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Abstract: Chains of coupled square dielectric cavities are investigated in a 2-D setting, by means
of a quasi-analytical eigenmode expansion method. Resonant transfer of optical power can be
achieved along quite arbitrary, moderately long rectangular paths (up to 9 coupled cavities are
considered), even with individual standing-wave resonators of limited quality. We introduce
an ab-initio coupled mode model, based on a simple superposition of slab mode profiles as a
template for the field of individual cavities. Although no loss mechanisms are built in, the model
can still help to interprete the results of the former numerical experiments.
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1 Introduction

Coupled-resonator optical waveguides (CROWs) have been discussed already for some years as a means to
realize waveguiding along paths with small-size bends, or for interest in their time-delay properties. A variety
of concepts exist; among these are series of microring or -disk resonators [1, 2, 3], sequences of defects in
photonic crystals or photonic crystal slabs [4, 5, 6], and coupled dielectric spheres [7, 8]. Some configurations
can also be viewed as specific extended cases of photonic molecules [9, 10, 11].

As an alternative to the previous geometries, in this paper we take a look at chains of tiny dielectric cavities
of square shape, that each support a single specific standing wave resonance [12, 13, 14] in the wavelength
region of interest. Emphasis will be on the paths of the cavity sequences, with the aim of resonant transfer of
optical power. Figure 1 introduces the configuration. In line with the fourfold symmetry of their resonant field
pattern, the individual cavities are arranged sequentially on a discrete rectangular mesh, with conventional bus
waveguides for guided-wave excitation and out-coupling atone end, or at both ends, of the chains.
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Figure 1: Resonator chain: a series of square high-index cavities
of side lengthw, positioned on a rectangular equidistant grid (gray
patches, homogeneous background) with spacinggr. A bus wave-
guide of widtht at a distancegw is evanescently coupled to one
end of the chain.ng andnb are the refractive indices of the cavity
interior and waveguide core, and of the low index background. R
andT indicate the relative reflected and transmitted modal power.
The 2-D configurations are described in Cartesian coordinatesx, z.

A rigorous semianalytical Helmholtz solver on the basis of local expansions into slab modes along two perpen-
dicular axes (quadridirectional eigenmode propagation, QUEP [15, 16]) enables convenient numerical experi-
ments on the rectangular, piecewise constant configurations. After the introductory example of Section 2, we
consider variations of the length and shape of the chains in Section 3. The properties of a chain that connects
two parallel bus waveguides are the subject of Section 4.

As some step towards an interpretation of the spectral features observed in the former examples, Section 5
introduces an intuitive coupled mode theory (CMT) model forthe resonator chains. The overall field is assumed
to consist of bidirectional versions of the guided mode of the bus core, with variable local amplitudes, together
with the identical, properly positioned resonant field patterns of the individual cavities, each multiplied by a
single scalar coefficient. These latter fields can be approximated quite well by a superposition of suitable slab
mode profiles, oriented along the two coordinate axes [14]. Then one proceeds along the hybrid CMT approach
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(HCMT) of Ref. [17]: By variational means [18, 19, 20] one extracts a linear system of equations for the
coefficients of the resonator fields, and for the amplitude functions of the bus modes, discretized in terms of
finite elements, as unknowns. Section 5 compares the model with rigorous numerical calculations.

2 An initial example

We choose a rather arbitrary, but nontrivial double-bend arrangement of a chain with nine coupled individual
cavities as an introductory example. The set of parameters,adapted from Ref. [14] and given in the caption of
Figure 2, has been identified as appropriate for a setting with only one square cavity. At the design wavelength,
one cavity with these properties exhibits a resonance of specific type (cf. Figure 3(1), Section 5.1, and Ref.
[14]), while no further resonances1 are supported in the wavelength range of interest (the spectral window in
the figures below) by the single cavity.

All following numerical experiments rely on quasi-analytical simulations by means of the QUEP algorithm as
described in Ref. [15]. The computational setting comprises a rectangular computational window with fully
transparent boundaries (exception: the corner regions). These are placed, for each of the structures, by3µm
away from the outermost dielectric interfaces, i.e. outside the regions that are shown in the field plots. Per slice
and layer, the optical electromagnetic field is expanded into about10 modes perµm width of the computational
window, uniformly for all configurations in this paper. (Occasional) checks with respect to these simulation
parameters indicate convergence of the results on the scaleof the figures as given. Only 2-D configurations and
TE polarized light are considered, the single nonvanishingelectric component of the optical field is oriented
perpendicular to thex-z-plane (cf. Figure 1). Figure 2 summarizes results for the S-bend chain.

We look at a spectral range around the design wavelength of1.55µm. The chain splits the single resonance of
one individual cavity into a series of more or less well distinguished resonances, which show up as dips in the
relative transmitted guided powerT and simultaneous peaks in the relative reflected guided powerR. These two
quantities do not add up to one, hence a substantial amount ofoptical power is lost to nonguided waves (lossless
dielectric materials are considered), that leave the computational window through the transparent boundaries.

One observes that for a major part the optical fields in each ofthe chains cavities are very similar to the shape
of the resonance supported by a single dielectric square. Wetherefore evaluated “local amplitudes” for each
cavity, the quantitiesA0 – A8, as a function of the wavelength, where the index indicates the position of the
cavity in the chain, counting from the bus end.A0 thus represents the intensity in the cavity that is connected to
the bus waveguide. More specifically,Aj is the average of the squared local optical field at the eight spots close
to the borders of the cavity core where the resonant field of the isolated single cavity would be at maximum.
Even for the present configurations with rather pronounced losses, the relatively large intensitiesA8 in the last
cavity for the pattern c, d, and e indicate that an efficient resonant power transfer along the entire path of the
chain is indeed feasible.

The field and intensity plots of Figure 2 illustrate the shapeof the resonances. The field profiles represent
time-snapshots of the principaly-component of the real, physical time harmonic electric fields, evaluated at a
time within one period, when the maximum of the partly standing waves becomes visible (Alternatively: The
overall phase of the complex fields has been chosen such that the spatial maximum of the real part is exhibited.
Note that even with that adjustment the overall sign of the profiles is still arbitrary). The intensity plots show
the absolute square of the complex electric field. Gray levels are scaled to exhibit the local extrema of the
individual pattern i.e. the scales are not comparable between different plots (cf. the curves ofA0 –A8). These
remarks apply also to all further images in this paper.

Necessarily, the static plots of Figure 2 can give only a rough impression of the rather complex behaviour of
the optical electromagnetic field. It must be emphasized that, unlike the traveling waves observed in circular
resonators, these are (almost) purely standing wave resonances: The time-domain view of the stationary, har-
monically varying fields of the present chains shows as the major feature an in-place “±-blinking” of the field

1 Due to mechanisms as outlined e.g. in Ref. [21, 14], the present standing-wave resonances do not occur as regularly as e.g. the
almost periodic spectral features found for the traveling-wave whispering gallery modes of not too small dielectric rings or disks. Ref.
[13] includes a plot of the spectral power transfer for a two-bus configuration with the parameters of Figure 7 over the larger window
λ ∈ [1.3, 1.7] µm: the resonance in question is the only significant feature.Definition of a free spectral range seems not appropriate in
that case.
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Figure 2: A double-bend chain with nine square cavities. Parameters, as introduced in Figure 1:nb = 1.45, ng = 3.40,
t = 0.073µm,w = 1.451µm, gw = gr = 0.4µm. Left column: reflected powerR and transmitted powerT in the bus
waveguide (bottom), and local field intensitiesA0 –A8 in the individual cavities, counting from the input end. Center and
right column: field snapshots (center) and optical intensity profiles (right) for the wavelengths (letters a – f) indicated by
the gray vertical lines in the spectral plots.

in each cavity, where the horizontal, vertical, and diagonal nodal lines stay in place. Extremal field strengths
in different cavities appear at different moments within the time period. Traveling waves, or partly traveling
waves, are observed in the bus waveguide, and outside the cavity and bus cores. The latter contribute to the
radiation losses of the structure, if they cross the windowsof the computational boundaries, but they could also
be a cause of a “large distance”, non-next-neighbor interaction between the cavities.

3 Chain properties

With length and shape we restrict to the two most obvious “parameters” that specify the chain path. Cer-
tainly also the influence of other quantities can be of interest. These would be the variables that influence the
resonances of individual cavities (refractive index contrast, width / aspect ratio; other shapes or distortions),
quantities that determine the interaction between the cavities (distance, positioning, not necessarily on a rect-
angular grid), and the parameters that specify the excitation conditions (gap, bus waveguide parameters). If
limited to rectangular 2-D configurations, the corresponding studies could be carried out with the methods as
used in this paper. One would not necessarily have to restrict to uniform changes of the variables as introduced
in Figure 1: There are indications [7, 22] that more irregular changes of e.g. sizes or distances of individual
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cavities could be promising just as well. However, given theproperties of an individual (optimized) square
and its resonance wavelength, we experienced that, beyond choosing plausible values for the gaps between the
cavities, for the gap between bus core and the input cavity, and for the width of the bus waveguide2 no particular
further design strategy was necessary to realize the chain resonances discussed in this section.

3.1 Length of the chain

Figure 3 summarizes the spectral properties of straight chains of lengths up to nine, and examples for resonant
field profiles for short chains. With growing length, the pattern found for the larger structures appear to evolve
from the single feature in the spectrum of the one-cavity “chain”, and the related extremal field. There are no
specific differences between chains with even or odd numbersof squares3.

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

1.54 1.545 1.55 1.555 1.56
0

0.2

0.4

0.6

0.8

1

λ [µm]

R
, T

a

a

b

b c

a

a

b

b c

(1)

(2)

(3)

(4) (6)

(7)

(8)

(9)(5)

Figure 3: Straight chains of lengths one (1) up to nine (9) with the parameters of Figure 2. The plots show the guided
wave reflectionR and transmissionT versus the excitation wavelengthλ, and, for chains of length (1), (2), and (3),
snapshots of the resonant field pattern at the wavelengths indicated by the gray vertical lines in the spectra.

One observes an increase in the number of spectral peaks withthe number of cavities. The interaction be-
tween the squares in the composite structures splits the single resonance of the one-cavity chain into several
features close to the original wavelength. Examination of the resonant fields reveals a common “supermode”
phenomenon (cf. e.g. Ref. [24] for a discussion of CROW supermodes), where the extremal profiles supported
by the composite, longer chains are made up from properly placed copies of the single-cavity field, superim-
posed systematically with specific relative amplitudes. Denoting the single cavity mode, with a phase / sign
as shown, by a symbol[+], the supermodes of the two-cavity chain could be classified as [++] (a) and[+−]
(b), respectively. Correspondingly, one would write the symbols[+ + +] (a), [+0−] (b), and[+ − +] (c) for
the resonances of the three-cavity chain. Note that here thefundamental excitations, the ones that show up
at the largest wavelength or the lowest frequency (“energy”) are the ones with theleast symmetric vectors of
amplitudes, i.e. resonances (b) for the two-cavity and (c) for the three cavity chain: Due to the antisymmetry
of the single-cavity profile, these composite fields show less “nodes”, vertical nodal lines in the gaps between

2 Here a phase matching argument involving the access mode andone of the modes that contribute to the cavity resonance (cf.
Section 5) can be helpful [14].

3 In case of a filter setting with two parallel chains between two bus waveguides, symmetry properties (i.e. also the chain length)
might well be significant [23].

4



cavities, than the other supermodes.

While this discussion should apply more or less analogouslyalso for the longer chains, losses come into play,
such that the individual spectral peaks start to overlap, such that already for the four cavity chain one can hardly
identify all four expected resonances.

3.2 Chain shape

Due to the specific symmetry and strong confinement of the fieldin the individual cavities one might expect
that the particular shape of the chain does not matter as longas it can still be viewed as one sequence with
one loose end. Figure 4 compares spectra and resonance pattern of chain configurations with length nine along
different paths with one, two, or three bends. The field plotsshow the resonances at the wavelength of the peak
in the transmission pattern that is closest to the most pronounced resonance (c) of Figure 2. Note that also the
straight chain (9) of Figure 3 could be grouped into this series.
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Figure 4: Spectral guided wave reflectionR and transmissionT for chains of length nine with different sequential
placement of the squares. Parameters are as introduced in Figure 2. The plots (a) to (d) of specific resonant fields indicate
the respective shape of the chains.

Obviously the shape of the chain pathhas some influence on the spectral response of the present configurations.
Effects like corner coupling and radiative or evanescent “long distance” interaction are apparently relevant, not
only the next neighbor interaction.

4 Two bus waveguides

The observation of quite high field levels at the loose end of the former structures raises immediately the
question, whether the chain can be linked to two bus waveguides, as a means to realize a resonant transfer of
optical power between them. Figure 5 shows the spectral power transmission of a straight configuration with
nine cavities, Figure 6 illustrates the fields that establish at some of the resonances.

The spectral curves of Figure 5 adhere to the scheme stated for standing wave resonators in [12]: Off resonance,
the input power merely travels down the input bus waveguide,here to output port B. At resonance, a certain
part of this input excites the field in the cavity, which in turn distributes this power equally among the four
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Figure 6: Shapes of resonant fields supported by the
straight nine-cavity chain coupled to two bus wave-
guides. Plots (a) – (e) correspond to the wavelengths
indicated by the gray vertical lines in Figure 5.

output ports, where in ports A and B superpositions with the incoming / the directly transmitted waves are
present. Although the extremum of 25% transmission to all ports is not reached, the present configurations are
not too far off this limit. A structure with only a single “connection” between the bus waveguides is hence only
partly useful as a wavelength filter device, since at most a quarter of the input arrives at the drop ports C or D.
Two coupled parallel connections [12, 13] could offer a way out; corresponding (abstract) concepts have been
discussed in [25, 23].

With the introduction of the second bus waveguide the structure is now fully symmetric with respect to the
center of the middle cavity. This symmetry shows up nicely inthe properties of the series of supermodes as
shown in Figure 6, where the systematic mentioned in Section3.1 applies as well.

5 HCMT model

Although somewhat obscured at some instances by quite pronounced losses, the phenomena observed in the
former series of examples are more or less as expected for a sequential arrangement of coupled oscillators. Still,
while “modes of individual cavities” and their “interaction” play a role in the previous discussion, merely the
numbers from the QUEP simulations can hardly justify the useof these notions. Therefore, this section tries
to found the interpretation on an approximate coupled mode model, which allows to quantify that viewpoint:
The applicability range of the model below is defined by how close the ansatz (2) comes to physical reality. A
complete failure of the model would imply that the former interpretation is entirely inappropriate. Shortcomings
in certain aspects indicate that these aspects are not well represented in the template (2) or in its ingredients.
Note that, although the almost analytical HCMT model requires a by far lower computational effort than the
QUEP reference calculations, it is here meant to complement, not to replace the latter (cf. the remarks at the
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end of Section 5.3 for comments on possible improvements).

To allow for some better chance of an also quantitative comparison we choose a set of parameters similar to
Refs. [12, 13] with even higher refractive index contrast, such that losses can be expected to have a less signifi-
cant influence. We shall see that the observations from the HCMT/QUEP comparison lead to an interpretation
that applies also to the spectral features found in Section 2. Application of the formalism below directly to the
structure of Section 2 yields results that resemble qualitatively the HCMT data in Figure 9; the relation to the
reference of Figure 2 would be even less obvious, however.

5.1 Field template

The description in terms of coupled mode theory (CMT) startswith identifying a suitable, if necessary approx-
imate, expression for the resonant optical field supported by an individual square cavity. Figure 7 shows that
field for the new parameter set. Note that only that single resonance appears within the wavelength range of
interest.
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at resonanceλ = 1.5331µm (right) of a single dielec-
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Figure 1): nb = 1.0, ng = 3.2, w = 1.54µm, gr =
0.39µm, gw = 0.3µm, t = 0.2µm; design wavelength
λ0 = 1.532µm.

The reasoning of Refs. [21, 14] suggests that a superposition of suitable slab mode profiles could be useful at
this point. One considers the symmetric multimode slab thatcorresponds to either the vertical or horizontal re-
fractive index cross section of our square, and computes, atthe design wavelength close to the former resonance,
its guided modes of third orderη0 and fifth orderη1. Then indeed, according to Figure 8, the antisymmetric
2-D superposition

ψ(x, z) = η0(x) η1(z) − η1(x) η0(z) (1)

of these functions results in a profileψ that appears to be very similar to the shape of the resonance in Figure 7.
ψ can thus serve as the prototype for the mode of a single cavity.
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tisymmetric 2-D superpositionψ of the two former profiles
η0 andη1 (cf. the text).

We now consider again the S-bend chain configuration with nine cavities. For what follows it is helpful to
extendψ to an approximationψ for the full optical electromagnetic field of a single cavity, by applying the
superposition formula also to the magnetic slab mode components. Further, one copyψj of this field is intro-
duced for each cavityj = 0, . . . , 8, shifted to the respective cavity center position. Then we assume that the
optical electromagnetic field in the chain is well represented by the template

(

E

H

)

(x, z) = u(x)φu(x, z) + d(x)φd(x, z) +

8
∑

j=0

rj ψj(x, z). (2)

Hereφu andφd are the — known — upwards and downwards traveling variants ofthe guided bus modes, the
z-dependent mode profiles multiplied by the respective exponential dependence on their propagation coordinate
x. Due to the interaction with the chain the contribution of these modes to the overall field will change along
the vertical coordinate, thereforex-dependent amplitude functionsu andd are introduced. Together with the
coefficientsrj of the fieldsψj associated with the individual squares, these are the unknowns in Eq. (2).
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5.2 Solution procedure

In order to apply the procedures of the hybrid analytical/numerical CMT variant (HCMT) of Ref. [17], the
unknown functionsu andd are discretized by 1-D linear finite elements. Discrete coefficientsul, dl replace the
functions, such that the template (2) assumes the abstract form

(

E

H

)

(x, z) =
∑

k

ak χk(x, z). (3)

Hereχk are either directly the functionsψj, or modal elements, i.e. products of the mode field (profile times
exponential propagation term) and the hat function of the respective element.ak ∈ {ul, dl, rj} are the corre-
sponding unknown coefficients, with an abstract indexk that covers the bus mode propagation directions, the
element numbers, and the indices of the individual cavities.

Basis for the following procedure is then the variational representation of the Helmholtz problem on a suitable
2-D domain that covers the interesting region around the structure, with transparent-influx-boundary conditions
that account for the outgoing half-infinite pieces of the buswaveguides in the exterior [17]. By restricting the
corresponding functional to the discretized field template(3) and looking for vectors of coefficientsak at which
the restricted functional becomes stationary, a small to moderate sized system of linear equations for theak

can be obtained (only 1-D FEM discretizations are involved). The numerical solution gives a set of coefficients
that allows to assemble an approximation to the full opticalfield. Besides the guided power transmission, the
local amplitudes of the directional modes in the bus waveguide, and the coefficients assigned to the fields of the
individual cavities can be directly inspected. Full details of the approach are given in Ref. [17].

So far the frequencyω has been treated as a fixed parameter. Spectral properties are computed as scans overω,
while keeping the functionsη0, η1 and hence alsoψj fixed at the mode profiles that were determined for the
design wavelength. This implements the notion that the properties of the chain are determined as interactions of
specific resonant modes supported by the individual cavities, each with a fixed associated resonance frequency.

5.3 HCMT results

According to Figure 9, the present parameter set leads to less pronounced dips in the transmission, but at
the same time to sharper, better separated resonances, whencompared with Figure 2. Still the quantitative
agreement of the rigorous QUEP simulations with the approximate model is only quite moderate. At least
the HCMT predicts a series or resonances in the appropriate region, and the resonant field profiles, as far as
identifiable, share common major features such as e.g. the occurrence of small field strengths at certain positions
in the chain.

The features in the HCMT spectrum are sharp and pronounced, with a spectral width that is purely determined
by the interaction with the bus waveguide. The field patternscorresponding to these well separated resonances
could thus be viewed as approximations to the supermodes supported by the entire chain, the coupled resonant
modes of the individual cavities, superimposed with specific wavelength dependent relative amplitudes. The
HCMT results show a systematics in the supermode forms, i.e.in the distribution of relative amplitudesrj over
cavity positionsj throughout the series (a) - (i) of resonances, as observed inSection 3.1.

The time domain view on the stationary, time-harmonic fieldsreveals that the rather irregular “blinking” pattern
mentioned in Section 2 is for the present case replaced by a simultaneous change of field amplitudes in all
cavities, where extremal levels appear at more or less the same moment in all cavities, in line with the almost
real supermode amplitudes as predicted by the HCMT model.

A (slightly speculative) comparison of the HCMT and QUEP results of the present high-contrast configuration
with the initial observations of Figure 2 could lead to the following interpretation of the former, more irregular
data: A sequence of nine supermodes are also supported by theformer structure with lower contrast; they
suffer, however, from much stronger losses, such that theircontributions to the spectral transmission partly
overlap. The feature (a) in Figure 2 would thus include contributions from two supermodes of shapes according
to resonances (a) and (b) in Figure 9. Note that an interference of the sequences (a) and (b) of coefficientsrj in
Figure 9 with suitable relative amplitudes can be constructive in the first half of the chain, and destructive in the
second half. Then, with some good will, the sequence (b), (c), (d), and (e) of shapes in Figure 2 corresponds to
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supermodes (a) – (i).
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the profiles (c), (d), (e), and (f) of Figure 9. Lossy resonances with shapes similar to (g), (h), and (i) of Figure 9
might contribute to the shoulder (f) of Figure 2.

The adequate incorporation of optical radiation losses is probably crucial for a quantitative improvement of
the CMT model. This would require to provide fields for the actual lossy eigenmodes (leaky modes, quasi-
normal modes) of the individual cavities. These would be thecomplex frequency eigensolutions of the open,
homogeneous Helmholtz problem. An example for coupled quasi-normal modes supported by defects in 1-D
multilayer stacks is given in Refs. [26, 27]. 2- or 3-D configurations require numerical approximations, where
solvers for the field shapes and complex eigenfrequencies ofopen dielectric cavities are less frequently found.
Among the few examples are the FEM modules in the commercial package [28], and academic programs of
more numerical [19] (FEM) or analytical character [29, 30, 10] (circular cavities). Probably also the near field
solutions at resonances (scattered field part) generated bya computational treatment of specific scattering prob-
lems [31, 32, 24], for individual, suitably shaped cavitiescould be used for this purpose. A third alternative
would be to employ real-frequency eigensolutions for the open, leaky individual cavities with artificial gain
(“lasing eigenvalue problem” [33, 34]).

6 Concluding remarks

Sequential arrangements of square 2-D dielectric optical microcavities have been considered, with one or two
ends of the chains coupled evanescently to straight dielectric waveguides that function as input/output ports.
Rigorous numerical simulations show that a resonant transfer of optical power along chains of quite arbitrary
shape, including rectangular bends, is feasible, even withindividual cavities of moderate quality. By varying
the shape of the chain path, it was found that a next-neighborinteraction is not sufficient to explain the changes
in the power transfer spectrum. Apparently an evanescent orradiative long distance interaction plays a role for
the present, not too unrealistic set of design parameters. When looking at chains of growing length we could
observe a systematic characteristic of supermode excitation, i.e. collective oscillations of all cavities, and the
corresponding splitting of the resonance frequency associated with a single dielectric square.

Our hybrid coupled mode model permits to explain at least some major features of these — at a first glance
rather irregular — spectral properties. No free parametersare introduced. The model, however, disregards any
radiative losses (so far), and thus cannot be more than an approximation of the resonator chain in a kind of
high-Q limit. Note that an extension of the chain, with just one additional unknown per cavity, does hardly
imply any additional computational burden for the HCMT model. With a more realistic template for the leaky
cavity modes, this could open a way for an adequate treatmentof really long chains.

This is admittedly a somewhat academic example, in so far as only the simplest case of 2-D configurations are
considered. Still, just as for most concepts discussed nowadays for photonic crystal slabs, it remains to be seen
whether these results are relevant for realistic, necessarily high-contrast slab-like 3-D devices.

So far we didn’t pay any attention to time-domain propertiesof the light propagation along the chains. Corre-
sponding studies could concern the slow transfer of light pulses along the chain path [35, 36], or the time delay
properties [3, 37] of a chain when attached to one branch in aninterferometer setting.
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