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Slow light (SL) states corresponding to wavelength regions near the bandgap edge of
grated structures are known to show strong field enhancement. Such states may be excited
efficiently by well-optimised adiabatic transitions in grating structures, e.g., by slowly
turning on the modulation depth. To study adiabatic excitations, a detailed investigation
in 1D is performed to obtain insight into the relation between the device parameters and
properties like field enhancement and modal reflection. The results enable the design of
an adiabatic device for efficient excitation of SL states in 1D, and may be the basis for
further research on 2D and 3D photonic crystals.

Introduction
Recently, periodic dielectric structures (i.e. photonic crystals (PCs)) have attracted much
interest.The main reason for that is that materials with a photonic band gap can be realised
by means of a proper choice of both lattice structure and index contrast. This leads to a
variety of (possible) applications such as the inhibition of spontaneous emission [1], low
loss waveguides with sharp bends [2], narrow-band filters, and strong field enhancement
related to low group velocity, i.e. slow light (SL), modes propagating at frequencies near
the band edge [3].
Due to the mismatch of both modal profiles and phase velocities between the incoming
propagating wave and the modes in SL devices (e.g. gratings), direct excitation of SL
modes will cause high losses [4]. One promising technique, that has been introduced
in several papers to overcome this problem, is the so-called adiabatic excitation [4]. By
means of tapering either by gradually changing index or geometry, it is possible to change
the profile of an incoming wave gradually into that of the SL mode. Thus, the effects
of profile mismatch and so of losses can be minimised. In this paper, we will present
a theory for SL excitation in 1D. In particular, we discuss the relation between device
parameters, like the modulation depth and, modal properties like field enhancement and
modal reflection.

Basic theory
We consider a 1D model structure as depicted in Fig. 1, assuming a plane wave at normal
incidence coming in from the left. The Helmholtz equation is to be solved is (∂zz +
n2(z)k2)Ey = 0 with vacuum wavenumber k and index distribution n(z) (see Fig. 1). In
each unit cell the field solution can be written as a sum of right and left traveling modal
fields, corresponding to that unit cell. These solutions are of the form of plane waves as
follows:



Figure 1: Refractive index as a function
of z of a typical adiabatic 1D gratings.
Indices 2 and 1 distinguish the local high
and low index regions.
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E±(z) = u±(z)e−iβ±z ≡ v1(2),±(z)+w1(2),±(z) (1)

where the +(-) sign labels the right (left) traveling Bloch mode, β is the Bloch-wave
number and v1(2),± and w1(2),± are the corresponding right and left traveling plane wave
fields in the low and high index of each grating period. We limit ourself to wavelengths
outside the band gap leading to real β and β− = −β+, with its value chosen in the 1st

Brillouin zone. From the modal field solution the power enhancement, η, defined by

η =
|v2|

2 + |w2|
2

|v2|
2 −|w2|

2 (2)

can be obtained, where we use the field solution in the high index layer. A definition based
on the field solution in the low index layer is found to lead to nearly the same results.
Dispersion curves, corresponding to uniform gratings, with varying modulation depths
nm, where n1/2 = nav − /+ nm are shown in Fig. 2. The dashed arrow shows a typical
trajectory for adiabatic excitation.

Figure 2: Dispersion curves for the con-
sidered model structure for nm = 0 (dot-
ted) and nm = 0.01,0.05,0.1,0.2, and
0.3, with d1 = d2 = 0.1613 µm, nav =
1.55.
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As the Bloch modes are different for each unit cell in the tapering section (see Fig. 1),
modal reflection will occur at each transition between different unit cells. This may be
modeled by the standard contra-directional coupled mode equations (CMEs)

−i
d
dz

b = κbbb+κbaae−2i
R z

0 β(z′)dz′, i
d
dz

a = κaaa+κabbe2i
R z

0 β(z′)dz′ (3)

Here, a and b are the z−dependent amplitudes of forward and backward propagating
modes, respectively. These quantities are assumed to be smooth functions of z. It follows
from power conservation, i.e. ∂z

(

|a|2 −|b|2
)

= 0, that κab = κ∗
ba and κaa that and κbb are



real quantities. The coupling coefficients can be determined by comparing Eq. (3) with
the results of modal reflection in the presence of changes in the modulation depth.

Relation between modal and structure parameters
We now present the relation between the power enhancement, η, the coupling between
left and right traveling modes, described by κ ≡ |κab|, and the structure parameters will be
investigated. For each wavelength with considered region (0.89544µm . λ .0.9959µm),
there is a modulation depth ng defining the band edge of the uniform grating (0.01<
ng <0.3). It is found that the structure dependence of η and κ can be described more
conveniently in terms of the latter quantity. By careful fitting of the numerical results we
arrive at

κ '
ngC1∂znm

h3/2 (4a), η '
ng

h1/2 +
C2nm

h3/2 (4b),

with C1 = 1.22, C2 = 1.22 ·10−6 and h ≡
(

n2
g −n2

m
)

.
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Figure 3: Fitting curves for Eqs. (4a) and (4b), for the case of fixed ng and nm, respec-
tively, with Ω1 = κh3/2/∂nm/∂z ) and Ω2 = ηh1/2. Var means variable

Figures 3a and 3b are given as an example to illustrate the fitting; Eqs. (4a) and (4b) agree
well with the results of the calculations for both cases, i.e. ng and nm fixed.

Adiabatic excitation
Low modal back reflection can be obtained by choosing κ constant. This can be seen by
rewriting Eq. 3 using A = aei

R z
0 κaadz′ and B = be−i

R z
0 κbbdz′:

i∂zA = κabBe2i
R z

0 (β(z′)+κaa)dz′ , − i∂zB = κ∗
abAe−2i

R z
0 (β(z′)+κbb)dz′ (5)

Starting at z = 0 with A = 1, it follows from the above that there will not be any coherent
build up of the amplitude for the back propagating mode B. According to Eq. (4a), for
constant κ the total length of the adiabatic section and the field enhancement at z = L,
(neglecting the second term of Eq. 4b), is given by



L =
C̃nm,max

κngh(nm,max)1/2 (6a), and ηL =
κLn2

g

C̃nmax
∼

κLnmax

C̃
(6b),

respectively, with nm,max (. ng) the maximum modulation depth. So, it follows that for
fixed values of κ and L, which can be shown to define approximately the modal loss,
the enhancement is proportional to the maximum modulation depth (see Fig. 4b). As
an illustration, the function nm(z) is given in Fig. 4a for ng ∈ [0.104694,0.2053061,0.3]
(λ ∈ [0.89544,0.923907,0.959042]µm) with κ = 2/µm and L = 1mm are fixed. The trans-
mission of the structure T = |a(L)|2 / |a(0)|2 given in Fig. 4b is the ratio of the forward
going mode amplitudes a at z = 0 and z = L.
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Figure 4: (a): Index profile nm(z) and log10(Λ∂znm), as a function of z. (b): The cor-
responding field enhancement ηL according to Eq. (6b) (prediction) and to a rigorous
calculation, and the power transmission T . Note that the quantity Λ∂znm is the change in
nm per unit cell.

Conclusions
A theory of SL excitation in gratings has been presented. By fitting, we have obtained a
relation between power enhancement η, coupling coefficient κ, and the structure param-
eters. Assuming constant κ and a fixed device length L, it has been shown that for given
ng the field enhancement η is proportional to the maximum modulation depth.
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