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ABSTRACT

Typical optical integrated circuits combine elements, like straight and curved waveguides, or cavities, the simulation and

design of which is well established through numerical eigenproblem-solvers. It remains to predict the interaction of these

modes. We address this task by a ”Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element

numerics, the optical properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, lead-

ing to quantitative, low-dimensional, and interpretable models in the frequency domain. Spectral scans are complemented

by the direct computation of supermode properties (spectral positions and linewidths, coupling-induced phase shifts). This

contribution outlines the theoretical background, and discusses briefly limitations and implementational details, with the

help of an example of a 2-D coupled-resonator-optical-waveguide configuration.

Keywords: integrated optics, numerical / analytical modeling, coupled mode theory, optical micro-ring and micro-disk

resonator circuits, whispering gallery resonances

1. INTRODUCTION

Approaches labeled “Coupled mode theory” (CMT) have some history in the field of modeling and simulation in integrated

optics. One considers systems that can be described well in terms of the evolution of several, known, or easily computable,

basis modes along a common propagation coordinate. A set of coupled differential equations is being established, taking

mutual perturbations of the basis modes into account. Numerical means are employed where analytical solutions of these

differential equations can not be obtained. We refer to [1–3] and to the textbooks [4–7] for overviews. Although mere

phenomenological CMT models are frequently seen, where certain quantities (“coupling coefficients”) are treated as free

parameters, e.g. for fitting experimental data, here we focus on methods that intend to predict the optical electromagnetic

fields from first principles, given structural and material properties, and an excitation wavelength.

As an example that can be expected to be treatable by a coupled-mode model, Figure 1 introduces a short 2-D coupled-

resonator-optical-waveguide (CROW) configuration. Similar chains of evanescently coupled ringresonators have attracted

recent interest, for interest in their time delay properties [8–10], but also as a means of channeling of optical power over

the path of the resonators.

On the one hand, modeling microresonator-based circuits similar to Figure 1 with “conventional” coupled mode theory

is more or less straightforward [11, 12], in 2-D [13] as well as in 3-D [14]. One specifies coupling regions around the

points of closest approach of the straight and bend cores, and establishes coupled mode equations for these straight / bend

and bend / bend couplers, here with a common propagation coordinate x. Due to the varying core distance, these need to

be solved numerically, with the solutions embedded into a scattering-matrix model of the entire CROW structure. Special

care has to be taken when extracting modal amplitudes [13], due to the non-orthogonality of the overlapping basis fields.

On the other hand, it appears decidedly unnatural to have to describe the propagation of the bend mode along the ring

segment using the Cartesian coordinate of the straight core axis. In particular for small rings, with correspondingly larger

extent of the exterior radiative part of the bend mode profiles, the coupler regions need to be large, covering a substantial

portion of the rings, such that the exiting bend cores are not even remotely co-aligned with the straight channels.

We shall see that the method as discussed in this paper avoids these (perhaps slightly academic) complications. No

common propagation coordinate is introduced, and, correspondingly, one has to abandon the notion of differential coupled
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Figure 1. A sequence of microrings, coupled to two parallel bus waveguides, schematically. Modes ψu and ψd of the straight bus

channels, propagating upward or downward in the positive or negative x-direction play a role, as well as clockwise or anticlockwise

propagating bend modes ψb and whispering gallery resonances ψc associated with the individual cavity rings. Local coordinates r, φ

are introduced separately for each cavity. Parameters: refractive indices ng = 1.5 (cores, guiding regions), nb = 1.0 (background), core

widths w = 0.6µm (bus waveguides), d = 0.75 µm (rings), cavity radius R = 7.5µm (outer rim), gap distances g = 0.3µm, target

vacuum wavelength λ ≈ 1.56 µm.

mode equations. Numerical means, borrowed from the realm of finite elements (FEs), are employed instead. Concepts from

analytical and numerical modelling play a role, hence the technique has been called “Hybrid analytical / numerical coupled

mode theory” (HCMT). This paper gives a brief account of the approach as developed in Refs. [15–18], by means of the

2-D CROW configuration of Figure 1. We refer to [19] for a more detailed recent overview. Note that our list of HCMT

examples includes structures such as a crossing of perpendicular waveguides [15], where “conventional” CMT would not

be applicable, as well as ring resonator filters [17], where the HCMT results virtually coincide with “conventional” CMT

data [13].

2. HYBRID COUPLED MODE THEORY

This concerns modelling in the frequency domain. A time dependence ∼ exp(iωt) of the time harmonic optical electric

field E and magnetic field H is assumed, with the angular frequency ω = kc specified by the vacuum wavelength

λ = 2π/k, for vacuum wavenumber k, vacuum speed of light c, vacuum permittivity ǫ0 and permeability µ0. We seek

(approximate) solutions to the Maxwell curl equations

∇×H − iωǫ0ǫE = 0, −∇×E − iωµ0H = 0, (1)

where, for linear, isotropic, and nonmagnetic dielectric media, the optical properties are given by the spatially dependent

relative permittivity ǫ = n2, or refractive index n, respectively. Then the HCMT model requires a physically plausible

ansatz, a “template”, for the optical electromagnetic field as a starting point.

2.1 Field templates

As an example we consider the CROW structure of Figure 1, and we assume that the polarized modes ψu, ψd of the bus

channels, and bend modes ψb
j supported by the curved cores of the cavity rings, are available, determined for some target

wavelength. Given an excitation in the lower left port, one then expects the following behaviour. The upwards travelling

mode in the left bus channel couples part of its power to a clockwise propagating bend mode in the leftmost ring. That

mode in turn transfers part of its power to the anticlockwise propagating bend mode of the second cavity. Assuming an

uneven number of rings, a fraction of the input power excites the downward propagating mode of the right bus core. We

thus write a template for the overall electromagnetic field in the form

(

E

H

)

(x, z) = u(x)ψu(x, z) + d(x)ψd(x, z) +
∑

j

bj(θ)ψ
b
j(r, θ), (2)

with as of yet unknown amplitudes u(x), d(x), and bj(θ), each a function of one variable. The formal relation r = r(x, z),
θ = θ(x, z) between the local polar coordinates (a separate system for each cavity) and global Cartesian coordinates is to

be understood implicitly for Eq. (2) to make sense, but will be taken into account explicitly only later.
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The fields of the bus channels

ψu, d(x, z) =

(

Ẽ

H̃

)u, d

(z) e∓iβx (3)

cover the six electromagnetic components Ẽ
u,d

, H̃
u,d

of the mode profile, together with the exponential dependence on the

propagation distance x with phase constants −β (upward propagation, left waveguide) and +β (downward propagation,

right waveguide).

Waves travel around the (identical) cavities with indices j in the form of the clockwise or anticlockwise propagating

bend modes [20]

ψb
j(r, θ) =

(

Ẽ

H̃

)b

j

(r) e∓iγRθ, (4)

given in polar coordinates by the radial dependent bend mode profiles Ẽ
b

j , H̃
b

j and the complex angular propagation

constant γ. Note that γ depends on the definition of the cavity radius R [11], here the outer rim of the rings. For non-

integer γR, the discontinuity of Eq. (4) at θ = 0, 2π can be compensated [17, 19] through replacing γ by a real constant

κ = floor(ReγR + 1/2)/R, where floor(x) is the largest integer smaller than x. Any further variations in phase and

amplitude, and also the bend mode losses, are then covered by the prospectively smooth amplitudes bj(θ) in Eq. (2).

Alternatively, one might decide to model the behaviour of the CROW structure in terms of the whispering gallery modes

(WGMs) [18,21] supported by the entire cavities. These are characterized — here in 2-D — by a radial order, by an integer

angular mode number, and by a complex eigenfrequency. For excitation of the CROW with a given real frequency, one

expects that only those WGMs with an eigenfrequency (real part) close to this excitation frequency contribute significantly

to the solution. Clockwise and anticlockwise rotating fields, with respective positive or negative angular mode numbers,

are selected in alternation for the rings in the sequence. One thus writes the template

(

E

H

)

(x, z) = u(x)ψu(x, z) + d(x)ψd(x, z) +
∑

j

cj ψ
c
j(r, θ). (5)

Here the sum over j covers the separate cavities, as well as possible multiple WGMs of different radial or angular order

for each cavity. The WGM fields ψc
j(r, θ) = (Ẽ

c

j , H̃
c

j)(r, θ) are meant to include both the electric and magnetic parts of

the mode profiles. These are excited with as of yet unknown coefficients cj (compare with the amplitude functions bj(θ)
in Eq. (2)).

Note that the templates (2) and (5) represent merely the most simple type of unidirectional models. Straightforward

extensions could concern bidirectional wave propagation, requiring additional terms with modes with propagation constants

/ angular mode numbers of opposite signs, or the inclusion of further modes of other / higher orders. Obviously, the

templates decide which physical effects are covered by the model, and consequently, what can be expected from the

approximate solutions. As an example, for the present circuits, losses due to the bend mode propagation along the ring, or

alternatively, due to the radiative nature of the WGMs, are well taken into account, as becomes evident by the the spectra

of Figures 2 and 3, where the dropped and transmitted power do not add up to one in general. Other loss mechanisms, e.g.

radiation caused by the wave interaction in the regions where the cores come close, are not included in these models.

2.2 Amplitude discretization

What remains is to determine the functions u, d, and, depending on the template, the functions bj , or the coefficients cj .

We continue directly with numerical means. After having identified a suitable interval of the x-axis, outside of which the

amplitude u in the left bus channel can be expected to be constant, u is expanded into finite elements (FEs) as

u(x) =
∑

n

un αn(x). (6)

In the simplest case, the αn are the triangular functions associated with an equidistant 1-D first order FE discretization, with

half infinite first and last elements. Explicit expressions, for the present context, are given in Refs. [15, 19]. An analogous

discretization is applied to d(x). The amplitudes bj(θ) of the bend modes are discretized on the interval θ ∈ [0, 2π], with the

first and last element identified. The formal transformation to global Cartesian coordinates follows after the discretization.
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After this step we are left with the task to find values for the now discrete coefficients un, dn, and either bj,n or cj .

Using dots as wildcards for indices and arguments, the templates (2) or (5) now assume the generic form

(

E

H

)

(x, z) =
∑

k

ak

(

α·(·)ψ
·
·(·, ·)

)

=:
∑

k

ak

(

Ek

Hk

)

(x, z).

Here the symbolic index k covers the summation over the channels of the bus waveguides, and the cavities, if applicable,

over the possibly multiple modes in each channel or cavity, and the element indices of each separate FE discretization.

The “modal elements” (Ek,Hk) combine the mode fields (3), (4), multiplied by the respective FE triangle functions,

or they are directly the WGM profiles as introduced in Eq. (5). All coefficients are collected into one set of variables

ak ∈ {un, dn, bj,n, cj}. Most of these are unknowns, but some represent the external influx: Given values of one for the

coefficient of the first, half-infinite element of u, and zero for the last element in the discretization of d, specify a unit input

in the lower left port, and zero input from the top in the right channel.

2.3 Algebraic procedure

Next we apply a projection procedure of Galerkin type to arrive at a linear system of equations for the ak. A weak form

of Eqs. (1) is obtained through multiplying by test fields E′ and H ′, and integrating the result. For reasons that become

apparent in Section 2.5, we write it here such that the frequency parameter appears explicitly:

∫∫

A(E′,H ′;E,H) dx dz − ω

∫∫

B(E′,H ′;E,H) dx dz = 0 for all E′, H ′ , (7)

with

A(E′,H ′;E,H) = (E′)∗ · (∇×H)− (H ′)∗ · (∇×E) (8)

and

B(E′,H ′;E,H) = iǫ0ǫ(E
′)∗ ·E + iµ0(H

′)∗ ·H . (9)

By inserting the general template (7) for E, H , and restricting the test fields to the modal elements El, H l, one obtains

the linear set of equations
∑

k

(Alk − ωBlk) ak = 0, (10)

with “overlaps” of modal elements

Alk =

∫∫

A(El,H l;Ek,Hk) dx dz , Blk =

∫∫

B(El,H l;Ek,Hk) dx dz , Klk = Alk − ωBlk . (11)

Further the coefficients a = (ak) are separated into unknowns u and given quantities g, and the matrix K = (Klk) is

rearranged accordingly. Then the system (10) can be given the form

(

Kuu Kug

Kgu Kgg

)(

u

g

)

= 0 , or Kuu = −Kgg with Ku =

(

Kuu

Kgu

)

, Kg =

(

Kug

Kgg

)

. (12)

Finally the unknowns in the — overdetermined — linear system of equations are determined in a least squares sense as a

solution of

K
†
uKuu = −K

†
uKgg . (13)

Here the symbol † denotes the adjoint. For a more detailed discussion of the procedure, and for an outline of an alternative

true variational scheme, we refer to [15].

In line with the examples in Section 3, the above recipe has been given for a 2-D configuration with global Cartesian

coordinates x and z. Extension to 3-D, then based on modes of straight and bend waveguides with 2-D cross sections, and

resonance fields that depend on x, y, and z, would require merely to extend the expressions (7) and (11) to include integrals

over the third spatial direction y as well.
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2.4 Fast evaluation of spectral properties

Frequently, and in particular also for the present CROW structures, one is interested in the spectral response of a circuit.

In principle, this requires to repeat the preceding procedures for a suitable sequence of excitation wavelengths. If only a

a narrow spectral range is of interest, and if material dispersion ǫ(ω), if incorporated at all, is smooth in that range, one

can expect that the properties of the basis modes, and consequently the values for their overlaps (11), vary but slowly with

the vacuum wavelength. Any pronounced frequency dependence (in our case: resonance effects) must be attributed to

the solution of the system (13). One might then consider to evaluate the modal element overlaps for a few representative

wavelengths, and interpolate the respective matrices Then only the solution of the moderately sized system (13) needs to

be repeated to generate the spectral data. For further details we refer to [17]; in many cases we observed this an excellent

approximation that speeds up the wavelength scans considerably.

2.5 Resonances of composite systems: Supermodes

For systems that exhibit resonant behaviour, rather than carrying out explicit spectral scans, one could be interested in a

means to directly predict the resonance properties [18]. These are characterized by — prospectively complex — values ωs

where the system

∇×H − iωsǫ0ǫE = 0, −∇×E − iωsµ0H = 0, (14)

with boundary conditions of outgoing waves, becomes singular, i.e. permits nonzero solutions E, H . For our specific

configurations, we look for approximate solutions in the form the templates (2), (5), now without any external input (the

respective coefficients are set to zero). With the former frequency parameter ω replaced by the unknown eigenfrequency

ωs, one proceeds along the steps of Section 2.3 up to Eq. (10). Of Eq. (12) only the upper left quadrant remains relevant.

After grouping the separate overlaps (11) into matrices A = (Alk), B = (Blk), this sub-system can be given the form of a

generalized eigenvalue problem:

Auuu = ωs
Buuu. (15)

Eq. (15) is to be solved for pairs of eigenvectors u and eigenfrequencies ωs. One obtains a set of “supermodes”, each

associated with a complex eigenfrequencyωs, quality factor Q = Reωs/(2Imωs), resonance wavelength λr = 2πc/Reωs,

linewidth ∆λ = λr/Q, and a supermode profile, which can be accessed by substituting the corresponding eigenvector into

Eq. (7). For a template that includes the respective modes, this type of analysis takes into account power outlets through

the bus waveguides. The resonance positions, Q-factors, and linewidths of the supermodes then describe the properties of

the waves that the composite open cavity sends out through the access channels (cf. the respective statements in [22]).

3. NUMERICAL RESULTS

The present 2-D simulations rely on our C++ -implementation on the basis of quasi-analytical solvers for the modes of

straight [23] and bend waveguides [24], and for the whispering gallery resonances of circular cavities. These basis fields

can be considered “exact”, for all further numerical purposes.

Our list of benchmark examples includes straight parallel waveguides [15] (reference: analytical results), a waveguide

crossing [15] (reference: a rigorous quasi-analytical solver), and configurations of micro-ring- and -disk resonators [17,18]

(comparison with conventional coupled mode theory [13] and with rigorous numerical results on the basis of finite elements

or finite differences). The latter computations use the set of parameters of Figure 1, such that the confirmation should be,

to some degree, transferable to the results shown below.

We consider the structure as introduced in Figure 1 with 9 cavities, for a spectral interval that is much narrower than

the free spectral range (≈ 36 nm, [18]) of one ring, around a target wavelength of 1.56µm. Here a single dielectric ring

with the parameters of Figure 1 supports a whispering gallery mode WGM(0, 39) of fundamental radial order and angular

order 39 with a resonance wavelength of 1.56373µm, a quality factor of 1.1 · 105, and a linewidth of 1.4 · 10−5
µm [18].

3.1 CROW model based on bend modes

Our unidirectional HCMT model relies on the template (2). The fundamental bend mode supported by the curved cores

of the cavities is included for each ring, with properly positioned origins and alternately clockwise and anticlockwise

propagation directions. The amplitudes u, d of the bus modes are discretized on an interval x ∈ [−10, 10]µm with a

stepsize of 0.4µm. For the bend mode amplitude of each ring, a FE discretization on the interval θ ∈ [0, 2π] with a
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stepsize of 0.4µm/R has been applied. This leads to a system (12) of dimension 1164, with two given values and 1162
unknowns, 1062 of which relate to the field of the composite 9-ring cavity. The procedure as outlined in Section 2.4 has

been applied to evaluate the spectrum. Figure 2 summarizes the results.

(a) λ = 1.5587µm

(b) λ = 1.5594µm

(c) λ = 1.5604µm

(d) λ = 1.5617µm

(e) λ = 1.5631µm

(f) λ = 1.5646µm

(g) λ = 1.5660µm

(h) λ = 1.5672µm

(i) λ = 1.5681µm
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Figure 2. Bend-mode based HCMT model of a CROW structure of Figure 1 with 9 evanescently coupled rings. (I): relative transmitted

T and dropped guided optical power D, as a function of the excitation wavelength λ. (II): field pattern associated with the resonances

as indicated in (I); the plots show the absolute value of the principal electric component of the TE fields. [17]

Part (I) of Figure 2 shows the spectral transmission for a wavelength interval, that includes one resonance, i.e. one peak

in the power drop D and simultaneous dip in the direct transmittance T , of a single ring device with comparable parameters

[17]. For the present 9-ring CROW, that resonance splits into a series of 9 narrower peaks / dips, roughly at the position

of former single-ring resonance. The spectral pattern of Figure 2(I) recurs with the free spectral range of the single ring

[17]. Figure 2(II) shows the related resonant fields. One observes a systematics akin to standard Fourier harmonics, where

“Nodes” are realized either by entire rings in an “off”-state, or as fields with opposite symmetry on both sides of a gap (not

evident from the present plots). We shall see that these features can be explained by the simpler WGM model below.

3.2 CROW model based on whispering gallery resonances

As before, we carry out unidirectional HCMT simulations, now based on the template (5), where one WGM(0, 39), with

alternating sense of rotation, is included for each ring. The amplitude functions of the bus waveguides are discretized by

finite elements as in Section 3.1; for each ring one coefficient is introduced. The system (12) is of a dimension 111, with

109 actual unknowns. Now only 9 unknown coefficients relate to the field in the cavity. Figure 3 collects our results.

On the present narrow range around the WGM(0, 39)-resonance, the spectral response in part (I) of Figure 3 is qualita-

tively very similar to what is seen in Figure 2(I). Quantitative differences can be observed in the extremal levels of T and

D, and in the wavelength positioning of the entire pattern. This pattern shifts to shorter wavelengths, if the simulations

take into account further WGMs with nearby angular orders [18].

Furthermore we apply the procedures of Section 2.5 to the 9-ring CROW, leading to resonance wavelengths as indicated

by the vertical lines in between the panels of Figure 3(I). If one uses a template (5) for the cavity rings only (the terms

preceded by u and d are omitted), the HCMT supermode model, then with a system (15) of dimension 9, predicts a splitting
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Figure 3. WGM-based HCMT model of a 9-ring CROW structure as in Figure 1. (I): Spectrum of the device, relative transmission

T and power drop D as as function of the excitation wavelength λ. The markers in between the T - and D-panels show the positions

of the resonance wavelength of one separate ring (single bold line, gray), of the supermode resonances for the series of rings without

bus waveguides (dashed), and of the resonances of the complete system (continuous, here also the respective linewidths are shown).

(II): Amplitude patterns for the supermodes of the system with bus waveguides (bold), and for the ring series only (thin lines, mostly

shadowed). Real parts (dashed), imaginary parts (dash-dotted), and absolute values (continuous) of the coefficients assigned to the

WGMs of neighboring cavities are connected to clarify the systematics. [18]

of the original resonance into a series of nine supermodes, positioned close to, but not quite at, the transmission resonances.

An excellent approximation of the positions of the transmission extrema, and of their linewidths, is obtained, if the access

waveguides are taken into account as well, i.e. by carrying out the HCMT supermode analysis with the full template (5).

Figure 3(II) shows the related “supermode profiles”, here the complex amplitudes assigned to the WGMs in the ring

array. In good agreement with the fields of Figure 2(II), a systematic series of “harmonics” with a growing number of

“nodes” is observed. The fundamental resonance, with the least “strained” profile (with the smallest variations in the

real and imaginary parts of the WGM coefficients with respect to the cavity positions), appears at the longest resonance

wavelength, that is at the lowest energy level.

4. CONCLUDING REMARKS

Obviously, the HCMT approach as discussed above relies to a large extent on engineering intuition. For some given

composite structure, the identification of a plausible field template, which necessarily cannot satisfy the Maxwell equations

exactly, constitutes the major approximation. Still, once this template has been selected, one proceeds towards approximate

solutions without any further heuristics.

The form of the general template (7) covers, in principle, also rigorous numerical discretizations of the optical fields.

Hence one may regard this as a numerical finite element (FE) technique, but one with highly specialized, structure-adapted,

largely global elements. Convergence can only be expected to lead to approximations in the form of the templates with

continuous amplitude functions.

We have outlined the HCMT technique for the example of a specific resonator configuration, consisting of a series of

identical cavity rings, excited through two parallel bus waveguides. Within certain limits, the semi-numerical model should

be able to tackle similar CROW configurations, without principal restrictions on distances or positioning of elements, or

on excitation conditions. HCMT models should thus be a convenient means to study other CROW-based circuits, like, e.g.,

bends in photonic molecules [25], defect-assisted CROWS [26], or tunable filters [27], from first principles, and including

the access waveguides.
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[22] Popović, M. A., Manolatou, C., and Watts, M. R., “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity

filters,” Optics Express 14(3), 1208–1222 (2006).
[23] Hammer, M., “METRIC — Mode expansion tools for 2D rectangular integrated optical circuits.”

http://metric.computational-photonics.eu/.
[24] Hiremath, K. R., “CIRCURS — Circular resonator simulator.” http://home.iitj.ac.in/∼k.r.hiremath/circurs/.
[25] Pishko, S. V., Sewell, P. D., Benson, T. M., and Boriskina, S. V., “Efficient analysis and design of low-loss whispering-gallery-mode

coupled resonator optical waveguide bends,” Journal of Lightwave Technology 25(9), 2487–2494 (2007).
[26] Schwelb, O. and Chremmos, I., “Defect assisted coupled resonator optical waveguide: Weak perturbations,” Optics Communica-

tions 283(19), 3686–3690 (2010).
[27] Morichetti, F., Melloni, A., Breda, A., Canciamilla, A., Ferrari, C., and Martinelli, M., “A reconfigurable architecture for continu-

ously variable optical slow-wave delay lines,” Optics Express 15(25), 17273–17281 (2007).

8

http://metric.computational-photonics.eu/
http://home.iitj.ac.in/~k.r.hiremath/circurs/

	Introduction
	Hybrid coupled mode theory
	Field templates
	Amplitude discretization
	Algebraic procedure
	Fast evaluation of spectral properties
	Resonances of composite systems: Supermodes

	Numerical results
	CROW model based on bend modes
	CROW model based on whispering gallery resonances

	Concluding remarks

