:
At junction i (a), the modes V II¦ and V IIl receive almost half of the incoming power each. If the symmetric
superposition of these modes arrives at junction ii (b), this leads to constructive interference with most of the
power remaining guided in segment III. In both cases (a) and (b) only very small amounts of power are reflected
into the guided fields. The antisymmetric superposition causes destructive interference (c). Here the largest part
of the power is radiated away from the core in segment III, dominantly into the substrate region. Another part
radiates backwards into segment II. And a certain amount is reflected into the backward traveling guided modes,
which will have to play a role in the following section.

The number of
x F~F expansion terms, chosen to generate sound reference values, may seem to be unnecessarily

large. If interest is in the reflection and transmission coefficients of the guided modes only, then indeed digits
like those given in Table 1(c),TM can be produced with a much smaller computational window of 4�> < x ë m û#?û¤> < >úë m and only >AF terms in the mode expansions (which includes already b~b ( b¼F ) evanescent modes
for the thin (thick) segment). On the other hand, plots like Figure 3(c) drawn from that computation appear
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Figure 3: Simulations of the light propagation through the separated waveguide junctions i and ii, with parameters as
given for Figure 2 and Table 1. The left and right comlumns display TE and TM polarized fields, where the gray scale
levels correspond to the squareroot of the � -component of the local Poynting vector. (a): Transition I ü II; Input: the
single mode of the thin segment. (b): Transition II ü III; Input: the positive superposition of the two modes of the thick
segment (see Figure 2). (c): Transition II ü III; Input: the superposition with the negative sign. In case of two initially
excited modes, the term ’input’ means that the two modes are lauched to arrive at the junction with proper amplitudes and
phases.

(a) Junction i, Å IÂ �p� :
TE, ý þ IÂ ý � TE, ý Å IIÂ ý � TE, ý Å IIÃ ý � TM, ý þ IÂ ý � TM, ý Å IIÂ ý � TM, ý Å IIÃ ý �

ME ¹
	 � ÿ_�n� � � �
	 ��¶ �
	 ��· ��	 ��ÿ��n� � � �
	 ��¶ �
	�¹��
FDTD ¹
	 �3ÿ��
� � � �
	 �A» �
	 ��º ��	 ��ÿ��n� � � �
	 �s¹ �
	�¹_�

(b) Junction ii, Å IIÂ �p� � Ç � , Å IIÃ �}� � Ç � :

TE, ý þ IIÂ ý � TE, ý þ IIÃ ý � TE, ý Å IIIÂ ý � TM, ý þ IIÂ ý � TM, ý þ IIÃ ý � TM, ý Å IIIÂ ý �
ME �Î	 · ÿ_�
� � � �_	 º�ÿ��n� � � �¸	 ·s¹ �_	 �3ÿ��
� � � »~	 ¹.ÿ��n� � � �
	 ·_¶
FDTD �¸	 º ÿ_�
� � � �
	�¹ ÿ��n� � � �¸	 ·_� �_	 �3ÿ��
� � � º¸	 · ÿ��n� � � �
	 ·��

(c) Junction ii, Å IIÂ �G� � Ç � , Å IIÃ � Ì � � Ç � :

TE, ý þ IIÂ ý � TE, ý þ IIÃ ý � TE, ý Å IIIÂ ý � TM, ý þ IIÂ ý � TM, ý þ IIÃ ý � TM, ý Å IIIÂ ý �
ME ·¸	 ¹.ÿ_�
� � � ¹~	 ¶�ÿ��n� � � ¹
	 ��ÿ_�n� � � �
	 �3ÿ��
� � � ��	 ¶ ÿ��n� � � ¹~	 �eÿ��n� � �
FDTD ·
	 �5ÿ_�
� � � ¹~	 �eÿ��n� � � ��	 ��ÿ_�n� � � �
	�� ÿ��
� � � ��	 ¶ ÿ��n� � � ¹~	�¹ ÿ��n� � �

Table 1: Relative guided mode powers for the simualtion of isolated waveguide junctions corresponding to the plots of
Figure 3. ME indicates the values computed with the mode expansion technique as formulated in this paper, the rows
FDTD contain the results of finite difference time-domain beam propagation simulations [27]. For (a), the overlap model
Eq. (7) predicts ý Å IIÂ ý � �óý Å IIÃ ý � ���
	 �A» (TE) and �¸	 �sº (TM), correspondingly ý Å IIIÂ ý � ���¸	 ·s¹ (TE), and �
	 ·_¶ (TM) for (b),
and ý Å IIIÂ ý � ��� for (c).

poorly, due to the artificial reflections from the window boundaries. >AF expansion terms is also not enough to
adequately decompose the adjacent fields in the plane of the junction: discontinuities e.g. in the longitudinal
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component of the Poynting vector are clearly visible in 'f-�F . Note that the mismatch of the guided parts of the
fields, and consequently the fractions of radiated power, are substantial in the configurations we are interested
in. If the fields belonging to the open structure are to be approximated at some ' -distances on both sides of the
junction, a larger computational window is advisable, and this in turn requires to take more basis functions into
account.

Another (serious) reason for placing the artificial walls far apart is the “windowing error” which leads to a
oscillating type of convergence, if one considers e.g. a plot of the mode reflection coefficients, converged with
respect to the number of mode terms, versus the width of the computational window. These oscillations are
observed with the present approach; see Refs. [28, 24] for more details.

Our implementation does not employ any kind of transparent or absorbing boundary conditions. Despite the
computational effort in terms of a wide window and large basis sets, the (squared) propagation constants have
to be searched on the real axis only. Hence the algorithm is likely to be much more stable and efficient than
one which searches wavenumbers in the complex plane (this would be necessary if complex refractive indices
are involved). However, simulating a long structure requires specific measures, as explaned in Section 5.

To verify the our analysis, we have applied the finite difference time domain beam propagation technique
described in Ref. [27, 29] and found a reasonable agreement. Table 1 compares the results. The spatially two-
dimensional simulations rely on regular meshes of ÕAF~F � x F~F points (TE) and > x F � x F~F points (TM), with
stepsizes of b�� nm (TE) and b�Ó nm (TM) for the # -direction and >AF nm for the ' -direction. The boundaries of
the computational window ( 4�> < �úë m ûp#1ûó> < Õúë m (TE), 4cb < Óúë m ûp#1ûó> <�� ë m (TM), 4 x ë m ûó'jû x ë m)
are fitted with perfectly matched layers [29] to cope with the outgoing radiation.

5 Cross strip interferometer: Rigorous mode expansion

As demonstrated by the plots of Figure 3, the nonguided parts of the field that initiate from the junctions at'°-ÑF rapidly leave the film region with growing propagating distance ��' . While in the real open structure
there is no physical reason why this power should return, the boundaries introduced for the mode expansion
will reflect these fields back into the region of the waveguide, if the model would be applied unmodified to the
entire interferometer.

Observing that segment II is usually much longer than a typical distance on which the radiation leaves the
waveguide, the obstacle can be circumvented in the following way. The forward traveling field on the right side
of junction i consists of two guided modes and a remainder. The remainder, representing the diverging radiation
field, is neglected for the simulation of junction ii, where only the two guided modes are assumed to be coming
in from segment II. Likewise, the backward traveling field initiating from junction ii is split into a guided part,
which excites junction i from the right, and a nonguided part, which crosses the plane '1-ÑF sufficiently far
away from the waveguide. Thus these nonguided modes are negligible for the simulation of junction i. Note that
dropping the fields requires a homogeneous waveguide segment of a certain length between the two junctions.
It is clearly not applicable e.g. in the case of a grating, where usually the period is in the order of the wavelength
(cf. the remarks in [26]).

To check the approximation, we have summed the intensity on the relevant vertical boundaries 'È- > < ùúë m
(a), 'X- 4�> < ùúë m (b, c), 4cb < ùúë m H8#GH�b < ùúë m, of the plots of Figure 3 with the amplitudes of the guided
modes set to zero. In all six cases the relative power related to the nonguided fields close to the waveguide was
below F < F
> , indicating that these fields, if allowed to propagate freely over the entire length ± of the strip (see
Table 2), would well have left the # -region which is relevant for the junction modeling.

The above reasoning allows to apply the mode expansion technique to the long cross strip. We have to simulate
the two junctions simultaneously, with separate radiation fields, but with the guided fields mediating between
them. Using the notation of Section 4, the field in segments I and III is expanded into the local modes (5) with
relative amplitude vectors ï I, ð I, and ï III, ð III, which contain the mode amplitudes in the plane 'X-?F on the
left side of junction i, and in the plane 'j-8± on the right side of junction ii, respectively. For segment II, two
sets of amplitudes ï II

i,g, ï II
i,r, ð II

i,g, ð II
i,r, and ï II

ii,g, ï II
ii,r, ð II

ii,g, ð II
ii,r collect the amplitudes of the guided (index g) and

nonguided modes (index r) on the right side of junction i (index i) and on the left side of junction ii (index ii).
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Bidirectional projection relates these quantities by transfer matrices ñ I, ñ II, and � II, � III, where the latter are
the equivalents of the operators in Eq. (10) for junction ii. Splitting the transfer matrices into suitable parts, this
reads

� ï Ið I � - � ñ I
ffg ñ I

ffr ñ I
fbg ñ I

fbrñ I
bfg ñ I

bfr ñ I
bbg ñ I

bbr 	�
��
 ï
II
i,gï II
i,rð II
i,gð II
i,r

����� % 
��
 ï
II
i,gï II
i,rð II
i,gð II
i,r

����� - 
���

ñ II

fgf ñ II
fgbñ II

frf ñ II
frbñ II

bgf ñ II
bgbñ II

brf ñ II
brb

������ � ï Ið I � % (14)


��
 ï
II
ii,gï II
ii,rð II
ii,gð II
ii,r

����� - 
���

� II

fgf � II
fgb� II

frf � II
frb� II

bgf � II
bgb� II

brf � II
brb

������ � ï IIIð III � % � ï IIIð III � - � � III
ffg � III

ffr � III
fbg � III

fbr� III
bfg � III

bfr � III
bbg � III

bbr 	 
��
 ï
II
ii,gï II
ii,rð II
ii,gð II
ii,r

����� < (15)

Additionally, the guided mode amplitudes at 'p-öF¸| and 'p-ö±�4 are connected by diagonal propagation
matrices which include the phase velocities of the relevant modes:

ï II
ii,g -�� � ï II

i,g % ð II
ii,g -�� ò ð II

i,g % where !����3, ` Y -�� e � i 6 IIY ± % if � = ^ ,F otherwise.
(16)

The device is to be excited by the guided mode of segment I, without any other incoming fields. This requiresí I¦ - § � I B � I¦ , í IY -SF , if ^��-8F , and ð III -ªF . Putting ð II
i,r -ªF and ï II

ii,r -ªF implements the open structure
for segment II, as discussed in the beginning of this section. Besides in the remaining coefficients of segment
II, we are interested in the mode amplitudes ð I and ï III related to the reflection and transmission of the entire
device, and in particular in � � I¦ � q - � I¦ � î I¦ � q and �T- � � III¦ � q - � III¦ � í III � q , the guided reflected and transmitted
power.

Solving the system (14), (15), and (16) with the above constraints results in the expressions

ï III - ¡ ç�4���� ò l���¢ ò l ¡! |��"� ò l"#�¢ ï I and ð I -�� ò l�� ï III |$� ò l"# ï I (17)

with ��- ô 4õñ I
bfr ñ II

frb %� -?ñ I
bfg � ò � II

fgf |Uñ I
bbg � � � II

bgf %# -?ñ I
bfr ñ II

frf %çE- ô 4%� III
fbr � II

brf % -&� III
ffg � � ñ II

fgf |'� III
fbg � ò ñ II

bgf %�i-(� III
ffg � � ñ II

fgb |�� III
fbg � ò ñ II

bgb %
(18)

which are directly suitable for a numerical implementation.

6 Polarizer design

The discussion shall be restricted to a device that transmits as much as possible of the power related to TE
polarized input light, while it blocks TM throughput. The polarizer has to be characterized in terms of the polar-
ization discrimination or extinction ratio ER -Tb¼F*)Ë®,+ l ¦ � TE B�� TM and the insertion loss LO -T4cb¼F*) ®,+ l ¦ � TE,
where � TE and � TM are the relative TE and TM power transmissions.

For the cross strip geometry with given material parameters and wavelength, the design starts with identifying
a proper total thickness * and length ± of the strip. The overlap model of Section 3 predicts periodic variations
in the power transfer as a function of ± with different beat lengths ± TE

c and ± TM
c . Polarizer performance
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requires a (short) configuration, where ± is an even multiple of ± TE
c and simultaneously an odd multiple of± TM

c . For a difference of one in the multiplicities, these conditions fix the optimum polarizer length as ± p -± TE
c ± TM

c B©!h± TE
c 4ó± TM

c , . By varying * over the range where segment II supports two guides modes for both
polarizations, evaluating ± p and checking for an even integer ± p Bs± TE

c , one can indeed find a suitable geometry.
Figure 4 shows the resulting dependence of the characteristic quantities on the strip length. At the proper length± p - x ± TE

c -¨ùA± TM
c , the transmission curves related to TE and TM polarization achieve their maximum or

minimum, respectively. Note that a multiplicity difference of one in the coupling lengths does not only lead
to the shortest possible device, but also to the most relaxed fabrication tolerances. The allowed intervals for
parameter deviations are roughly inversely proportional to the overall device length, see Ref. [30].
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Figure 4: TE and TM power transmissions- TE,
- TM, polarization discrimination ER

and loss LO versus the length � of the thick
segment. Parameters are as stated in Table 2.
The vertical line identifies the best polarizer
length � p � �
�~	��~�
º�� m, an integer multi-
ple of the beat lengths � TE

c �0�
	 ��¹���� m and� TM
c ���
	 ���_��� m.

The design proceeds with the search for a suitable etching depth ´ . Figure 5 compares corresponding data
calculated with the approximate expression (8) on the one hand, and according to Eq. (17) on the other. A
difference is hardly visible on the linear power scale, but becomes apparent on the logarithmic scale of the
extinction ratio. While the polarization discrimitation is unlimited in the simple model ( « TM¦ and « TMl be-
come equal), according to the mode expansion an ideal polarizer can not be expected. However, the optimum
performance, reached for an etching depth that is slightly different from the prediction of (8), is still quite
reasonable.
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Figure 5: TE and TM power transmissions- TE,
- TM, polarization discrimination ER

and loss LO versus the etching depth � , for
structures given by the parameters of Ta-
ble 2. The dotted lines are the results of the
rough overlap model; rigorous mode expan-
sion leads to the continuous curves.

Table 2 summarizes the parameters of the resulting polarizer proposal. For the tuned device, a simulation as
described in Section 5 with 400 expansion terms on a window 4cb�ùúë m ûp# ûUb¼F5ë m for each segment predicts
relative power throughputs of � TE -UÓ~Õ
Ô and � TM -SF < F
Õ~ù
Ô . This amounts to a polarization discrimination
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ER -?Õ x dB and an insertion loss LO -gF < Õ~Õ dB. Relative guided powers of F < F � Ô (TE) and ù < Ó
Ô (TM) are
reflected. Plots of the corresponding fields in Figure 6 illustrate the behaviour of the interferometer.

� � � . � s � f � c/ �¸	 ·�¶���� m �
	�¹¼�s·�� m �
�
	 �
�nº�� m �_	 ��� m �_	�¹ �
	 � ��	 �0 /21 Ã43 º nm ¶_� nm �
	 �
¹�� m ��� nm �¸	 �¸�n¶ �
	 ���_¶ �
	 �_¶_�0 /21 � 3 �nº nm ��� nm �
	 �_·�� m ¶�¹ nm �¸	 �_��� �
	 �s»~� �
	 �n·��
Table 2: Structural parameters / and tolerances

0 / for a planar polarizer as sketched in Figure 1.
0 / 1 Ã43 (

0 / 1 � 3 ) corre-
sponds to limits for extinction ratio and loss of �_� dB and � dB ( �
� dB and �
	�¹ dB). See the text for a concise interpretation
of the fabrication tolerances.

The tolerances given in Table 2 indicate that the polarizer should still achieve an extinction ratio higher than>AF dB ( b¼F dB) and suffer from losses below b dB ( F < ù dB), if a single parameter deviates from the optimum
value 5 by not more than �7685 . These limits are estimated with the help of Eq. (8). A change in ´ alters the
overlaps « Y only, while a change in * affects the propagation constants 6 IIY as well. Hence the device turns out
to be more sensitive with respect to the total thickness (and the strip length ± ) than with respect to the etching
depth.
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Figure 6: Simulation of the light propagation through the cross strip defined by Table 2, for TE (top) and TM polarized
input (bottom). For TE polarization, almost the entire power passes the device smoothly, while the second junction scatters
TM polarized waves into the surrounding.

E.g. from Ref. [31] one can obtain hints regarding the criticalness of the thickness * , the geometric parameter
with the narrowest tolerance interval. Typical growth rates for Silicon Oxynitride layers are about ù nm B:9<;>= ,
with a nonuniformity as low as F < ù
Ô on a > cm � > cm area, implying deviations of about ù nm for *u-�F < Ó,�~>úë m.
Demanding the thickness to be within the b�� nm interval that is stated in row 6<5@? lBA of Table 2 seems reasonable.

Cascading the cross strips may be a means to relax the tolerance requirements. Row 685C? qDA of Table 2 can be
interpreted in that way. Disregarding reflections and assuming a sufficient distance between them, a sequence of
two polarizer strips with b¼F dB extinction ratio and F < ù dB loss should perform like a single >AF dB/ b dB device.
With the exception of ´ (here the loss is the limiting constraint, see Figure 5), the tolerance requirements for
the single strips are indeed considerably relaxed, while the overall length can be still small, say ùAF5ë m.

In terms of the interferometer performance discussed in Section 5, the geometry is suboptimal for both TE
and TM polarizations: If ± would be allowed to vary, then � TM reaches up to E~ù
Ô only, while � TE does
not fall below b < Ó
Ô . Hence a TM-transparent polarizer requires a resized geometry (suitable dimensions are*�-ªF < E � F5ë m, ´1-8F < ù,EAF5ë m, and ±õ-TÕ x < b�ùAF5ë m for otherwise unchanged parameters), not only a modified
length.

The material parameters as stated in Table 2 resemble typical values for Silicon-Nitride / Silicon-Oxide wave-
guides [31]. Usually these are grown on a Silicon substrate. Provided that the SiO q buffer layer is sufficiently
thick, one may neglect the presence of the Silicon below the waveguide, as we have done before. Note that
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the presence of the real substrate is not likely to affect the polarizer performance: The largest part of the
downwards radiated fields disappears directly into the high index Silicon. The reflected part may reenter the
waveguide region, but, being composed of modes that are orthogonal to the guided output mode, the fields cross
the waveguide and dissapear into the cover. Or the power is again reflected into the direction of the substrate.
Provided that the output segment is of a sufficient length, the power throughput should be indeed equal to the
coefficient � � III¦ � q .
An extension of the present planar design to channel waveguides will be a subject of future research. Suitable
annealing or etching a shallow rib could be means to create a laterally weakly confining waveguide across the
strip. This seems to be unlikely to disturb the properties of the interferometer significantly.

7 Conclusions

A thicker, bimodal segment of specific length and height between two single mode sections of a planar wave-
guide can serve as a simple interferometer. Depending on the phase gain of the two modes in the intermediate
region, the fields interfere almost completely destructively, or constructively with relatively low losses. The
structure unifies some features of a two-dimensional directional coupler missing a gap, and of a multimode
interference device involving only two modes.

Considering only overlaps of forward propagating modes gives a basic insight into the behaviour of the in-
terferometer, and allows one to isolate suitable parameter sets. We have assessed and optimized the device
performance in terms of a rigorous mode expansion model, including radiation and reflection. Despite the
abrupt waveguide discontinuities, we have found only moderate levels of reflections for tuned configurations.

Such a cross strip interferometer can be dimensioned to perform as a very short integrated optical polarizer. We
have simulated a device that suppresses TM polarization in Silicon-based waveguides; the proposal is easily
transferable to other materials and to TE suppression.
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