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Abstract: A spatially three-dimensional, fully vectorial coupled mode theory model for the in-
teraction between several straight or bent dielectric optical waveguides, each supporting multiple
modes, is described. The frequency domain model is applied to the coupler regions of cylin-
drical microresonators, here considered for applications as integrated optical filters. For simple
test cases, comparisons with results of beam propagation calculations and of a rigorous system
mode analysis provide some validation of the approach. By combination of two coupler rep-
resentations one obtains a complete 3-D vectorial microresonator description without any free
parameters, that permits a convenient investigation of the influence of geometrical parameters on
the spectral response. When applied to a microring resonator with pronouncedly hybrid cavity
modes, the model reveals the manifold features that may appear in the spectra of these devices.
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1 Introduction

Over the last decade, microring or -disk resonators for filter applications in integrated optics have been actively
studied [1, 2, 3, 4], and technology has come to the point where structures can be reliably fabricated. Composite
structures consisting of parallel rings [5] or series of cavity elements [6] have been investigated. If made tunable
by thermo-optical or electro-optical means, the microresonators can function as basic building blocks for e.g.
modulators, routers, or switches in photonic chips related to optical wavelength-division multiplexing. See e.g.
[7] for a recent overview of the field.

PD y Pin

z PT

x Figure 1: Microring resonator, a 3-D configuration where a cir-
cular cavity is placed on top of the two parallel bus waveguides.
The optical input power Pin is inserted into one of the bus cores;
two output ports through and drop each receive a wavelength-
dependent fraction PT and PD of the input power. Two coupler
regions (dashed lines) can be identified, where the waves sup-
ported by the cavity and bus cores interact.

For this paper we focus on resonator devices that consist of a dielectric ring (or disk) that is evanescently cou-
pled to two straight dielectric waveguides, as shown schematically in Figure 1. The ring and the bus waveguides
may be positioned in the same horizontal plane (lateral coupling [8]), or the ring can be located on top of the
bus waveguides (vertical coupling [9]). Note that also for vertical coupling, the ring and the straight waveguides
can be shifted horizontally with respect to each other. Both lateral and vertical coupling strategies have their
own advantages.
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When coupling laterally, one single lithography step is sufficient to define both the bus waveguides and the
cavity, allowing for precise alignment control. However, the level of interaction that is needed for the desired
resonator performance may require a precisely defined small gap between cavity and bus waveguides, which
can be difficult to attain with conventional lithography. This problem can be solved by e.g. employing elliptic
cavity shapes, or by adding straight segments to a ring in the coupling section (“racetrack” configuration, [2]).
These options, however, have the disadvantage of lowering the minimum bend radius, and thus increasing the
intrinsic loss of the cavity when keeping the same circumference, i.e. when keeping the same free spectral
range.

In a vertically coupled configuration the vertical gap between the bus waveguides and cavity is defined by means
of the deposition step of the buffer material on top of the straight waveguide. The thickness can be controlled
with great accuracy, and layers can be made almost arbitrarily thin. Therefore, the coupling strength between
the bus waveguides and the cavity can be adjusted very precisely. It is, however, difficult to properly align the
cavity exactly with respect to the straight waveguides. Also, imperfect planarization of the buffer material can
lead to vertical steps along the light path in the cavity, causing additional scattering loss and possibly reflections
at these locations.

In the design of these microresonator structures, it is of vital importance to know the dependence of the coupler
performance on the structural parameters. The interaction strength should have the correct magnitude, and
should not be too sensitive to the technologically most uncertain parameters (e.g. the horizontal gap for lateral
coupling, or the horizontal alignment for vertical coupling). For horizontal coupling, a dimensionality reduction
from the full three-dimensional structure to a two-dimensional one can be attempted by means of effective-index
like projections methods [1, 2, 10]. Then, two-dimensional simulations can be employed to estimate the bus
waveguide-cavity interaction. Among the possible methods are the prominent Finite Difference Time Domain
algorithm (FDTD) [11], the application of Helmholtz solvers [12, 13], or modeling in terms of 2-D Coupled
Mode Theory (CMT) [14]. Of these, CMT is by far the most efficient method, and has the additional advantage
of providing data for the local amplitudes and phases for all the modes that are taken into account. The CMT
approach implements directly the physical notions that are usually employed in description of the resonator
devices, in contrast to some of the other methods, where an extraction of the complex modal amplitudes is
rather difficult, especially if multiple cavity modes are involved.

For the case of vertical coupling, or when effective index methods are simply not accurate enough in the
lateral coupling case, fully three-dimensional simulations are required. Additionally, the vectorial nature of
the fields may be important; the modes of a bent waveguide or of a straight high-contrast waveguide can
be strongly hybrid [15, 16, 17]. In three dimensions, rigorous simulations like FDTD or frequency domain
finite element discretizations are almost prohibitively time- and memory-consuming, especially if one wants to
perform parameter scans for optimization purposes. So, a more or less rigorous coupled mode theory is a good
choice for this problem.

Manifold CMT variants have been proposed, for a variety of different domains of applications [18, 19, 20, 21].
Among these several studies (see e.g. [22, 1, 2, 23, 10, 8]) deal with the evanescent interaction of waves in
circularly bent and straight waveguides; these differ in particularly in the way the cavity fields are computed
and/or approximated (frequency domain bend modes or time domain gallery resonances), and in the soundness
of the heuristics that are applied in the derivation and solution of the coupled mode equations. All of these
studies describe spatially 2-D implementations, in some cases applied to refractive index profiles that stem
from effective index projections of 3-D structures (exception: coupling to microspheres [23]). A few, rather
heuristic, trials for 3-D versions [24, 25] exist as well.

This paper describes an implementation of fully vectorial three-dimensional coupled mode theory, valid in
principle for an arbitrary number of (possibly multi-modal) waveguides that can be either straight or circularly
bent. The formulation given in Section 2 is based on a variational or reciprocity technique [26, 19] and a study
for straight waveguides [27]; it highly resembles the previous 2-D version in Ref. [14]. The outline of the
formalism is followed by three examples: Two parallel, straight, high-contrast rectangular cores (Section 3.1),
next a vertically-coupled multimodal disk resonator (Section 3.2), and finally a microresonator whose ring
supports pronouncedly hybrid modes (Section 3.3). One should emphasize that we are interested here not in an
abstract model including fit parameters, but in an effective and accurate tool for ab-initio design.

The CMT approach requires as basis fields solutions of the Maxwell equations for the constituting elementary
problems. In case of the 3-D setting these are mode profiles of straight and bend waveguides (or disk profiles)
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with two-dimensional cross sections, the computation of which is in itself a nontrivial and sometimes time-
consuming task. For the present investigation we can profit from a recently presented semianalytical algorithm
based on film-mode matching, as described in Refs. [28, 29, 17]. The analytical field representation on a
laterally (bend modes: radially) unbounded cross section domain proves to be highly advantageous for the
numerical evaluation of the CMT integrals.

2 Theoretical framework

In line with the most common ring-resonator model, we assume that the interaction between optical waves in
the bus waveguides and the cavity can be restricted to two “coupler regions” around the points where the cores
are in closest proximity. In the sketch Figure 1, the dashed lines indicate these regions. Given appropriate
modal basis fields of the cavity and of the straight waveguides for a representation of the field outside the
couplers, and a suitable description of the coupler performance, it is straightforward to establish a model for
the full resonator device. For details we refer to Refs. [30, 21, 31], and to Ref. [14] for the case of multimode
cavities that is relevant for the examples in Sections 3.2.2 and 3.3.2.

This modeling strategy requires a representation of the cavity-bus-interaction in terms of scattering matrices.
Figure 2 shows a top view and cross section of a generic coupler structure, and the enclosure by a rectangular
computational window. We aim at a description of the interaction in terms of coupled mode theory, where, with
the exception of the additional integrations along the vertical axis, the formalism is basically identical to the
2-D case detailed in Ref. [14]. Still, for completeness the basic equations are outlined below.
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Figure 2: Top view of the coupler region (a) and cross section (b) through the symmetry plane, for a cavity with radius
R. A rectangular computational window [xi, xo]× [yb, yt]× [zi, zo] contains the region where the waves in the cavity and
in the bus waveguide interact. The optical field in the full structure (b) is assumed to be well represented by the modal
solutions supported by the permittivity distributions of the straight waveguide (c) and the bend (d).

What follows is meant for the frequency domain; all optical waves oscillate with a time dependence ∼ exp(iωt)
where the real frequency ω = k/

√
ε0µ0 is given in terms of the vacuum wavelength λ = 2π/k, for vacuum

wavenumber k, permittivity ε0, and permeability µ0. We adopt Cartesian coordinates x, y, z as introduced in
Figure 2.

The coupled mode theory model rests on the assumption that the field solution with electric part E and magnetic
part H , for the full composite coupler structure as given by the permittivity ε, can be adequately represented as
a superposition of a number of known electromagnetic fields (Em,Hm) that are valid solutions of the Maxwell
equations for problems specified by permittivity profiles εm. In general the choice of the constituting structures,
and the selection of basis fields that are supported by these, is a matter of physical intuition, and usually also
of convenience. The obvious guideline (cf. Eq. (5)) is that the differences |ε − εm| between the permittivities
of the full and of the constituting structures are as small as possible, while it is still convenient to compute the
required basis solutions. Note that in general for each constituting permittivity profile several modal solutions
exist, that can be relevant for the field in the full structure. To avoid notational overhead, here we assume that a
discrete set of basis fields (Em,Hm) related to permittivities εm is known, where the constituting profiles εm

are not necessarily distinct.

For the coupler of Figure 2, a natural division is hinted at by the sketches (c) and (d). One expects that the field
in the full structure with cross section Figure 2(b) can be described properly by bend modes supported by the
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ring cavity (Figure 2(d), a segment of the ring core in an otherwise homogeneous cladding), superimposed with
guided modes of only the straight waveguide (Figure 2(c), the straight core and cladding, for an absent ring). For
the present discussion we restrict the basis fields to unidirectional mode propagation in all guiding regions, as
indicated by the arrows in Figure 1. Reflections of optical waves in the coupler regions are thus neglected. The
approximation can be more or less appropriate for a specific structure; unfortunately, this can not be checked
directly within the coupled mode formalism. For the devices considered in Section 3 however, we expect only
minor contributions of reflected waves, due to the relatively large cavity radii with longitudinally smoothly
varying permittivity profiles in the coupler regions. According to the comparison with rigorous numerical
simulations (2-D) in Ref. [14], disregarding reflections can be an adequate approximation even for quite small,
high contrast cavities, at least what concerns the spectral power transmission.

Then for the coupled mode approach one assumes that the optical field of the complete structure can be approx-
imated well by a linear combination of the basis fields, each modulated by an amplitude function that depends
on only one variable, where the choice of this evolution variable is rather arbitrary. Obvious options for the
present bent-straight waveguide coupler are either the Cartesian coordinate z along the axis of the straight core,
or the angular coordinate of the cylindrical system related to the circular cavity. As the more convenient alter-
native we opt for the Cartesian z-coordinate as the evolution variable for all basis fields, such that the ansatz
for the complete field reads:

E(x, y, z) =
∑

m

Am(z)Em(x, y, z) , H(x, y, z) =
∑

m

Am(z)Hm(x, y, z) . (1)

Here the terms Em(x, y, z) and Hm(x, y, z) consist of the mode profiles, multiplied by the appropriate ex-
ponential dependences on the respective propagation coordinate. In case of the bend modes used for the rep-
resentation of the field in the cavity, the full basis fields (vectorial mode profile and the dependence on the
angular coordinate) have to be transformed from their natural cylindrical coordinate system to the Cartesian
one; cf. the 2-D case [14] for details of the ansatz. We assume that all basis fields are power-normalized, i.e.
the z-component (modes of the straight waveguide) or the angular component (bend modes of the cavity) of the
Poynting vector associated with the respective mode profiles evaluates to unity. Note that even quite radiative
bend modes decay sufficiently fast for large radial coordinates [32]; problems due to non-convergent integrals
do not arise.

To derive evolution equations for the amplitudes Am, we make use of Lorentz’ reciprocity theorem [19], which
is a direct consequence of the Maxwell equations. It states the following equality for solutions (E p,Hp) and
(Eq,Hq) of structures with (real) permittivity distributions εp and εq, respectively:

∇ ·
(

Ep × H
∗

q + E
∗

q × Hp

)

= −iωε0 (εp − εq) Ep · E∗

q . (2)

By applying Eq. (2) to the composite fields (1) with the full permittivity ε on the one hand, and to one of the
basis fields Ek, Hk with the related constituting permittivity εk on the other hand, one obtains, after integrating
over the x-y-cross-section plane

∫∫

∇ ·
∑

m

(AmEm × H
∗

k + E
∗

k × AmHm) dx dy = −iωε0

∫∫

∑

m

Am (ε − εk)Em · E∗

k dx dy . (3)

Since the amplitudes Am depend only on the evolution coordinate z, this can be rewritten as

∑

m

dAm

dz

∫∫

ez · (Em × H
∗

k + E
∗

k × Hm) dx dy (4)

+
∑

m

Am

∫∫

∇ · (Em × H
∗

k + E
∗

k × Hm) dx dy = −iωε0

∑

m

Am

∫∫

(ε − εk)Em · E∗

k dx dy ,

where ez is the unit vector in the z-direction. In the second summation, one recognizes the left-hand side of
Lorentz’ reciprocity theorem (2). The substitution simplifies the equation as

∑

m

dAm

dz

∫∫

ez · (Em × H
∗

k + E
∗

k × Hm) dx dy = −iωε0

∑

m

Am

∫∫

(ε − εm)Em · E∗

k dx dy . (5)
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Upon combining the amplitudes Am into a single vector A, we end up with the matrix equation

O(z)
dA

dz
(z) = C(z)A(z) , (6)

with z-dependent (power-) coupling matrices O and C, whose entries are given by the integrals on the left and
right hand sides of Eq. (5). By numerical evaluation the system of equations (5) or (6) is finally solved for the
unknown mode amplitudes. The procedure consists of the numerical integration of the differential equation
along the z-interval [zi, zo] that represents the coupler region, with repeated numerical quadrature of the local
integrals over a suitable transverse computational window [xi, xo]× [yb, yt] (where in particular a large interval
along the x-direction can be required, if highly radiative bend mode profiles are involved). Due to the linearity
of the system, this procedure can be formulated directly for the transfer matrix that relates the amplitudes A(zo)
in the output plane of the coupler to the amplitudes A(zi) in the input plane.

According to Refs. [33, 14], for specific structures the elements of the resulting transfer matrix that correspond
to the power transfer to the straight waveguide exhibit a rather oscillatory behaviour with respect to the exten-
sion zo of the longitudinal computational interval, even for z-positions beyond the region where one can expect
the interaction to be significant. These oscillations are caused by non-negligible strengths of the radiating fields
from the cavity, in the output plane of the coupler and outside. One can extract the proper stationary amplitudes
of the straight waveguide modes, even for a seemingly too small computational z-interval, by projecting the full
field Eq. (1) at z = zo onto the respective basis mode profiles (“taking overlap integrals”). See Refs. [33, 14]
for details of this procedure. Oscillations of this kind are not observed for the transfer matrix entries related to
the power transfer to the bend modes.

Finally, by incorporating the straight mode projections into the transfer matrix, one obtains the required scatter-
ing matrix S for the coupler regions. In the following sections we adopt a symbolic notation for the modal basis
fields to identify the entries So i of the scattering matrix. The element So i (“coupling coefficient”) corresponds
to the interaction between input mode i and output mode o, where, for properly power-normalized basis modes,
the absolute square |So i|2 of this quantity can be interpreted as the relative power transferred to mode o, given
a single unit input in mode i.

Once the coupler scattering matrices and the propagation constants for the cavity modes are available, eval-
uation of the power transfer of the full microresonator device is straightforward. We apply the equations for
multimode configurations given in Ref. [14]. All results in Sections 3.2.2 and 3.3.2 are meant for arrangements
with two parallel bus waveguides and identical coupler regions, i.e. structures with twofold symmetry with
respect to the planes x = 0 and z = 0 in Figure 1. An analogous treatment can be applied to cavities coupled to
a single bus waveguide, or to non-symmetric two-bus configurations, with e.g. different gaps in the two coupler
regions, due to a misalignment of the cavity during fabrication [14].

In principle, for calculating the spectral response of the microresonator one needs to repeat the entire procedure
(mode analysis, CMT integration, evaluation of the resonator power transfer) for a sequence of wavelengths.
However, if only a narrow wavelength range is of interest, one can expect that the coupler scattering matrices are
almost constant over that range, and that the resonances in the cavity loop originate from an also only moderate
variation of the propagation constants of the cavity modes with the vacuum wavelength. Consequently, the
spectral results in Section 3 are evaluated by calculating the coupler scattering matrices once for a central
wavelength, and by employing a linear (interpolated) wavelength dependence of the propagation constants of
the cavity modes, where suitable correction terms take into account that substantial parts of the cavity are
included into the coupler scattering matrices. Explicit expressions are given in [14]; we observed this to be an
excellent approximation. If necessary, an easy way to improve the spectrum evaluation would be to employ
higher order functions for the complex scattering matrices and the effective indices of the cavity modes, in each
case determined as interpolations through a few complete CMT calculations for different wavelengths.

3 Numerical results

The basis fields for the CMT computations in this section are generated by a rigorous, fully vectorial mode
solver for straight and bent dielectric optical waveguides, based on the film-mode-matching (FMM) method.
A modal eigenvalue problem is tackled semi-analytically by dividing the waveguide cross section plane into
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vertical slices, such that the permittivity profile is constant along the horizontal / radial axis. Separately on each
slice, the modal field is expanded into eigenfunctions (modes of 1-D multilayer slab waveguides) associated
with the respective local refractive index profile, where the sets of eigenfunctions are discretized by employing
Dirichlet boundary conditions on horizontal planes suitably far above and below the interesting region around
the waveguide core. The 3-D modes are found where the expansions on the individual slices can be connected
such that the full field satisfies the continuity requirements at the vertical slice interfaces, and shows the ap-
propriate behaviour in the outer slices. While the algorithmic details can be found elsewhere [28, 29, 17], for
completeness we mention the few numerical parameters that enter the mode analysis procedures. These are
the numbers of slab modes Ms per slice and polarization direction, and the vertical computational window
[yM

b , yM
t ].

Once the basis fields are at hand, the CMT model requires numerical procedures at two other places, i.e. for
the repeated evaluation of the integrals in Eq. (5) over the transverse computational window (so far only a
simple trapezoidal rule is applied, though with proper positioning of the meshpoints for the quadrature of the
discontinuous, piecewise smooth integrands, and with duplicated nodal values at discontinuities), and for the
integration of the system of ordinary differential equations Eq. (6) (here we implemented a Runge-Kutta scheme
of order four [34]). Apart from the respective extensions of the computational window, the stepsizes ∆x, ∆y
for the summation of the transverse integrals, and ∆z for the solution of the ordinary differential equation enter
as numerical parameters. Note that the basis fields for the CMT analysis are given quasi-analytically; the spatial
discretizations do not influence the computation of mode profiles and propagation constants.

3.1 Straight waveguide coupling

As a test of the CMT implementation, we consider briefly an example of two parallel straight waveguides.
Identical programs as for the bent-straight waveguide couplers in Sections 3.2.1 and 3.3.1 are applied. Figure 3
introduces the coupler cross section which consists of two silicon-nitride cores on top of a silicon dioxide
substrate, clad with a polymer material.
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Figure 3: Two parallel straight waveguides, identical cores A, B
of height h = 0.185 µm, width w = 3.15 µm, and refractive in-
dex nf = 1.995, on a substrate with refractive index ns = 1.45
and covered by a material with index nc = 1.401. Configura-
tions with varying gap g are considered, for TM polarized light
with wavelength λ = 1.55 µm. Numerical parameters, calculation
of basis modes: Ms = 120, [yM

b , yM
t ] = [−4, 4] µm; integration of

the CMT equations: ∆x = 50 nm, ∆y = 37 nm, ∆z = 2.0 µm;
[xl, xr] = [−8, 8] µm, [yb, yt] = [−3.7, 3.7] µm, [zi, zo] = [0, L].

The basis modes for the CMT simulation are computed for constituting permittivity profiles that contain only
one of the two cores, where we restrict the basis set to the two vectorial, fundamental TM-like modes. Figure 4
shows the scattering matrix elements of the coupler, calculated for a core separation g = 50 nm, for coupler
segments of varying length L. Apart from issues related to the projections at the input and output planes,
one can interpret the curves as the evolution of the CMT amplitudes: For a normalized input in waveguide
i at z = zi = 0, the scattering matrix coefficient So i(L) = Ao(z) gives the local amplitude of mode o at
z = zo = L. Obviously the implementation respects exactly the symmetry of the problem with respect to the
plane x = 0.

Alternatively, one may view the two cores as a single composite waveguide. For this system, traditional mode
solvers can be employed to compute the two lowest order symmetric and antisymmetric TM modes, with (nearly
degenerate) propagation constants βs and βa, respectively. The beating of these two modes as they propagate
with equal initial amplitudes results in a pattern that also corresponds to a power transfer between the two
waveguides. Apart from issues related to the projection onto the modes of the single cores, for a unit input
into core A at z = 0, the power in core A at z = L is given by the expression |SA A|2 = cos2((βs − βa)L/2).
Figure 5 compares results calculated by coupled mode theory and by the system mode analysis, for varying
coupler gap g and a fixed length L of the coupling segment. One observes a good agreement apart from very
narrow gap widths, where apparently the system modes of the structure can no longer be approximated well by
just an even and odd combination of modes of the individual waveguides (the spatial discretization for the CMT
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|2 Figure 4: Scattering matrix elements for the straight-
waveguide coupler of Figure 3, for different lengths L of
the coupling segment. A coefficient |So i|2 can be regarded
as the output power observed in channel o, given a unit input
in channel i, for o, i = A, B.

integration may appear rather coarse, see the caption of Figure 3; note, however, that the waveguide dimensions
are captured precisely by the positioning of the nodal points, while the fields are smooth and relatively slowly
varying in between the discontinuities). In order to provide a completely independent test, here we applied the
modesolver embedded in a commercial simulation package [35] for the system mode computations.
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Figure 5: Throughput power |SA A|2 for a coupler segment
according to Figure 3 of length L = 100 µm, versus the
core separation g. CMT results (bold line) are compared
with rigorous system mode analysis (circles).

3.2 Vertical coupling between straight waveguide and disk

Figure 6 introduces a coupler configuration that combines a straight silicon-nitride / silicon-dioxide waveguide,
and a polymer disk, clad with a polymer material, in a vertically coupled resonator structure. Horizontal and
vertical variations of the relative positions of bus waveguide and cavity will be considered.
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Figure 6: (a): Straight-to-disk coupler configuration, cross section at the center z = 0 of the coupler region. The straight
core of width w = 2.0 µm, height hs = 140 nm, and refractive index nf = 1.98 is deposited on a substrate with index
ns = 1.45 and covered by a material with refractive index nc = 1.4017. The relative position of the polymer disk with
refractive index nd = 1.6062, height hd = 1.0 µm, and radius R = 100 µm is defined by the distance from the substrate
s and the gap g between the disk rim and the left flank of the straight core (where a negative g indicates overlapping
components). The modal analysis and all coupler simulations are meant for a vacuum wavelength λ = 1.55 µm. The CMT
equations are integrated with numerical parameters ∆x = 40 nm, ∆y = 20 nm, ∆z = 2.0 µm; [xi, xo] = [−12, 4] µm,
[yb, yt] = [−4 µm − s, 4 µm − s], [zi, zo] = [−30, 30] µm. (b), (c): Two possible choices of permittivity profiles for
the computation of CMT basis fields. The disk modes can be computed for a structure that includes (b) or excludes the
substrate (c).
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3.2.1 Coupler simulations

The coupled mode simulations start with the definition of the constituting profiles for the computation of the
CMT basis fields. The two most obvious choices are indicated by parts (b) and (c) of Figure 6. For a substrate
slab that extends far enough in the x-z plane, both options lead to a rotationally invariant permittivity profile,
as required for the computation of the cavity modes by the bend mode solver. In setting (b), however, the
constituting profile for the disk modes is closer to the full permittivity than in (c), hence one expects a better
approximation to the total field in (b) than in (c). The presence of the silicon dioxide substrate may significantly
influence the disk mode profiles and propagation constants; with its refractive index above the level of the
cladding, the substrate effects a preferred downward direction of the radiative parts of the cavity mode profiles.
This effect is taken into account when the substrate is included into the basis mode calculations. Furthermore,
in setting (b) the integrals on the right hand side of Eq. (5) extend only over the disk and straight core regions,
not over the substrate domain. Therefore we opt for setting (b) first. Option (c) would have the advantage that
the calculation of the bend basis fields is simplified, and that in the CMT simulations also the vertical distance s
can be varied without the necessity to recalculate the disk mode profiles; a comparison between the two settings
follows at the end of this section.

3.2.1.1 Basis modes

This particular disk structure supports multiple modes with relatively low levels of attenuation, the three lowest
order ones will be taken into account in the following simulations. We restrict the basis set to TE-like fields in
this example, since the hybridness of the modes is negligible and different polarizations are thus not expected to
interact significantly. Table 1 lists the (complex) effective indices of the three disk modes for vertical separations
s of 0.5 and 1.0µm; Figure 7 illustrates the bend mode profiles for the smaller separation s = 0.5µm.

s = 0.5µm s = 1.0µm
TE0 1.503778 − i 1.35 · 10−9 1.503450 − i 1.53 · 10−9

TE1 1.474931 − i 1.77 · 10−6 1.474585 − i 4.96 · 10−7

TE2 1.451487 − i 5.05 · 10−5 1.451093 − i 1.56 · 10−5

Table 1: Effective indices neff of the modes of the disk in Figure 6 related to the disk rim, i.e. the modal fields evolve with
the angular coordinate θ in the cylindrical coordinate system of the disk as ∼ exp(−ikneffRθ), where R is the radius of
the disk rim. The straight waveguide supports one guided TE-like mode with an effective refractive index of 1.48229.
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Figure 7: Profiles of the three lowest order modes sup-
ported by the disk in Figure 6(b), for a separation s =
0.5 µm. The plots show the absolute value |Hy| of the
dominant magnetic field component for the TE-like modes.
r denotes the radial coordinate in a cylindrical coordinate
system with origin at the center of the disk; hence, for the
vertical symmetry plane of the coupler, r − R coincides
with the x-coordinate as introduced in Figures 2 and 6. Nu-
merical parameters for the mode analysis are Ms = 200,
[yM

b , yM
t ] = [−10 µm − s, 7 µm − s].

Just as in the planar case [32], for the vertically single-mode disk the mode profiles are distinguished by a
growing number of radial minima, here in the dominant magnetic field component. Also similar to the planar
configurations, for growing mode order one observes a decrease of the real part of the effective mode indices,
and an increase of the mode attenuation. The distance of the substrate has only a moderate influence, where
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(with the exception of the negligible, perhaps slightly inaccurate levels of the fundamental field) the attenuations
are higher for the smaller separation (additional “leakage” into the substrate).

3.2.1.2 Coupler scattering matrices

With a modal basis set that includes all four fields (i.e. the three disk modes of Figure 7, together with the
fundamental TE-like mode of the bus waveguide), the CMT simulations generate scattering matrices of a size
4 × 4. Figure 8 summarizes the dependence of the 16 coefficients on the relative horizontal position of bus
waveguide and cavity, for two different vertical separations. A value g = 0 indicates a setting where, in a top
view as in Figure 2, the inner flank of the bus waveguide just touches the rim of the cavity disk.
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Figure 8: Scattering matrix coefficients for the structure of Figure 6 for vertical separations s = 1.0 µm (top row) and
s = 0.5 µm (bottom row) versus the lateral position g of the disk rim relative to the left flank of the straight waveguide. (a,
d): the self-coupling power of each mode, (b, e) the cross-coupling powers between the mode of the straight waveguide
and the bend fields, (c, f): the cross-coupling coefficients for the bend modes. CMT calculations that take three bend
modes into account.

A symbolic notation is applied to associate the scattering matrix coefficients with the basis modes: Subscripts
s, b0, b1, and b2 indicate the TE-like modes of the straight waveguide and the three bend modes of the cavity
(with growing mode order), respectively. An effort to explain these interaction levels based on the properties
of the basis modes and their respective geometrical positions turns out to be quite involved. In any case it is
necessary to distinguish clearly between the local strength of the “coupling process” (i.e. the rapidity of changes
in the evolution of the CMT amplitudes A(z), not shown here), and the net effect of the coupler, given by the
scattering matrix elements for a fixed computational window. Only this net effect is relevant for the resonator
performance, and discussed in the following paragraphs.

With respect to the vertical distance s, as to be expected the interaction is much stronger for the smaller separa-
tion. This becomes most evident by a comparison of plots (c) and (f), where for s = 0.5µm in (f) the stronger
perturbation by the closer bus core effects substantially larger cross-coupling of the — otherwise uncoupled —
bend modes than for the larger distance s = 1.0µm in (c). What concerns the lateral bus/cavity position and
the role of the individual modes, although there is an obvious influence of the locations of the mode intensity
maxima, the bend mode maxima overlap with the straight mode fields on only part of the interval [z i, zo] due
to the curvature of the disk. Also the familiar “phase matching argument” can not be applied directly, due to
the arbitrariness in the definition of the effective indices of the bend modes (still, e.g. for s = 1.0µm one finds
the strongest interaction of the straight waveguide mode s with the first order bend mode b1 which differs the
least from s in effective index). We retreat with the remark that the CMT implements precisely these physical
arguments, and use the results for the scattering matrices for an interpretation of the related resonator spectra
in Section 3.2.2.
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With the computational interval [zi, zo] as given in the caption of Figure 6, the present coupler structure is
symmetric with respect to the plane z = 0. Assuming that also the individual cavity bend modes constitute
“decoupled” input / output “ports” (suitable orthogonality properties hold at least for 2-D bend modes [32]),
reciprocity arguments as outlined in Refs. [19, 31] can be applied, that predict a symmetric scattering matrix.
The excellent coincidence of the dashed and continuous lines in Figure 8(b, c, e, f) indicates that the present
CMT implementation satisfies that requirement remarkably well (in contrast e.g. to Ref. [25], where the authors
claim to have computed “asymmetric coupling” effects). For each pair of modes m and n, one finds the power
|Snm|2 transferred from mode m at z = −zo to mode n at z = zo to be equal to the power transfer |Sm n|2 from
mode n at z = −zo to mode m at z = zo, irrespectively whether this concerns different cores or lossy modes.

3.2.1.3 Role of individual modes

Figure 9 allows to examine the relevance of the individual basis modes and their interaction for the CMT
results, for the weaker (a) and stronger interaction (b) at s = 1.0µm and s = 0.5µm, respectively, where the
plots are restricted to the throughput power |Ss s|2 of the bus waveguide. The bold lines correspond to CMT
simulations with fewer basis modes. If, in addition to the field s of the straight waveguide, only the fundamental
bend mode b0 is taken into account, the results s, b0 look very much like the familiar power transfer through
an imperfectly phase-matched ordinary directional coupler: A certain power fraction couples from the straight
waveguide to the disk, but when — here with decreasing g — the coupling strength reaches a certain level, all
power is transferred back from the disk into the straight core. This behaviour is observed for both separations
in (a) and (b). When additional bend modes are taken into account, however, this full back-coupling does no
longer happen. There still are variations of the transmitted power, but the curves do not reach unity anymore.
This can be explained by the different phase velocities of the bend modes, and by the interaction between the
bend modes that is effected by the straight core.
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Figure 9: Straight-straight power coupling coefficients |Ss s|2 for the structure of Figure 6 with vertical separations
s = 1.0 µm (a) and s = 0.5 µm (b). Bold curves: Results of CMT calculations with different modal basis sets; the mode
of the straight waveguide s and the fundamental bend mode b0 (dash-dotted), s and the two lowest order bend fields b0, b1

(dashed), or s and the three lowest order bend fields b0, b1, b2 (continuous) are taken into account. Thin lines: Products
of results for |Ss s|2 as computed in separate CMT calculations with mode s and only one of b0, b1, b2 (see the text for
further details).

For the larger vertical separation (a), the CMT results s, b0 for one and s, b0, b1 for two disk modes differ
considerably. Adding the third mode (curve s, b0, b1, b2) does not have as large an influence. It seems that the
third mode just syphons off a fraction of the power of the straight waveguide, as can be seen also by noticing
the small interaction levels of mode b2 with other fields in Figure 8(a, b, c). As to be expected, in case of the
smaller vertical separation s = 0.5µm (b), the levels of exchanged power are in general much higher than for
the larger separation. For gaps down to about −1.0µm again a representation of the cavity field by the two
fundamental disk modes seems to be sufficient, while for bus waveguide positions further underneath the disk
the results change drastically, when the second order cavity mode is taken into account. Hence one should
not trust the CMT results for s = 0.5µm and relative positions g below about −1.5µm; just the fact that the
third mode alters the results so significantly seems to indicate that more disk modes would be required for
trustworthy CMT calculations. An intuitive argument why CMT would not be reliable in this range of core
positions is found in the observation that the lower order cavity modes are predominantly located at the rim of
the disk. The more the straight waveguide moves under the disk, the more basis modes are needed. Note that at
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certain z-positions for smaller values of g the structure resembles a coupler consisting of a straight waveguide
underneath an upper slab. Here one can no longer expect the representation of the complete field by the three
disk modes to be correct. However, these regimes with rather strong interaction are not interesting for resonator
applications anyway (cf. Section 3.2.2).

The thin curves in Figure 9 address the question, to what extent the bend modes can be considered indepen-
dently. This amounts to a simplified model, where one regards the multimode disk as a sequence of cavities that
interact with the same bus waveguides. Each cavity supports one of the modes b0, b1, or b2 and extracts a cer-
tain amount of power from the input channel. Then the throughput power |Ss s|2 for the composite multimode
device should be given by the product of the relative throughputs computed for the individual single-mode
cavities. The lines

∏

b0 b1 |Ss s|2 and
∏

b0 b1 b2 |Ss s|2 in Figure 9 show these model results, where the values for
|Ss s|2 from separate CMT-calculations with bimodal basis sets {s, bj}, for j = 1, 2 and j = 1, 2, 3, respectively,
have been multiplied.

For the larger vertical separation (a), one observes a rather good agreement with the full CMT computations,
corresponding to the only minor cross-coupling powers for the disk modes in Figure 8(c). By allowing to skip
the evaluation of the overlap integrals between the cavity fields, here the simplified model provides a much
faster way of calculating the coupler scattering matrix. According to Figure 8(f), the presence of the bus core
effects a much stronger interaction between the disk fields for the smaller separation s = 0.5µm. In this case
these coefficients can obviously not be neglected; the simplified viewpoint of independent cavity modes fails,
as reflected by the pronounced disagreement of the thin and bold lines in Figure 9(b). A similar discussion for
2-D configurations can be found in Ref. [14], where the inherent 3-D effects of strong interaction due to the
horizontally overlapping components could not be observed.

3.2.1.4 Comparison with BPM simulations

A comparison to entirely independent numerical simulations is meant as an additional validation of our CMT
implementation. We apply a semi-vectorial Beam Propagation Method (BPM) that is part of a commercial
software environment for integrated optics simulations [35]. Figure 10 shows a reassuring qualitative and also
some quantitative agreement between the two methods.
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Figure 10: Self-coupling power |Ss s|2 of the straight wave-
guide mode as computed by the present CMT approach
(modes s, b0, b1, b2, continuous line) and by a commer-
cial semivectorial BPM program [35] (dashed curve), for the
structure of Figure 6 with a vertical separation s = 1.0 µm
and varying horizontal core position g.

The BPM version applied here does have notable shortcomings in this comparison: It is not fully vectorial,
and does not contain any wide-angle corrections. This implies that in principle only the unidirectional light
propagation along and close to a single axis is treated correctly (which should be of less importance, if one
considers the throughput power is the bus waveguide only, since the disk takes the field away from the straight
core before any relevant wave vector angles exceed the ranges that are well approximated by the BPM). While
projections onto modes of straight waveguides are provided, it is not straightforward to extract the modal
amplitudes of the (multiple) cavity modes from the calculated fields. This prohibits a discussion of roles of
individual modes as in the paragraphs above, and the extension of the coupler simulations to predictions of
multimode resonator spectra. Therefore, the comparison in Figure 10 is restricted to the throughput power in
the straight waveguide.

3.2.1.5 Alternative basis modes

As discussed at the beginning of this section, for the computations of the cavity basis fields one may choose
whether or not to treat the silicon dioxide substrate as part of the constituting permittivity profile (options (b)
and (c) in Figure 6). So far all CMT results shown rely on basis modes as in Figure 7, that are defined for
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the disk structure including the substrate. Figure 11 compares the diagonal coefficients of the scattering matrix
(part (d) of Figure 8), computed according to both options.
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Figure 11: CMT computations with different sets of basis
modes, related to the two options for a structure division
that are sketched in Figure 6. The curves show the power
self-coupling coefficients of the four basis modes versus the
lateral position g of the straight core, for a vertical separation
s = 0.5 µm. Lines: the bend modes b0, b1, b2 of Figure 7
and Table 1, option (b) in Figure 6; marker symbols: the
three lowest order bend modes supported by the disk core
embedded in the cladding, for absent substrate, option (c) in
Figure 6.

Only very minor differences appear for the present coupler device, even in the configurations for s = 0.5µm
with strong interaction, where the changes are most pronounced for the second order cavity field b2 that spreads
furthest down into the substrate region. Most likely the agreement is due to the present rather low refractive in-
dex contrast between the substrate and cladding regions (the substrate hardly influences the profiles in Figure 7).
Still, in simulation of other structures we have observed that it can be essential to include a substrate and other
infinite, rotational invariant slabs into the structures that the cavity modes are calculated for. A typical example
could be a bus waveguide, that is prepared as a non-completely etched straight rib, where the remaining lateral
film supports guided slab modes. In that case the cavity fields can spread out quite far radially into the slab
below the cavity (leakage into the slab modes); these effects are likely to be overlooked if a priori the lower
film layers are neglected when computing the cavity modes.

The CMT naturally incorporates any small phase changes of basis fields due to differences between the consti-
tuting and the complete permittivity profiles into the diagonal coefficients of the CMT equations (5), (6). Note
that these phases, if non-negligible, need also to be taken into account when evaluating the corresponding res-
onator spectrum. Also then a definition of the constituting structure for the cavity mode computation as close
as possible to the full device is desirable.

3.2.1.6 Field examples

Given the numerical solution of Eqs. (5), (6) and the mode profile data, the CMT model provides full informa-
tion about the electromagnetic field in the coupler region. Figures 12, 13 illustrate the field in the structure for
a disk / bus position of s = 0.5µm and g = −1.0µm.

Light is launched into the straight waveguide. At the vertical level of the bus core (a), the plot shows the
depleting of the straight waveguide mode, while at a higher position inside the disk (b), one observes the
beginning of the beating of the three cavity modes. The central cross section in Figure 13 exhibits a field
distribution with similar field strengths in the disk and in the straight core. Note that for visualization purposes
here a configuration with strong interaction has been selected, that transfers almost the entire input power from
the straight waveguide to the disk.

In principle, the abstract CMT solutions (z-evolution of the coupler transfer matrices) and the known field
evolutions of the cavity modes, together with the consistent set of local amplitudes for the cavity loop, should
also allow to generate field data for entire microresonator devices. The procedure is completely analogous to
the 2-D case [14] (though not implemented so far), where here the 3-D, fully vectorial optical field would be
accessible.

3.2.2 Resonator spectra

By evaluating the expressions in Ref. [14] for the power transfer through the symmetric, composite device with
two couplers and the multimode cavity, the prediction of microresonator spectra associated with the structure of
Figure 6 is straightforward. Figure 14 summarizes results for different relative positions of bus waveguides and
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Figure 12: Coupled mode propagation through the coupling region as defined in Figure 6, for a vertical separation
s = 0.5 µm and horizontal position g = −1.0 µm. The plots show the absolute value |Hy| of the dominant magnetic
component for the TE-like polarized fields. The guided mode of the straight waveguide is launched at zi = −30 µm.
Horizontal field cross sections at y = −0.41 µm, close to the center of the straight core (a), and at y = 0.55 µm, near the
center of the disk (b).
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Figure 13: Vertical field cross section through the
center z = 0 of the coupler structure as defined in
Figure 6, for a configuration as shown in Figure 12.
The gray scales correspond to the dominant magnetic
component |Hy| of the TE-like polarized field; the
levels are comparable with Figure 12.

cavity, where the simplified procedure as outlined at the end of Section 2 is applied, for the target wavelength
λ = 1.55µm.

For the large bus-cavity separation (a) with moderate coupling strength one observes an array of three well
separated, narrow peaks in the dropped power or dips in the transmitted power, respectively. The array repeats
periodically when looking at larger or smaller wavelengths. Each of these three dips corresponds to one of the
three disk modes: By inspecting the relative amplitudes of the individual modes in the cavity segments at the
resonance wavelength, we can identify the mode that is relevant for the resonance. Counting from left to right,
the first, broadest and least pronounced dip corresponds to the second order, most lossy disk mode b2. The
second peak, in which the dropped power almost reaches 100%, can be ascribed to the fundamental mode b0,
while the last resonance is due to the first order field b1.

As expected, for smaller separations (b, c) with stronger interaction between the bus waveguides and the cavity,
the quality of the resonances decreases due to the losses to the straight waveguides. The peaks are shifted
moderately, they broaden, become more pronounced, and start to overlap. Qualitatively similar changes with
respect to (a) can be achieved either by shifting the bus cores towards the center of the cavity (b), or by reducing
the vertical distance between bus cores and cavity (c).

Part (d) refers to a configuration with extreme interaction between the waves in the bus waveguides and the
three cavity modes. According to Figures 8(d, e) and 12, in an isolated coupler with separations s = 0.5µm
and g = −1µm almost the entire input power is extracted from the bus waveguide and distributed among the
cavity fields. If the coupler is embedded in the resonator, for most wavelengths the reverse happens at the
second coupler, and a large fraction of the input power is directly transferred to the drop port, in a non-resonant
manner. The bus cores, however, effect also a strong interaction between the cavity modes; the resulting field
pattern with the wavelength dependent relative phase relations of the disk modes then leads to the power transfer
function of (d) with the seemingly reversed roles of transmitted and dropped power. Clearly, here one can no
longer speak of individual resonances.
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Figure 14: Relative dropped and transmitted power PD, PT versus the vacuum wavelength of the input light, for microres-
onators that consist of two identical couplers according to Figure 6, with different vertical and horizontal separations s
and g between the cavity and the bus cores.

3.3 Hybrid ring and pedestal waveguide coupler

For the last example we choose a resonator structure with the coupler cross section sketched in Figure 15. As be-
fore, the straight bus waveguides are created from silicon nitride, where here the supporting silicon dioxide layer
is partially etched away isotropically, and replaced by the polymer cladding. Compared to the not-underetched
structure, the present waveguides are closer to a vertically symmetric configuration: the mode profiles extend
further upwards, and one can expect a higher coupling efficiency (this is a structure under fabrication at the mo-
ment). The geometry of the ring cavity was selected to explore the vectorial nature of the couplers, resembling
e.g. an extreme example of a fabrication error. Due to the tilted outer flank, the ring core supports bend modes
that are no longer nearly horizontally (TE) or vertically (TM) polarized, but are pronouncedly hybrid. Effects
of polarization conversion can be expected for this resonator; cf. Refs. [36, 37] for corresponding theoretical
and experimental results.
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Figure 15: A hybrid coupler configuration. The Si3N4 straight
waveguide (nf = 2.009) with dimensions hs = 0.27 µm and
ws = 2.5 µm is supported by an isotropically underetched SiO2

pedestal (ns = 1.45) with a depth u = 0.9 µm. The poly-
mer ring with index nr = 1.6275, bottom width wr = 2.0 µm,
height hr = 1.0 µm, and radius R = 100 µm has an outer side-
wall that is tilted at an angle α = 48◦. The vertical distance
between the bottoms of the two cores is s = 1.0 µm; g specifies
the position of the left flank of the straight waveguide relative
to the rim of the ring. A polymer cladding (nc = 1.412) cov-
ers the entire structure. Numerical parameters: ∆x = 50 nm,
∆y = 27 nm, ∆z = 2.0 µm; [xi, xo] = [−12, 4] µm, [yb, yt] =
[−3.7, 4.4] µm, [zi, zo] = [−35, 35] µm.

Due to the inherent field representation, the FMM mode solver [17] applied for the calculation of the CMT
basis modes is restricted to rectangular cross section geometries. Hence, for the present structure, the curved
pedestal and the slanted sidewall of the ring are discretized using rectangles with a height of 0.1µm. This
approximation affects also the evaluation of the integrals in Eq. (5).
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3.3.1 Coupler simulations

Five basis fields enter the CMT description of this structure. The straight waveguide (remaining substrate,
pedestal region, rectangular core, and homogeneous cladding) supports three guided modes, a fundamental
and first order quasi-TE- and a fundamental quasi-TM-polarized field. These modes will be denoted by the
symbols S-TE0, S-TE1, and S-TM. The cavity ring (the ring core including the substrate, without pedestal)
supports two bend modes with low attenuation, both of which are hybrid, i.e. both profiles exhibit non-negligible
vertical and horizontal electric and magnetic field components. Symbols R0 and R1 identify these modes, where
the polarization of the R0 field leans more towards TE, the mode R1 is closer to TM polarization. Table 2
summarizes the effective mode indices of these fields; Figure 16 illustrates the corresponding mode profiles.

neff

S-TE0 1.625326
S-TE1 1.553733
S-TM 1.511020
R0 1.490975 − i 2.7 · 10−7

R1 1.483477 − i 1.2 · 10−7

Table 2: Effective refractive indices neff of the modes related to Figure 15,
for a vacuum wavelength λ = 1.55 µm; S-TE0, S-TE1, S-TM0: straight bus
waveguide, R0, R1: bend modes of the ring cavity. The values for the ring
modes correspond to a definition of the bend radius R as the outer rim of the
ring, i.e. the modal fields R0 and R1 evolve with the angular coordinate θ in
the cylindrical coordinate system of the ring as ∼ exp(−ikneffRθ).
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Figure 16: Vectorial mode profiles as applied for the coupled mode description of the structure of Figure 15, from left
to right the three modes S-TE0, S-TE1, and S-TM of the straight waveguide, and the two hybrid ring modes R0 and
R1. The gray scales correspond to the absolute values of the major horizontal (|Hx|, or |Hr|, respectively, top) and the
vertical magnetic field component (|Hy|, bottom), where the levels in each column are comparable. Cf. the remark in the
caption of Figure 7 on the role of the radial polar coordinate r. Uniform parameter settings for the FMM mode analysis
computations: Ms = 200, [yM

b , yM
t ] = [−5, 3] µm.

The effective indices (real parts) of both ring modes are lower than the effective indices of the straight wave-
guide modes; especially the values of the two TE modes S-TE0 and S-TE1 are relatively far away from the
levels of the ring modes R0 and R1. Besides the phase matching, according to Eq. (5) a strong interaction
between two basis modes requires a large mode overlap, i.e. similarly polarized fields. One therefore expects
that the modes S-TM and R1 will exhibit the strongest interaction. However, due to the arbitrariness in the
definition of the bend radius, and consequently in the effective mode indices for R0 and R1, the phase matching
arguments should be used with some caution. For a gap of −2.25µm (in the center plane z = 0 of the coupler
region the base of the ring is exactly centered above the straight waveguide), coupled mode calculations predict
a coupler scattering matrix with absolute values as given in Table 3.

↙ S-TE0 S-TE1 S-TM R0 R1

S-TE0 100.0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

S-TE1 ≈ 0 97.8 ≈ 0 1.9 0.1
S-TM ≈ 0 ≈ 0 26.2 6.3 67.0
R0 ≈ 0 2.1 6.7 86.2 5.5
R1 ≈ 0 0.1 67.5 5.2 27.3

Table 3: Power scattering matrix of the coupler structure
of Figure 15, for g = −2.25 µm. The entry |So i|2 in row
o and column i represents the relative power (in %) trans-
ferred from input mode i to output mode o. Entries “≈ 0”
are below the limit of accuracy that can be expected from the
calculations.
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To some extend the results confirm our a priori expectation. The fundamental mode S-TE0 of the straight
waveguide propagates almost autonomously; also the first order TE mode S-TE1 interacts only weakly with the
two ring modes. The largest off-diagonal coefficient reflects the strong coupling between the TM mode S-TM
of the straight waveguide and the similarly polarized ring mode R1. One interesting and perhaps unexpected
feature is the rather strong coupling between the two ring modes due to the presence of the straight core; about
5% of the power in R0 is transfered to R1, and vice versa.

Note that, despite the manifold approximations inherent in these simulations, the CMT results respect power
conservation remarkably well (which holds only up to the losses due to the attenuation of the bend modes).
The sums of the rows and columns of Table 3 deviate from unity by not more than 0.5%. The same applies
to reciprocity; corresponding off-diagonal entries differ by not more than this value. While this can be seen as
some validation for the results, one can also regard this as an indication in how far the numerical values can be
trusted.

Figure 17 provides an impression of the field evolution along the propagation axis, in case the coupler structure
is excited by the mode S-TM of the bus waveguide. The power distribution shown here corresponds to the
column S-TM in Table 3. During propagation, the power concentrated initially only in the TM field of the
straight waveguide is transfered partly to the cavity core, but remains not restricted to TM (Hx) polarization. In
the exit plane of the coupler region, both hybrid modes of the ring cavity carry some power, i.e. both magnetic
field components are present.

x [µm]

y 
[µ

m
]

z=0µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=35µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=0µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=35µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=−14µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=28µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=−14µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=28µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=−28µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=14µm, |H
x
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=−28µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

x [µm]

y 
[µ

m
]

z=14µm, |H
y
|

−8 −6 −4 −2 0

−2

−1

0

1

2

Figure 17: Transverse magnetic fields (|Hx|, upper insets in each row, and |Hy|, below) on a series of vertical cross
section planes at different z-positions for a coupler configuration according to Figure 15 with g = −2.25 µm. Light is
launched at zi = −35 µm into the mode S-TM of the straight waveguide. The gray scales of all subplots are comparable.

Outside the coupler regions, the modes R0 and R1 propagate independently along the curved core, each with its
own propagation constant. They establish an interference pattern with a half beat length given by the inverse
difference of the effective indices (here λ/(neff,R0 −neff,R1)/2 = 103µm; the cavity length is 2πR = 628µm),
that can be viewed as periodic polarization conversion. It depends on the precise excitation conditions (relative
amplitude and phase; for the full ring including the contributions from the incoming fields in both the bus and
the cavity cores) whether the process reaches states with — up to the mismatch of the respective (complex)
mode profile components — almost TM or TE polarization, where locally the vertical or radial magnetic field
components cancel.
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3.3.2 Ringresonator spectra

The two bus waveguides of a microresonator consisting of coupler regions according to Figure 15 each support
three guided modes. Hence, for the through and drop output channels, three modes (“ports”) must be consid-
ered. According to Table 3, the S-TE0 field does not play a role in the interaction; any input power in this mode
will propagate straight on to the through port. We therefore restrict the further discussion to the throughput
powers P TE1

T , P TM
T , and the dropped powers P TE1

D , P TM
D in modes S-TE1 and S-TM. Figure 18(a, b) shows the

CMT results for the spectrum of the ring-resonator with g = −2.25µm, i.e. the same configuration as discussed
in Section 3.3.1. An external excitation by the mode S-TM of the straight waveguide is considered.
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Figure 18: Spectrum of a symmetric res-
onator consisting of two couplers as speci-
fied in Figure 15, for an excitation by mode
S-TM in one of the bus waveguides. (a, b):
Relative power transfered to the through (PT)
and drop ports (PD) for the two relevant po-
larized modes (indices TE1 and TM for S-
TE1 and S-TM) supported by the bus wave-
guides. (c): Squared amplitudes of the two
ring modes (subscripts R0 and R1) at the in-
put (index i) and throughput side (index t) of
the cavity. Note that this concerns amplitude
levels of power-normalized modes, that estab-
lish upon excitation of the structure by a field
with unit input power. The curves are thus di-
rectly comparable to the unit input amplitude.

Due to the multitude of modes present in this structure, the through and drop spectra contain some quite un-
expected phenomena. For an interpretation of these, it will prove to be helpful to take a look at the local
amplitudes of the two bend modes. For Figure 18(c), the local amplitudes Ai

R0, Ai
R1 at the input side, and At

R0,
At

R1 at the throughput side of the cavity ring have been evaluated as a function of the vacuum wavelength.

The most outstanding feature are the pronounced, relative sharp peaks in the amplitudes of the (more TE-like)
mode R0, and the approximate equality of their absolute values on the input- and throughput side. As per
Table 3, one would expect a drop of 13.8% in the squared amplitude as the R0 field passes the top coupler
(where no external input is present). Apparently, some amount of power is transferred to R0 from the ring
mode R1, with a phase that happens to be correct. In a resonance of Lorentzian form, which the shape of the
R0 peak is very close to, the phase of the oscillator changes rapidly close to the amplitude maximum. This
explains the sharp variation of the otherwise rather broad R1 curves near the R0 resonance: the amplitude of R1

at the output sides of the couplers consists of contributions from both R1 and R0, and around the resonance the
relative phase of the mode R0, and consequently also their interference, changes quickly with the wavelength.
Perhaps one can alternatively view the features around the R0 peaks as as a resonance of the full cavity ring,
where both R0 and R1 participate.

Much simpler to explain, the mode R1 at its resonance (where the R0 amplitudes are insignificant) loses the
expected amount of power; the squared amplitude Ai

R1 at the input side is about 72.8% lower than the amplitude
square At

R1 on the throughput side. Due to the large amount of power that is lost at each coupler, the R1

resonance is of low quality, i.e. of a very broad shape.

Now looking again at the output spectrum (b), one finds that almost the same amounts P TE1
T and P TE1

D of power
are dropped and directly transmitted into TE polarized guided waves. This can be explained by inspecting
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Figure 18(c) and Table 3: only the ring mode R0 couples significantly to S-TE1, hence the shape of the R0-peak
in (c) corresponds directly to the peaks in P TE1

T and P TE1
D in (b).

According to Table 3, the straight waveguide mode S-TM interacts with both ring modes, though much more
significantly with R1. However, at resonance the power in R0 is relatively large, and it can influence the S-
TM output significantly in these wavelength ranges. This is indeed what we see; the main shape of both the
through and the drop curves P TM

T and P TM
D is the broad response due to the ring mode R1, modulated near the

R0 resonance. The drop response P TM
D mainly follows the At

R1 curve from Figure 18(c), though it falls much
deeper on the righthand side of the R0 resonance; the values very nearly reach zero. This must be caused by
the interaction with the R0 ring mode, either as a coincidental feature, or due to some mechanism that we are
not aware of (in principle, all is hidden in the 16 complex coefficients of the coupler scattering matrix, and the
two complex propagation constants of the cavity modes). Concerning the through response P TM

T , one expects
the zero level at the R1 resonance, since only R1 is present with non-negligible amplitude in this wavelength
range. The near-to zero level in P TM

T just to the left of the R0 resonance also seems coincidental, caused as it is
by a complex interplay of three modes, but might also be explainable.

4 Conclusions

An important task in the design of circular microresonators is the calculation of the scattering matrices of the
couplers that connect the cavity internally and externally. We have presented a fully-vectorial 3-D frequency
domain coupled mode theory formulation that provides these matrices in a fast and accurate way. Presuming
the waveguide modes are precalculated, the speed of our (non-optimized) fully vectorial CMT implementation
is comparable to a commercial semivectorial beam-propagation package. But in contrast to the BPM, the CMT
formulation yields directly explicit values for all coefficients in the scattering matrices of the couplers, that
allow to interpret the role of the individual bend and straight modes in the interaction between the cavity and
the bus waveguides, as a basis for the subsequent resonator design. While the present implementation covers
quite general structures composed of codirectional straight and circularly bent waveguides or curved interfaces,
in principle also field solutions related to other, rather arbitrary permittivity profiles could serve as basis fields,
as long as the field in the composite structure is adequately represented by the basis elements.

Within the underlying assumptions on the microresonator model (e.g. the neglect of reflections), accurate results
can be expected for configurations where the CMT basis sets constitute adequate representations of the optical
field in the coupler structure. The present examples and analogous 2-D calculations [14] show that the approach
can master a (surprisingly) large range of problems, what concerns radiative basis fields and levels of refractive
index contrast. Simulations of a multimode resonator with a disk-shaped cavity showed that a few whispering
gallery modes are sufficient for a proper estimation of the resonator spectrum, as long as the bus waveguides
are positioned outside or close to the rim of the disk. Here the approach allows to easily investigate a wide
range of geometrical design parameters, for 3-D resonator structures with horizontal or vertical coupling.

For cases with low interaction strength we found that the interaction between the individual cavity modes
due to the presence of the bus waveguides remains rather weak; one may view the multimode coupler as
a concatenation of coupler segments, where in each coupler only one bend mode extracts power from the
ongoing straight waveguide mode. By neglecting the cross-coupling coefficients between the cavity modes,
i.e. by executing separate calculations with one bend field at a time, this observation allows to speed up the
calculations considerably. Simulations of a structure that supports strongly hybrid ring modes (i.e. modes that
are not nearly horizontally or vertically polarized) show that polarization effects may be important for the
spectral response of the resonator. Still, the analytic information that is directly available in the coupled mode
model is a key to an interpretation of the interesting and quite unexpected features in the spectrum.
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