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Abstract

Magneto-optic rib-waveguides can be utilized to construct the main component
of devices like nonreciprocal Mach-Zehnder interferometers or nonreciprocal direc-
tional couplers. In this paper we present detailed investigations of nonreciprocal
couplers formed by double layer rib-waveguides with alternating sign of the Faraday
rotation. The performance of the proposed devices is simulated by normal mode
theory and simple beam propagation calculations which include the incoming and
outgoing dividing parts of the directional couplers. It is shown that the device length
can be reduced by a factor of 6 as compared to former designs.

keywords - nonreciprocal coupler, integrated optics, circulator, isolator, magneto-
optic

1 Introduction

Integrated optical isolators and circulators are important components for the future de-
velopment of optical communication technique. The nonreciprocal behaviour of these
devices is based on the magneto-optic Faraday effect which occurs in magnetic garnet
crystals. Different concepts for integrated optical isolators have been published in re-
cent years [1, 2, 3,4, 5, 6, 7, 8, 9]. Most of them rely on the nonreciprocal phase shift
AL = Biorw — Prack, the difference between the propagation constants of forward and back-
ward traveling light [10]. This also offers the possibility to realize coupled waveguides with
different coupling lengths for forward and backward propagation as described in [11, 12].
Such coupled waveguides can be applied as isolators and circulators, respectively if the
number of couplings differs by one between the forward and backward direction. To achieve
a short device length it is necessary to design coupled waveguides with a large difference
in the nonreciprocal phase shifts of the symmetric and antisymmetric normal modes.

The aim of this paper is to present a new design for nonreciprocal couplers with a reduced
device length compared with formerly presented coupled waveguides. The device length,
including the separating parts of the directional couplers, is derived with normal mode
theory. We present typical fabrication tolerances and show how the isolators can be tuned
in a postfabrication process. In the last section a beam propagation method is used to
simulate the circulator.



In this paper all calculations are performed for TM polarized modes. Since magneto-optic
waveguides with a central compensation wall show a nonreciprocal phase shift for TE-
modes [13, 14] it also possible to construct a circulator for TE-modes. The simulations
referring to the TE polarization will be presented in a forthcoming paper.

2 Nonreciprocal Couplers

In this section we give a brief analysis of nonreciprocal waveguide couplers. The following
calculations are performed for the basic coupler geometry sketched in Fig. 1. If the mag-
netization of the garnet films is adjusted in the film plane transversely to the propagation
direction z the permittivity tensor is
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€ = 0 € 0 (1)
T

where € and £ depend on x and y. The nondiagonal element £ represents the magneto-optic
effect and is related to the specific Faraday rotation ©r by

where n = /€ is the refractive index and kg is the vacuum wave number.

In semi-vectorial approximation the following TM mode equation can be derived straight-
forwardly from

Maxwell’s equations [15]

(—€0ze 10, — 02+ 5° — eﬂ(@wé))ﬂy = ek H,. (3)
TE-modes are not dealt with in this paper. The term linear in 3 causes the nonreciprocal
phase shift. Since £ is small compared to € it can be considered as a perturbation. Then

perturbation theory yields

- / / (8, H,) H, (£ /€)dzdy "
//6*1|Hy|2dmdy

for the nonreciprocal phase shift [16].

We use a finite element method to solve for modes of the unperturbed waveguides [17].
With the calculated mode field we obtain the nonreciprocal phase shift via equation 4.

The coupling behaviour of coupled waveguides can be described either with coupled mode
or normal mode theory [18, 19]. Since we deal with tightly coupled waveguides we prefer
the normal mode theory. The two coupled waveguides are treated as one wide waveguide
that guides in general one even and one odd mode with the propagation constants 3¢ and
B3° (see figures 3. a) and b)). The coupling between the two waveguides can be described
by the interference of the two normal modes. An input signal at one waveguide excites
a superposition of the even and odd mode. After a distance Lcoypling @ phase difference
of m between the modes has accumulated so that the power is now guided in the other
waveguide. This coupling length is given by

m
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Figure 1: Basic geometry of the nonreciprocal coupled waveguides.

Equation 5 is no longer valid for z-dependent structures as sketched in figure 2. In this
case the phase difference between the modes must be integrated over the propagation
distance so that the power fractions at the output ports C and D (for propagation in
positive z-direction) of a symmetric coupler are [20, 21]

Pc = cos*(¢/2) and Pp = sin®(¢/2) (6)
with .
6=do+7 [ (8() = B°(2))dz. 7

The total power is normalized to unity and the input power at port A and B are Py =
cos?(¢/2) and Pg = sin?(¢o/2), respectively. For the propagation in negative z-direction,
(A, B) and (C, D) exchange their roles.
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Figure 2: Schematic diagram of coupled waveguides with transition sections. The in-
put/output ports are denoted with A to D.

Since the propagation constants Gg:

e and 3. of magneto-optic waveguides are different
for forward and backward propagation (the difference is the nonreciprocal phase shift),
the coupling lengths differ, too. The propagation constants are defined in the following

way:
1 1
ﬂgorw,back = /Be + EAIBe and ﬂf%rw,back = ﬂo + §Aﬂo (8)

with Af given by equation 4 and where 3° and (3° are the propagation constants of the
corresponding isotropic structure.



The device works as an isolator or circulator if the number of couplings in forward and
backward direction differs by one. Then the input light at port A leaves the coupler at
port C, while backward propagating light which enters the devices at port C leaves at port
B. Likewise, port B is connected with port D in forward direction and port D is connected
with port A in backward direction. For a coupler device without transition sections a
suitable device length can be estimated with [12] to be

L il m
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with the additional constraint that the the device length is a multiple of the coupling
length. For a short device it is therefore important to have an as large as possible difference
between the nonreciprocal phase shifts of the even and odd normal modes so that equation
9 can be utilized to optimize the waveguide parameters of the central coupling region.

9)

Nevertheless, for a complete device with transition sections (see fig. 2) the output power
must be calculated with equations 6 and 7 in order to derive the correct length of the
central coupling section Lcenirar if all other parameters are optimized before.

3 Numerical Results

For the realization of a short device we have to maximize the denominator of equation 9
|AB® — AB°|. Using equation 4 it can be written for normalized modes as follows

a8 = a8 = | [ [ [@Hg)H; — (0,H) 1) dady), (10)

since £/€? is equal for both modes. Obviously, the term becomes maximal if the mode
distributions of the even and the odd modes differ as much as possible. A further max-
imization is possible if £ is positive in the regions where the difference of the (0,H,)H,
terms is positive, and negative in the rest of the waveguiding film, or vice versa. In order
to find these regions, we plot (0,H;)H, — (0, H,)H, for typical coupled waveguides, (see
fig. 3. ¢)). As one can see, the waveguide is divided into 6 nearly rectangular regions with
an alternating sign of (0,H;)H; — (0. H,)H,. With this knowledge we choose a wave-
guide geometry, as sketched in figure 4, that minimizes the device length. The guiding
magneto-optic layer is divided into 6 parts with an alternating sign of £, i. e. an alternating
Faraday-rotation, which are bounded by magnetic compensation walls [22]. The borders
should fit to the zero lines of figure 3. ¢) for a minimal device length.

Now we can perform a further optimization of the free waveguide parameters w, h, d, q, t;
and t5. The optimal film thicknesses ¢; and ¢5 can be derived from simple calculations of the
nonreciprocal phase shift of double layer slab waveguides since we deal with weakly etched
waveguides. For typical parameters of magneto-optic waveguides (ng = 1.95, ny = 2.30,
n. =1, £ = £0.005, i. e. Op &~ £3000°/cm) ¢; = 0.23um and ¢, = 0.34pm are best.

In order to optimize the waveguide separation d and the width ¢ of the region with the
reversed Faraday-rotation we compute Lestimate With equation 9 for a fixed rib width and
height. The results are plotted in figure 5. Obviously, for each waveguide separation an
optimal compensation wall distance ¢ can be found that minimizes the coupler length
Lestimate- In that case the rectangular areas with different Faraday rotation fit best to the
regions with opposite sign of (9,H;)H; — (0, H,)Hy, see figures 3. ¢) and 4. But more
significant is the fact that the device length decreases steadily with a reduced waveguide
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Figure 3: Calculated mode fields H,, for the even TM; (a)) and the odd TM; (b)) modes
of coupled waveguides. In (c)) the difference (0, Hj)H; — (0, Hy)H, of these two modes is
shown. The modes are normalized, and + and — denote the respective sign. Parameters
are: ng = 1.95, ng = 2.30, nc = 1, w = 1.5um, d = 1pym, ¢t = 0.57um, h = 0.05um and
A= 1.3um.
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Figure 4: Schematic picture of the optimal waveguide structure for a nonreciprocal coupler.
The magneto-optic regions are divided by compensation walls. In this case 4+ and — denote
the sign of the Faraday-rotation.

separation. The minimum value is found for d = 0. Then the coupled waveguides are
degenerated to one broad rib. The reason for this behaviour is self-evident. In the gap
region we observe a stricture of the even TM-mode, (see fig. 3. a)), which disappears if we
take only one wide rib. Then the difference in the mode profiles of the even and the odd



TM-modes becomes maximal, and this leads to a minimal length Legiimate-

d=1.0 umi
1800
I d=0.8 ym |
E 1500 d=0.6um -
" i ]
©
.g d=0.4 um
Z i
-" 1200}
. d=0.2 ym
900} d=0.0 um
1.0 1.5 2.0 25 3.0

q [um]

Figure 5: Computed minimal length Legimate Of the nonreciprocal coupler for a rib width
of w = 1.5um and an etch depth of A = 0.05um. The other waveguide parameters are
given in the text.

So far we have not regarded the influence of the rib geometry. Therefore, we compute the
coupler length Legiimate for different rib widths versus the compensation wall separation q.
The rib height A is 0.05um, and the waveguide distance is now zero. As can be seen in
figure 6, the minimal coupler length decreases with the rib width. The same effect occurs
for the rib height which is not shown here. The reason for this effect is that the odd TM-
mode of the waveguide approaches cut-off with a decreasing rib height or width. As the
expansion of the odd mode increases strongly in the region near to cut-off, the differences
in the mode field distributions grow. This leads to a reduced coupler length. The problem
with this situation is that it is always critical to operate a device in the region of the mode
cut-off. It seems to be a good compromise to use the following waveguide geometry in
the central part of the directional coupler for further simulation: w = 1.5um, that means
a total rib width of 3.0um, h = 0.05pum and ¢ = 2.0um. The computation with these
parameters leads to AB® = 17.9cm™!, AB° = —19.2cm™, and Legimate = 846um. Note
the different signs of the nonreciprocal phase shifts of the even and odd modes due to the
alternating sign of the Faraday rotation in the central part of the waveguide.

For a simpler realization of the devices it may be also attractive to consider a geome-
try where the central or the outer magneto-optic double layer is replaced by a dielectric
material of equal refractive index. In these cases the coupler length is doubled.

Now we can start to model the entire device, including the splitting regions on both sides
of the main coupling part. These transition sections are essential for the connection of the
circulator with other integrated optical devices. The spacing of the waveguides at the input
and output, respectively, must be large enough so that a mutual influence of the waveguides
is negligible. Furthermore, the sections should be so long that a smooth transfer of the
power to the central waveguide coupler is warranted. For further simulations we assume
a maximal waveguide separation of b = 8um and a splitter length of Ly, = 400pum. See
figure 2 for the definitions of b and Lgpys.

In order to find the optimal length of the main coupling section Lceytra, We derive the
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Figure 6: Computed length Legiimate Of the nonreciprocal coupler for different rib widths.
The etch depth is h = 0.05um and d = Opm. The other waveguide parameters are given
in the text.

output power at port C and D for the forward direction (Py_c, Passp, Pssc, Pssp)
using equations 6 to 8 with the given parameters. The power input is assumed to be at
ports A and B, respectively. For the backward direction we calculate the output power
at ports A and B (Pca, PosB, Posa, Poog). In this case we define ports C and D as
input channels.

If the devices should work as circulators Ph_,c must be unity and Pc_,o must be zero
for the straight connection (A<>C). For the diagonal connection (C«+>B) Pc_,p should be
unity and Pg_,c should be zero for the optimal length Lceya. Due to the symmetry of
the couplers the requirements for the remaining connections (B<»D) and (D<»B) then are
automatically fulfilled. For a better presentation we plot only Ps_,c and Po_g versus
the length L enrm- For a circulator, both should be unity at the same length of the main
coupling part. The results in figure 7 show the sinusoidal behaviour of Py _,¢ and Pc_,g.
Due to the different period, they are almost in phase only for coupler lengths from 700um
up to 800um. One obtains an circulator for Leenra1 = 760um as indicated by the inset.
Obviously, the used parameters are not yet optimal since Py_,c and Pc_,g have not exactly
the same phase at the maximum so that the isolation ratio is limited at the outset. For
our set of parameters the maximal achievable isolation degree is 28.8dB if the isolation is
defined as the minimum isolation for the straight and diagonal connection, respectively:

Isolation[dB] = min{101log,,(Pa—c/Pc—a), 101og,o(Pc—s/Ps-c)}- (11)

This problem can be solved if the compensation wall separation ¢ is shifted a little. This
has no influence on the unperturbed modes, only the nonreciprocal phase shift is changed.
Therefore, we can shift the point where Ps_,c and Pc_ are in phase. The arrows in
figure 8 indicate the points where both curves are in phase for growing ¢q. As one can see,
the point moves over the local maximum. An isolation larger than 40dB is achieved for
q = 2.29pum if we choose Leepgra = 759um. The result is a total device length of 1559um
which is more than 6 times shorter than a formerly presented design [12].
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For future fabrication of the circulator it is important to know how the variation of the

sus the length Lientrar for different distances of the vertical compensation wall g. The
device parameters influence the performance. Therefore

Figure 8: The output power Py_,c and P, for the nonreciprocal coupler of fig. 2 ver-
parameters are the same as in fig. 7.

4 Fabrication Tolerances

we calculate the isolation ratio

?

The

for the variation of one parameter in the range of typical fabrication tolerances.

results are presented in table 1. It is evident, that the parameters which influence only the

nonreciprocal effect, like ¢ and &, reduce the isolation only slightly,

whereas the deviation



Isolation [dB] 3 9 1 '(]) 41 49 43

2w=3.00um+j-0.005um | 21.67 | 23.50 | 29.02 | >40 | 28.69 | 23.21 | 19.40
h=0.05m+]-0.0002um | 14.70 | 18.12 | 23.36 | >40 | 26.34 | 19.57 | 15.30
Leentrar="759pm +j-1pm 20.03 | 23.31 | 28.54 | >40 | 31.97 | 24.98 | 21.14
¢=2.29um+j-0.0lpm | 26.17 | 29.31 | 20.00 | >40 | 31.93 | 22.29 | 20.14
#1=0.34m+j-0.0004m | 25.04 | 28.69 | 35.56 | >40 | 30.51 | 25.83 | 22.83
15=0.231m+j-0.0004um | 25.17 | 20.42 | 35.60 | >40 | 29.97 | 26.23 | 23.41
A=1.30pm+j-0.005um | 19.64 | 22.94 | 28.13 | >40 | 32.59 | 25.66 | 21.85
£€=0.005 +-0.0001 26.61 | 29.59 | 34.18 | >40 | 33.29 | 29.06 | 26.23
ni=2.30 +j-0.002 16.99 | 20.35 | 25.74 | >40 | 29.02 | 22.25 | 18.48

Table 1: Computed isolation of the nonreciprocal coupler for different deviations of the
waveguide parameters from optimal values.

of the film thicknesses ¢; and ¢ and especially of the rib height A from the ideal values
lead to a strong decrease of the performance. Although the rib height can be controlled
by ion beam etching very precisely, it seems to be impossible to achieve a reproducible
isolation of at least 30dB.

Because of this reason, we propose the following tuning procedure. The film thickness ¢y
can be reduced after the fabrication of the nonreciprocal coupler. This has the effect that
the maximal isolation is always shifted to shorter lengths of the central coupling section,
as plotted in figure 9. Therefore, the coupler can be produced in a first step some microns
shorter than calculated with the optimal waveguide parameters. Then it is possible to shift
the maximal isolation to the given length by a stepwise reduction of the film thickness.
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Figure 9: The output power Py ,c and Pc_,p for the nonreciprocal coupler versus the
length Lientra for different film thicknesses t,. The arrows indicate the lengths with max-
imal isolation. The parameters are the same as in fig. 7, and ¢ = 2.29um.



5 Beam Propagation Method

Another method to simulate the behaviour of the proposed circulators is a finite difference
beam propagation method (BPM). Different beam propagation techniques were imple-
mented by various groups [23, 24, 25]. First BPM calculations of planar magneto-optic
slab waveguides were performed in [26]. A BPM for magneto-optic rib-waveguides was
first used to simulate light propagation in a nonreciprocal Mach-Zehnder interferometer

[9]-

We use the same method again to compute the nonreciprocal light propagation in the
directional couplers. For this purpose we divide the cross-section of the coupler in 7
slab waveguides and calculate effective refractive indices neg for the regions. Since the
refractive indices differ for the forward and backward direction, the BPM calculations
must be performed for each direction separately.

From Maxwell’s equation one obtains in paraxial approximation the following Fresnel
equation [24]

ik oE, 0’E,

1 Onrefg - ayz
for the E, component of the electric field. This is the dominating electric field component
of the TM-mode. We take the mean value of the even and odd normal mode in the central
section for the reference index n.. The Fresnel equation is solved with a finite difference
Crank-Nicolson algorithm. Transparent boundary conditions suppress reflections at the

boundary [27].

+ kg e (1) — nrer] B (12)

In order to find the optimal length of the central coupling region Lcepnira1 We perform several
runs of the BPM for different coupler lengths and calculate the output power for forward
and backward directions. The total output power is always normalized to 1. Results are
shown in figure 10. For Lcentrar = 782um we find the optimal isolation. Due to the effective
index approximation this length differs from the results which are obtained by the normal
mode calculations. Otherwise the results have a comparable behaviour.

The BPM simulation for Leentrat = 782um is depicted in figure 11. The left part shows
the light propagation in forward direction while the intensity of backward propagating
light is plotted in the right part. The parameters are chosen to be the same as in fig. 7,
g = 2.29um. In forward direction the power is coupled 16 times from one to the other
side, while there are 17 couplings in backward direction. Therefore, the device performs
as a circulator.

6 Summary

In this paper we perform a rigorous normal mode simulation of nonreciprocal directional
couplers, including the X-like transition sections. The proposed coupler geometry with
different double layer magneto-optic films with an alternating sign of the Faraday-rotation
reduces the total device length by a factor 6 as compared to formerly presented couplers.
It is shown that it is possible to achieve simultaneously an isolation larger than 40 dB for
the straight and diagonal connection of the circulator. Because fabrication tolerances are
rather critical, a postfabrication tuning is necessary. Simple BPM calculations are used
to show the operation of the circulator.

10
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