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Abstract: Chains of coupled square dielectric cavities are invethim a 2-D setting, by means
of a quasi-analytical eigenmode expansion method. Restraansfer of optical power can be
achieved along quite arbitrary, moderately long rectaagpéths (up to 9 coupled cavities are
considered), even with individual standing-wave resorsatd limited quality. We introduce
an ab-initio coupled mode model, based on a simple sup¢igosif slab mode profiles as a
template for the field of individual cavities. Although netomechanisms are built in, the model
can still help to interprete the results of the former nuceréxperiments.
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1 Introduction

Coupled-resonator optical waveguides (CROWS) have besmusied already for some years as a means to
realize waveguiding along paths with small-size bendspoirtterest in their time-delay properties. A variety
of concepts exist; among these are series of microring sk 4disonators [1,1 2] 3], sequences of defects in
photonic crystals or photonic crystal slabsl[4,15, 6], andpbded dielectric sphereBI[[7, 8]. Some configurations
can also be viewed as specific extended cases of photonicutese 9/ 10} 11].

As an alternative to the previous geometries, in this papetake a look at chains of tiny dielectric cavities
of sguare shape, that each support a single specific standing wavaarse|[12[ 13, 14] in the wavelength
region of interest. Emphasis will be on the paths of the gasdétjuences, with the aim of resonant transfer of
optical power. Figurgll introduces the configuration. le kmith the fourfold symmetry of their resonant field
pattern, the individual cavities are arranged sequeytiadla discrete rectangular mesh, with conventional bus
waveguides for guided-wave excitation and out-couplingra end, or at both ends, of the chains.

v %R Figure 1: Resonator chain: a series of square high-indeitiesiv
B of side lengthu, positioned on a rectangular equidistant grid (gray
JA\D |:| t“’ patches, homogeneous background) with spagind\ bus wave-
A ;gdf G I:F'g ' guide of widtht at a distance, is evanescently coupled to one
end of the chainng andnp, are the refractive indices of the cavity
ng o |:| |:| |:| ,  interior and waveguide core, and of the low index backgroufd
andT indicate the relative reflected and transmitted modal power
@ T The 2-D configurations are described in Cartesian cooreléaat .

A rigorous semianalytical Helmholtz solver on the basisoofl expansions into slab modes along two perpen-
dicular axes (quadridirectional eigenmode propagatiddiER [15[16]) enables convenient numerical experi-
ments on the rectangular, piecewise constant configugatiafter the introductory example of Sectibh 2, we
consider variations of the length and shape of the chaineati@[3. The properties of a chain that connects
two parallel bus waveguides are the subject of Seéfion 4.

As some step towards an interpretation of the spectral fesitobserved in the former examples, Seckibn 5
introduces an intuitive coupled mode theory (CMT) modelifierresonator chains. The overall field is assumed
to consist of bidirectional versions of the guided mode eflibs core, with variable local amplitudes, together
with the identical, properly positioned resonant field @ats of the individual cavities, each multiplied by a

single scalar coefficient. These latter fields can be appratdd quite well by a superposition of suitable slab
mode profiles, oriented along the two coordinate axes [1d¢nTone proceeds along the hybrid CMT approach
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(HCMT) of Ref. [11]: By variational meang 18, 119,120] one mxts a linear system of equations for the
coefficients of the resonator fields, and for the amplitudections of the bus modes, discretized in terms of
finite elements, as unknowns. Sectidn 5 compares the motteligorous numerical calculations.

2 Aninitial example

We choose a rather arbitrary, but nontrivial double-bemdragement of a chain with nine coupled individual
cavities as an introductory example. The set of parameddegpted from Ref[[14] and given in the caption of
Figurel2, has been identified as appropriate for a settingavily one square cavity. At the design wavelength,
one cavity with these properties exhibits a resonance dfifspéype (cf. FigurdB(1), Section 3.1, and Ref.
[L4]), while no further resonand®are supported in the wavelength range of interest (the igpegindow in
the figures below) by the single cavity.

All following numerical experiments rely on quasi-anatgi simulations by means of the QUEP algorithm as
described in Ref[115]. The computational setting comgrideectangular computational window with fully
transparent boundaries (exception: the corner regions@sd are placed, for each of the structures3 pyn
away from the outermost dielectric interfaces, i.e. owsite regions that are shown in the field plots. Per slice
and layer, the optical electromagnetic field is expandeadboutl 0 modes per:m width of the computational
window, uniformly for all configurations in this paper. (Qaional) checks with respect to these simulation
parameters indicate convergence of the results on theaitile figures as given. Only 2-D configurations and
TE polarized light are considered, the single nonvanisleiegtric component of the optical field is oriented
perpendicular to the-z-plane (cf. Figuré&ll). Figuldd 2 summarizes results for thm®Bd chain.

We look at a spectral range around the design wavelengtlbdf.m. The chain splits the single resonance of
one individual cavity into a series of more or less well digtiished resonances, which show up as dips in the
relative transmitted guided pow&rand simultaneous peaks in the relative reflected guided pBw&hese two
guantities do not add up to one, hence a substantial amooptio&l power is lost to nonguided waves (lossless
dielectric materials are considered), that leave the cdatipnal window through the transparent boundaries.

One observes that for a major part the optical fields in eatheo€hains cavities are very similar to the shape
of the resonance supported by a single dielectric squareth@efore evaluated “local amplitudes” for each
cavity, the quantitiesdy — Ag, as a function of the wavelength, where the index indicatespbsition of the
cavity in the chain, counting from the bus et} thus represents the intensity in the cavity that is conwuketcte
the bus waveguide. More specifically, is the average of the squared local optical field at the ejgtissclose

to the borders of the cavity core where the resonant fieldefdblated single cavity would be at maximum.
Even for the present configurations with rather pronounosdds, the relatively large intensitidg in the last
cavity for the pattern ¢, d, and e indicate that an efficieabnant power transfer along the entire path of the
chain is indeed feasible.

The field and intensity plots of Figufé 2 illustrate the shap¢he resonances. The field profiles represent
time-snapshots of the principgicomponent of the real, physical time harmonic electridfekvaluated at a
time within one period, when the maximum of the partly stagdivaves becomes visible (Alternatively: The
overall phase of the complex fields has been chosen suchhthapatial maximum of the real part is exhibited.
Note that even with that adjustment the overall sign of thdiles is still arbitrary). The intensity plots show
the absolute square of the complex electric field. Gray $eaet scaled to exhibit the local extrema of the
individual pattern i.e. the scales are not comparable bmtvwdifferent plots (cf. the curves dfy — Ag). These
remarks apply also to all further images in this paper.

Necessarily, the static plots of Figure 2 can give only a houngpression of the rather complex behaviour of
the optical electromagnetic field. It must be emphasizet thdike the traveling waves observed in circular
resonators, these are (almost) purely standing wave resesaThe time-domain view of the stationary, har-
monically varying fields of the present chains shows as themfgature an in-place#-blinking” of the field

! Due to mechanisms as outlined e.g. in Refl [Z1, 14], the ptestanding-wave resonances do not occur as regularly athe.g
almost periodic spectral features found for the traveliraye whispering gallery modes of not too small dielectngs or disks. Ref.
[L3] includes a plot of the spectral power transfer for a tws- configuration with the parameters of Figre 7 over thgelawindow
A € [1.3,1.7] um: the resonance in question is the only significant feafDedinition of a free spectral range seems not appropriate in
that case.
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Figure 2: A double-bend chain with nine square cavitiesafP@ters, as introduced in Figlilerly = 1.45, ng = 3.40,
t = 0.073um, w = 1.451 um, gw = gr = 0.4 um. Left column: reflected powdk and transmitted powér in the bus
waveguide (bottom), and local field intensitiés — As in the individual cavities, counting from the input end. @srand
right column: field snapshots (center) and optical intgnzibfiles (right) for the wavelengths (letters a — f) indedby
the gray vertical lines in the spectral plots.

in each cavity, where the horizontal, vertical, and diagoaal lines stay in place. Extremal field strengths
in different cavities appear at different moments withie thme period. Traveling waves, or partly traveling

waves, are observed in the bus waveguide, and outside titg aad bus cores. The latter contribute to the
radiation losses of the structure, if they cross the windofthe computational boundaries, but they could also
be a cause of a “large distance”, non-next-neighbor interabetween the cavities.

3 Chain properties

With length and shape we restrict to the two most obviousdpeaters” that specify the chain path. Cer-

tainly also the influence of other quantities can be of irger&ghese would be the variables that influence the
resonances of individual cavities (refractive index casitr width / aspect ratio; other shapes or distortions),
guantities that determine the interaction between thdieavidistance, positioning, not necessarily on a rect-
angular grid), and the parameters that specify the exaitatonditions (gap, bus waveguide parameters). If
limited to rectangular 2-D configurations, the correspogditudies could be carried out with the methods as
used in this paper. One would not necessarily have to restrimiform changes of the variables as introduced
in Figure[1: There are indicationsl [7,122] that more irregulaanges of e.g. sizes or distances of individual
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cavities could be promising just as well. However, given piheperties of an individual (optimized) square
and its resonance wavelength, we experienced that, beymus$ing plausible values for the gaps between the
cavities, for the gap between bus core and the input cavit/far the width of the bus Waveguﬁleo particular
further design strategy was necessary to realize the ceagmances discussed in this section.

3.1 Length of thechain

Figurel3 summarizes the spectral properties of straightstad lengths up to nine, and examples for resonant
field profiles for short chains. With growing length, the pattfound for the larger structures appear to evolve
from the single feature in the spectrum of the one-cavityafish and the related extremal field. There are no
specific differences between chains with even or odd nunﬂks«suar&
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Figure 3: Straight chains of lengths one (1) up to nine (9hwlie parameters of Figue 2. The plots show the guided
wave reflectionR and transmissiofi' versus the excitation wavelengih and, for chains of length (1), (2), and (3),
snapshots of the resonant field pattern at the wavelengiftabed by the gray vertical lines in the spectra.

One observes an increase in the number of spectral peakghgithumber of cavities. The interaction be-
tween the squares in the composite structures splits tiggesiasonance of the one-cavity chain into several
features close to the original wavelength. Examinatiorhefresonant fields reveals a common “supermode”
phenomenon (cf. e.g. Ref.124] for a discussion of CROW supeles), where the extremal profiles supported
by the composite, longer chains are made up from properlyeplaopies of the single-cavity field, superim-
posed systematically with specific relative amplitudesn@img the single cavity mode, with a phase / sign
as shown, by a symbd}-], the supermodes of the two-cavity chain could be classifsdd-a| (a) and[+—]

(b), respectively. Correspondingly, one would write thenbpls [+ + +] (a), [+0—] (b), and[+ — +] (c) for

the resonances of the three-cavity chain. Note that heréutidamental excitations, the ones that show up
at the largest wavelength or the lowest frequency (“engrgyg the ones with thieast symmetric vectors of
amplitudes, i.e. resonances (b) for the two-cavity anddc}He three cavity chain: Due to the antisymmetry
of the single-cavity profile, these composite fields show leedes”, vertical nodal lines in the gaps between

2 Here a phase matching argument involving the access moderandf the modes that contribute to the cavity resonance (cf.
Sectiord) can be helpfullL4].

% In case of a filter setting with two parallel chains between bus waveguides, symmetry properties (i.e. also the cleaigtth)
might well be significant[23].



cavities, than the other supermodes.

While this discussion should apply more or less analogoailsly for the longer chains, losses come into play,
such that the individual spectral peaks start to overlagh soat already for the four cavity chain one can hardly
identify all four expected resonances.

3.2 Chain shape

Due to the specific symmetry and strong confinement of the iirette individual cavities one might expect
that the particular shape of the chain does not matter asdsrigcan still be viewed as one sequence with
one loose end. Figul@ 4 compares spectra and resonanam jpéitbain configurations with length nine along
different paths with one, two, or three bends. The field @by the resonances at the wavelength of the peak
in the transmission pattern that is closest to the most pnoced resonance (c) of Figurke 2. Note that also the
straight chain (9) of Figuriél 3 could be grouped into thiseseri
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Figure 4: Spectral guided wave reflectihand transmissiofi’ for chains of length nine with different sequential
placement of the squares. Parameters are as introduceglirdB. The plots (a) to (d) of specific resonant fields indicat
the respective shape of the chains.

Obviously the shape of the chain pdidis some influence on the spectral response of the present catfims.
Effects like corner coupling and radiative or evanescemgldistance” interaction are apparently relevant, not
only the next neighbor interaction.

4 Two buswaveguides

The observation of quite high field levels at the loose endhefformer structures raises immediately the
guestion, whether the chain can be linked to two bus waveguigs a means to realize a resonant transfer of
optical power between them. Figurke 5 shows the spectral prargsmission of a straight configuration with
nine cavities, FigurEl6 illustrates the fields that esthldissome of the resonances.

The spectral curves of Figure 5 adhere to the scheme statsthfaling wave resonators [n]12]: Off resonance,
the input power merely travels down the input bus waveguigee to output port B. At resonance, a certain
part of this input excites the field in the cavity, which inriuttistributes this power equally among the four



Figure 5: Spectral power transmission of a straight nine-

cavity chain between two parallel bus waveguides, with pa-

rameters as given for Figullgs 1 (symmetric, straight agang

ment) and?. The quantitid, — Pp are the guided relative

Ter - 1o iss 1w 15 output powers received by ports A — D upon excitation in
A [um] port A, as introduced in the plots of Figiide 6.

X [um]

Figure 6: Shapes of resonant fields supported by the
straight nine-cavity chain coupled to two bus wave-
guides. Plots (a) — (e) correspond to the wavelengths
2 fum] indicated by the gray vertical lines in Figtide 5.

output ports, where in ports A and B superpositions with tieining / the directly transmitted waves are
present. Although the extremum of 25% transmission to atisge not reached, the present configurations are
not too far off this limit. A structure with only a single “carction” between the bus waveguides is hence only
partly useful as a wavelength filter device, since at mostaatguof the input arrives at the drop ports C or D.
Two coupled parallel connections |12, 13] could offer a way, corresponding (abstract) concepts have been
discussed in[25, 23].

With the introduction of the second bus waveguide the atrecis now fully symmetric with respect to the
center of the middle cavity. This symmetry shows up nicelyhi@ properties of the series of supermodes as
shown in Figurél6, where the systematic mentioned in SeBimpplies as well.

5 HCMT modd

Although somewhat obscured at some instances by quite pnord losses, the phenomena observed in the
former series of examples are more or less as expected fquarsgal arrangement of coupled oscillators. Still,
while “modes of individual cavities” and their “interactioplay a role in the previous discussion, merely the
numbers from the QUEP simulations can hardly justify the afsthese notions. Therefore, this section tries
to found the interpretation on an approximate coupled moddet which allows to quantify that viewpoint:
The applicability range of the model below is defined by howselthe ansatil(2) comes to physical reality. A
complete failure of the model would imply that the formeeimtretation is entirely inappropriate. Shortcomings
in certain aspects indicate that these aspects are notepeéigented in the templafd (2) or in its ingredients.
Note that, although the almost analytical HCMT model reggiia by far lower computational effort than the
QUEP reference calculations, it is here meant to complenmenitto replace the latter (cf. the remarks at the



end of Sectiofi 5]3 for comments on possible improvements).

To allow for some better chance of an also quantitative caoisga we choose a set of parameters similar to
Refs. [12] 18] with even higher refractive index contrasthsthat losses can be expected to have a less signifi-
cant influence. We shall see that the observations from thd HQUEP comparison lead to an interpretation
that applies also to the spectral features found in SeLlidxpplication of the formalism below directly to the
structure of Sectiofll 2 yields results that resemble quiatig the HCMT data in Figurgl9; the relation to the
reference of FigurEl2 would be even less obvious, however.

5.1 Field template

The description in terms of coupled mode theory (CMT) staith identifying a suitable, if necessary approx-
imate, expression for the resonant optical field supportedrbindividual square cavity. Figufé 7 shows that
field for the new parameter set. Note that only that singlemasce appears within the wavelength range of
interest.
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Figure 7: Spectral power transfer (left) and field profile
at resonance. = 1.5331 um (right) of a single dielec-
tric square coupled to one bus waveguide. Parameters (cf.
Figure[1): np = 1.0, ng = 3.2, w = 1.54um, gr =

0.39 um, gw = 03 um, t = 0.2 um,; design wavelength

Ao = 1.532 um.
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The reasoning of Refd. [P[,114] suggests that a superpogifisuitable slab mode profiles could be useful at
this point. One considers the symmetric multimode slabdbatsponds to either the vertical or horizontal re-
fractive index cross section of our square, and computéise alesign wavelength close to the former resonance,
its guided modes of third ordey, and fifth ordern;. Then indeed, according to Figdrk 8, the antisymmetric
2-D superposition

P(z,2) = no(x) m(z) —m(z)no(z) @

of these functions results in a profilethat appears to be very similar to the shape of the resonarf€igurelY.
1 can thus serve as the prototype for the mode of a single cavity

Figure 8: Left: Third and fifth order guided TE mode pro-
files of a symmetric three-layer dielectric slab with refrac
tive indicesnyp, ng, and thickness) at wavelengttho, prin-
cipal electric componerit,. Right: A specific totally an-
tisymmetric 2-D superposition of the two former profiles

0 1
z [um] Mo andm (Cf the text).
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We now consider again the S-bend chain configuration witle iwvities. For what follows it is helpful to
extendy to an approximationp for the full optical electromagnetic field of a single cayiby applying the
superposition formula also to the magnetic slab mode coemtsn Further, one copy; of this field is intro-
duced for each cavity = 0,..., 8, shifted to the respective cavity center position. Then ssume that the
optical electromagnetic field in the chain is well represdrity the template

8
(7 ) 2) = (o) @4t 2) + do) gt 2) + >y o) @

Hereg¢, and¢, are the — known — upwards and downwards traveling variantsefjuided bus modes, the
z-dependent mode profiles multiplied by the respective egptial dependence on their propagation coordinate
x. Due to the interaction with the chain the contribution afde modes to the overall field will change along
the vertical coordinate, thereforedependent amplitude functionsandd are introduced. Together with the
coefficientsr; of the fieldsy; associated with the individual squares, these are the wiiks\m Eq. ).
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5.2 Solution procedure

In order to apply the procedures of the hybrid analyticatietical CMT variant (HCMT) of Ref.[117], the
unknown functions: andd are discretized by 1-D linear finite elements. Discretefadehtsu,, d; replace the
functions, such that the templalg (2) assumes the abstraat f

(1 )21 = > aux(o:2). 3

Herex,, are either directly the functiong ;, or modal elements, i.e. products of the mode field (profitec
exponential propagation term) and the hat function of tlspeetive elementa;, € {v;,d;,r;} are the corre-
sponding unknown coefficients, with an abstract inélékat covers the bus mode propagation directions, the
element numbers, and the indices of the individual cavities

Basis for the following procedure is then the variationgresentation of the Helmholtz problem on a suitable
2-D domain that covers the interesting region around theettre, with transparent-influx-boundary conditions
that account for the outgoing half-infinite pieces of the imaseguides in the exterior [17]. By restricting the
corresponding functional to the discretized field tempf@end looking for vectors of coefficients at which

the restricted functional becomes stationary, a small tderete sized system of linear equations for dhe
can be obtained (only 1-D FEM discretizations are involv@dje numerical solution gives a set of coefficients
that allows to assemble an approximation to the full optiieddl. Besides the guided power transmission, the
local amplitudes of the directional modes in the bus wawgyuand the coefficients assigned to the fields of the
individual cavities can be directly inspected. Full detaif the approach are given in Reéf.[17].

So far the frequency has been treated as a fixed parameter. Spectral propegiesraputed as scans oveyr
while keeping the functions, n; and hence als®; fixed at the mode profiles that were determined for the
design wavelength. This implements the notion that thegnags of the chain are determined as interactions of
specific resonant modes supported by the individual cayiéiach with a fixed associated resonance frequency.

5.3 HCMT reaults

According to Figurd, the present parameter set leads sopemounced dips in the transmission, but at
the same time to sharper, better separated resonances,cofmgrared with Figurl2. Still the quantitative
agreement of the rigorous QUEP simulations with the appnai@ model is only quite moderate. At least
the HCMT predicts a series or resonances in the appropegier, and the resonant field profiles, as far as
identifiable, share common major features such as e.g. thereace of small field strengths at certain positions
in the chain.

The features in the HCMT spectrum are sharp and pronoundddawspectral width that is purely determined
by the interaction with the bus waveguide. The field pattenrsesponding to these well separated resonances
could thus be viewed as approximations to the supermodgmgep by the entire chain, the coupled resonant
modes of the individual cavities, superimposed with speeifavelength dependent relative amplitudes. The
HCMT results show a systematics in the supermode formsnitee distribution of relative amplitudes over
cavity positions;j throughout the series (a) - (i) of resonances, as obsen@ddtior31L.

The time domain view on the stationary, time-harmonic fietd®als that the rather irregular “blinking” pattern
mentioned in Sectiofl 2 is for the present case replaced byaltaneous change of field amplitudes in all
cavities, where extremal levels appear at more or less the saoment in all cavities, in line with the almost
real supermode amplitudes as predicted by the HCMT model.

A (slightly speculative) comparison of the HCMT and QUERuiessof the present high-contrast configuration
with the initial observations of Figufé 2 could lead to thBdwing interpretation of the former, more irregular
data: A sequence of nine supermodes are also supported Wgrther structure with lower contrast; they
suffer, however, from much stronger losses, such that twitributions to the spectral transmission partly
overlap. The feature (a) in Figure 2 would thus include dbations from two supermodes of shapes according
to resonances (a) and (b) in Figliie 9. Note that an interferefithe sequences (a) and (b) of coefficientm
Figure[® with suitable relative amplitudes can be consireéh the first half of the chain, and destructive in the
second half. Then, with some good will, the sequence (b)(d)and (e) of shapes in Figurk 2 corresponds to

8
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Figure 9: For an S-bend nine-cavity chain with parameteigian for Figurd’: Spectral guided wave reflection and
transmission, and resonant field pattern, as predicted éyig¢forous numerical simulations (QUEP, left) and by the
approximate CMT model (HCMT, right). The middle right inséibws the complex coefficients (circles / crosses: real
and imaginary parts) with which the the individual cavit{esdex;j; j = 0: the bus end of the chain) contribute to the
supermodes (a) — (i).



the profiles (c), (d), (e), and (f) of Figuré 9. Lossy resomasnwith shapes similar to (g), (h), and (i) of Figlte 9
might contribute to the shoulder (f) of Figurk 2.

The adequate incorporation of optical radiation lossegabably crucial for a quantitative improvement of
the CMT model. This would require to provide fields for theuattiossy eigenmodes (leaky modes, quasi-
normal modes) of the individual cavities. These would bedhmplex frequency eigensolutions of the open,
homogeneous Helmholtz problem. An example for coupledieumsal modes supported by defects in 1-D
multilayer stacks is given in Refs. [26,127]. 2- or 3-D configions require numerical approximations, where
solvers for the field shapes and complex eigenfrequenciepenf dielectric cavities are less frequently found.
Among the few examples are the FEM modules in the commereiekgne[[2B], and academic programs of
more numerical[19] (FEM) or analytical character![29, [30] (circular cavities). Probably also the near field
solutions at resonances (scattered field part) generatadyputational treatment of specific scattering prob-
lems [31.[32[24], for individual, suitably shaped cavit@sild be used for this purpose. A third alternative
would be to employ real-frequency eigensolutions for themppgeaky individual cavities with artificial gain
(“lasing eigenvalue problem("[33, 34]).

6 Concluding remarks

Sequential arrangements of square 2-D dielectric optidedatavities have been considered, with one or two
ends of the chains coupled evanescently to straight dielegaveguides that function as input/output ports.
Rigorous numerical simulations show that a resonant teartdfoptical power along chains of quite arbitrary
shape, including rectangular bends, is feasible, evenindividual cavities of moderate quality. By varying
the shape of the chain path, it was found that a next-neighbenaction is not sufficient to explain the changes
in the power transfer spectrum. Apparently an evanescemidiative long distance interaction plays a role for
the present, not too unrealistic set of design parametetrserMboking at chains of growing length we could
observe a systematic characteristic of supermode exxitate. collective oscillations of all cavities, and the
corresponding splitting of the resonance frequency aatatiwith a single dielectric square.

Our hybrid coupled mode model permits to explain at leastesamjor features of these — at a first glance
rather irregular — spectral properties. No free parametersntroduced. The model, however, disregards any
radiative losses (so far), and thus cannot be more than axapmtion of the resonator chain in a kind of
high-Q limit. Note that an extension of the chain, with jusecadditional unknown per cavity, does hardly
imply any additional computational burden for the HCMT miod&ith a more realistic template for the leaky
cavity modes, this could open a way for an adequate treatafeaally long chains.

This is admittedly a somewhat academic example, in so fanlgstioe simplest case of 2-D configurations are
considered. Still, just as for most concepts discussed daygfor photonic crystal slabs, it remains to be seen
whether these results are relevant for realistic, nedgsbigh-contrast slab-like 3-D devices.

So far we didn’t pay any attention to time-domain propertéthe light propagation along the chains. Corre-
sponding studies could concern the slow transfer of ligkggmialong the chain path135.136], or the time delay
properties(IB,_37] of a chain when attached to one branch intarferometer setting.
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