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Abstract

The nonreciprocal phase shift for TE-modes in magneto-optic rib-waveguides
supporting a domain lattice was recently predicted. Using a single magnetic com-
pensation wall in the symmetry-axis of the waveguides, the nonreciprocal phase shift
can be enhanced by a factor up to 1.8. The nonreciprocal phase shift is calculated by
perturbation theory. The electromagnetic fields are determined by a semi-vectorial
finite element method, which properly handles the required field discontinuities.

1 Introduction

For the development of polarization independent magneto-optic devices it is desired to
have nonreciprocal waveguides for TM as well as for TE-modes. The nonreciprocal phase
shift of TM-modes was predicted by Yamamoto et al. [1] several years ago. Different
waveguides showing a nonreciprocal phase shift for TM-modes were studied experimentally
[2, 3]. Recently, Popkov et al. [4] predicted the nonreciprocal phase shift for TE-modes in
gyrotropic rib waveguides with a normally magnetized domain lattice.

In this paper we report on nonreciprocal waveguides using a magnetic compensation wall
[5] at the center of the rib waveguides. The magnetization is adjusted in the entire wave-
guide parallel to the film normal. Only the Faraday rotation changes the sign at the
compensation wall so that an asymmetry, which is essential for nonreciprocity, is induced.

To calculate the unperturbed TE-mode fields we employ a new semi-vectorial finite element
method, which properly takes care of the field discontinuity at the waveguide boundaries.
The nonreciprocal phase shift is derived in perturbation theory. It is shown that the
maximum nonreciprocal phase shift can be enhanced by a factor 1.3 to 1.8 as compared
with waveguides supporting a domain lattice.

2 Nonreciprocal Rib Waveguides

The following analysis is performed for the basic rib geometry sketched in Fig. 1. Mode
propagation is assumed along the z axis and the entire waveguide is magnetized parallel
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to the film normal. A compensation wall divides the rib waveguide into two equal halves
with opposite sign of the Faraday rotation, which is the basis of the nonreciprocal effect.
The piecewise constant dielectric tensor can be written as a sum of the dielectric and the
small magneto-optic part
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The gyrotropy is represented by &, being related to the Faraday rotation ©r by

where n is the refractive index and k; is the vacuum wave number.

The mode propagation in the waveguides is described by Maxwell’s equations. As the
magneto-optic effect is small, the nonreciprocal phase shift A = B — Bow, Which is the
difference between the forward and backward propagation constants (g, and [y of the
TE-mode, can be derived with perturbation theory [1, 4]. Assuming the semi-vectorial
approximation (E, = 0) [6], perturbation theory yields
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Since £ is a piecewise constant function and E, is piecewise defined, the integration in
y-direction can be performed analytically, giving the squared modulus of E, times the
jump of & at the vertical interfaces. Then the numerator of equ. 2.3 is written as follows
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where A,—; = {y<i — &y>i denotes the jump of £ at the vertical boundary at y = 7. As the
field E, is discontinuous at the rib flanks the second term in eq. 2.4 must be evaluated
with fields inside the ribs.

To determine the unperturbed modal field distribution Ey(z,y) of the TE modes in the
semi-vectorial approximation we have to solve the mode equation

(=02 — & — kg + *)E, =0 (2.5)

for E, in the computational window ). Furthermore we have to regard the boundary
conditions for E, at horizontal (I'n,) and vertical boundaries (I'ye), resp. and on the
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boundary of the computational window (I'). On the horizontal boundaries the field E,
and the derivative 0,F, must be continuous. For vertical boundaries we enforce the
continuity of eE, and 0,F, [6]. We get
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The indices t, b, 1 and r indicate the top, bottom, left and right side of the respective
boundary (see Fig. 2). ¢ and g describe the corresponding boundary conditions With this
notation the weak form of the differential equation can be written as follows [7]:
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If this equation holds for every testfunction v and ¥, E, is a solution of the differential
equation respecting all continuity requirements. Partial integration of the first term yields
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where 7 is the normal vector on the boundary. Inserting this into equation 2.7 and choosing

Figure 2: Illustration of the different boundaries for the FEM calculations.



v = 7, which can be done without loss of generality, we arrive at the simple form
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For the finite element solution of this problem, we expand E, in a set of expansion func-
tions N on first order triangular elements, E, = Y- a;N; (see Fig. 2). The coefficients a;
represent the field value at the node 7. With special restrictions to the function space
the above integral form can be further simplified. The integral over the boundary of the
computational window I' vanishes if the v; and /V; are set to zero on I'. On the horizontal
boundaries 'y, we choose the test and expansion functions to coincide ,u; = N;. They
are continuous at the boundary, so that the respective integral is zero, too, because of
vy = vp and Ey; = Ey . In contrast to this situation and the most common finite element
algorithms, we use different functions v; and N; at the vertical boundaries I'ye;. The N;
must be discontinuous (N;; = €./ N;;) in order to provide the correct jump for E, at this
boundary [8]. On the other hand, the v; must be continuous, so that the derivative of E,
becomes continuous. Then the relevant integral in equation 2.9 over I'y, vanishes.

Now we can write equation 2.9 as an eigenvalue equation
Ki=-p3*Ma (2.10)

where the matrix elements of K and M correspond to the respective parts of the first
integral in eq. 2.9 and the elements of @ describe the value of £, on the nodal points. This
eigenvalue equation has been solved with commercial software [9].

3 Results

Using this formalism we compute the nonreciprocal phase shift for different geometries of
the waveguides in order to optimize the absolute value of A3. The material parameters,
Nsubstrate = 1.9, Niim = 2.2, Neover = 1.0 and O = 3000°/cm = £ = 0.005, are identical
with those used by Popkov et al. [4]. They are typical for epitaxially grown bismuth
substituted iron garnet films. The wavelength is 1.3 pm.

Figure 3 shows the calculated mode field of the fundamental TE-mode. Note the typical
discontinuities of E, at the rib flanks. The computational window (12 ym x 6 pm) is
divided into 21798 triangles. The mesh is chosen denser in the region where the field
strength is large. This region can be estimated by simple effective index calculations so
that we get a quasi adaptive mesh.

The nonreciprocal phase shift of the fundamental TE-mode for waveguides with a com-
pensation wall as well as for waveguides supporting a domain lattice is plotted in fig. 4 for
a constant film thickness d = 0.3um. The thick lines indicate that only the fundamental
TE-mode is guided. In the other region the mode solver finds at least two guided TE-
modes. The nonreciprocal phase shift increases understandably with the rib height since
the numerator of equ. 2.3 grows with better localization of the mode. For waveguides with
a compensation wall the nonreciprocal phase shift is always larger than for waveguides



Figure 3: Contour plot of
the field component |E,|
of the fundamental TE-
mode. The contour levels
are spaced by 5% of the
maximum field amplitude.
The geometry is equal to ool
that in [4] (d = 0.5 pm, sl —o's s+ s s
h=0.3 pm, w = 2.0 pym).

with a magnetic domain lattice. Besides, the maximum for waveguides with a compensa-
tion wall is in all cases in the single mode regime. This is important for future isolator
applications.

£ 30 compensation wall
o - ==~ domain lattice
= i
<
o
= h=0.5 um
<
@ 20
4 i
<
S
©
(&) L
S I
s 10
3 i
o
L)
c
o
c L
0

rib width w [um]

Figure 4: The nonreciprocal phase shift of the fundamental TE-mode in waveguides with
a compensation wall or a domain lattice for different rib heights h versus the rib width w.
The film thickness is d = 0.3 pm. Thick lines indicate that only the fundamental mode is
guided. Thin lines represent solutions where at least one more guided TE-mode is found.

In order to estimate the accuracy of the semi-vectorial finite element calculation we com-
puted the same waveguides additionally with a simple scalar finite element [10] and an-
other semi-vectorial method, the so called wave matching method [11]. The results for
the nonreciprocal phase shift and the propagation constants of the zero order TE-mode
are shown in fig. 5 and fig. 6. Obviously the results of both semi-vectorial computations
agree both closely, while the scalar approximation deviates considerably. Only for weakly
etched (h = 0.1 pm) and narrow (w < 0.9 pum) ribs differences between semi-vectorial
results occur. This discrepancy results from a different lateral size of the calculated mode
distributions. Although the computational window for the FEM is chosen to be large that
it has no influence on the mode fields, the computed modes extend not as far as those
calculated by the WMM-method. The reason for this is not yet known and has no influ-
ence on the determined propagation constants  of the modes as shown in fig.6. Figs. 5
and 6 indicate that different mode solvers should be compared not only with respect to
the effective mode indices, but also with respect to expressions like (2.3, 2.4) that rely on
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precisely calculated mode fields.
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Figure 5: Nonreciprocal phase shift of the fundamental TE-mode in waveguides with a
compensation wall computed with three different mode solvers. The film thickness is
d = 0.3 pm.
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Figure 6: Propagation constant frg for a film thickness of d = 0.3 um. Results from a
scalar FEM, the semi-vectorial WMM and our new approach are shown.

4 Summary

In this paper we have proposed a new semi-vectorial finite element method to calculate
the TE-mode fields in rectangular rib waveguides which properly handles all continuity
requirements of Maxwell’s equations. Using these mode distributions, the nonrecipro-
cal phase shift of TE-modes in waveguides with a compensation wall can be computed



by means of perturbation theory. Such waveguides are required for polarization inde-
pendent or TE-mode integrated optical isolators. The results show that the maximum
nonreciprocal phase shift can be enhanced by a factor 1.3 up to 1.8 as compared with
waveguides with a magnetic domain lattice. Comparing with results obtained by another
semi-vectorial mode solver shows an excellent agreement.
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