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ABSTRACT

Garnet films of composition (Lu,Bi)3(Fe,Ga,Al)5O12 and (Tm,Bi)3(Fe,Ga)5O12 are grown by
liquid-phase epitaxy on [111]-oriented substrates of gadolinium gallium garnet. Ferrimag-
netic films with positive or negative Faraday-rotation as well as paramagnetic films with
negligible Faraday-rotation are produced by variations of the rare earth ion substitutions.
The temperature dependence of Faraday-rotation is fitted with a molecular field model. Op-
tical rib waveguides in single and double layer garnet films with different Faraday-rotations
are realized. The nonreciprocal phase shift of the TM0-Mode is studied both theoretically
and experimentally at a wavelength of 1.3 µm. Results show that the maximum nonreci-
procal effect at room temperature of double layer films with opposite Faraday-rotation is
1.6 times as large as that of comparable single layer waveguides. But, because of the large
temperature dependence of the Faraday-rotation of the positive rotating films, these wave-
guides show a large temperature dependence of the nonreciprocal phase shift. This problem
can be avoided if the positive rotating layer is replaced by a paramagnetic layer. Agreement
between calculations and measurements is excellent.

INTRODUCTION

Magneto-optic isolators play an important role in optical communication technique. They
are used to protect the semiconductor lasers from reflected light. At present only bulk
isolators are available. To realize cheap integrated optical isolators, magnetic garnet films
can be used. They combine low absorption with high Faraday-rotation in the near infrared.
The Faraday-rotation, which is the basis of the nonreciprocal effects, can be enhanced by
bismuth substitution. Various kinds of optical isolators have been proposed [1, 2, 3, 4,
5, 6, 7, 8, 9, 10]. Some promising concepts of integrated optical isolators and circulators
rely on the nonreciprocal phase shift of TM modes [11, 12], which is the difference ∆β =
βfw − βbw between the forward and backward propagation constants βfw and βbw of TM
modes, respectively. The device length of such isolators is inversely proportional to this
effect so that an enhancement is desirable. For this purpose double layer garnet films with
opposite Faraday-rotation are suitable [13]. In this paper it is shown, how the temperature
dependence and the absolute value of ∆β can be optimized by choosing a proper geometry
of the waveguides.

NONRECIPROCAL RIB WAVEGUIDES

The following analysis is performed for the basic rib geometry sketched in Fig. 1. Mode
propagation is assumed along the z axis and the magnetization M is adjusted in the film
plane transversely to the propagation direction. Neglecting optical damping, the dielectric
tensor of the magneto-optic films can be written as
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Figure 1: Basic geometry of the rib waveguide.

n is the isotropic refractive index and ξ represents the magneto-optic effect. It is related to
the Faraday-rotation ΘF by

ξ ≈ 2nΘF/k0, (2)

where k0 is the vacuum wave number.

Using Maxwell’s equations, one can derive the following partial differential equations
describing quasi TE and quasi TM modes, respectively [14] :

(−∂2
x − ∂2

y + β2)Ey = εk2
0Ey , (3)

(−ε∂xε
−1∂x − ∂2

y + β2 − εβ(∂x

ξ

ε2
))Hy = εk2

0Hy (4)

with ε = n2. The TM mode equation contains a term linear in β which causes the nonreci-
procal effect. TE modes behave reciprocal.

These equations can be solved using a finite difference [14] or a finite element method
[15] . Since the term εβ(∂xξ/ε

2) can be regarded as a small perturbation, we first solve
the unperturbed mode equation utilizing a finite element method [16] . Then perturbation
theory yields

∆β =

∫ ∫

|Hy|
2(∂x

ξ
ε2 )dxdy

∫ ∫

ε−1|Hy|2dxdy
(5)

for the nonreciprocal phase shift [17] .

To achieve a large |∆β|, double layer garnet films with opposite Faraday-rotation are
prepared where the boundary between layers is located close to the maximum of |Hy|

2 [13].
Double layer waveguides with a positive rotating bottom layer and a negative rotating top
layer show the highest differential nonreciprocal phase shift [18]. To reverse the sign of the
Faraday-rotation from negative to positive, gallium is substituted onto the tetrahedral sites
of the garnet until the magnetization of the octahedral sites dominates. Thus a compensation
wall is established separating the layers with Θ−

F < 0 and Θ+
F > 0. This procedure always

results in |Θ−

F | > |Θ+
F |, see Ref. [13].

The temperature dependence of the Faraday-rotation of the garnet films investigated is
displayed in Fig. 2. The composition and the material parameters of both samples are given
in Table 1. Due to the large temperature dependence of the positive Faraday-rotation such
films are not suitable for the realization of a device. Therefore, we use a paramagnetic
bottom layer (0.18 µm) with negligible Faraday-rotation. .
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Figure 2: Measured temperature dependence of the Faraday-rotation ΘF fitted to molecular
field theory [19]. The composition and the material parameters of both samples are given in
Table 1.

Table 1: Material parameters of the investigated films (λ = 1.3 µm, T = 295K).

sample composition x y z d ΘF n
(f.u.) (f.u.) (f.u.) (µm) (deg/cm)

1 bottom Tm3−xBixFe5−yGayO12 0.71 1.71 0 0.20 0 2.20
1 top Lu3−xBixFe5−y−zGayAlzO12 - - - 0.40 -900 2.27
2 bottom Lu3−xBixFe5−yGayO12 1.08 0.45 0 0.35 -1450 2.33
2 top Lu3−xBixFe5−yGayO12 1.38 1.63 0 0.35 350 2.27

In Fig. 3 three different geometries are presented together with the calculation of ∆β for
single and double layer rib waveguides. The parameters are typical for the films investigated
in this paper. It turns out that the double layer with the opposite Faraday-rotation show
the highest nonreciprocal phase shift. But also in the case of paramagnetic bottom layer the
maximum ∆β is 1.4 times larger as compared to the single layer geometry.

POLARIZATION MEASUREMENT

The nonreciprocal effect of planar waveguides has been measured by Mizumoto et al. [20]
using interference technique and by Gerhardt et al. [21] and Wallenhorst et al. [13] using
optical mode spectroscopy. For magneto-optic rib waveguides the nonreciprocal phase shift
has been determined by Okamura et al. [22] applying an optical polarization technique.
Shintaku et al. [23] applied an improved polarization technique which takes the superposition
of TM and TE modes with different mode profiles into account.

To determine the waveguide parameters we used another polarization method presented in
ref.[18]. This method, in addition, allows to detect depolarizing effects caused by scattering
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Figure 3: Calculated nonreciprocal phase shift ∆β of the TM00-Mode for different waveguide
structures at λ = 1.3 µm. The waveguide parameters of the layer denoted with N are n = 2.33
and ΘF = −1450◦/cm and for P: n = 2.27 and ΘF = +350◦/cm. The refractive index of
the paramagnetic layer is n=2.2 . The rib width w and the rib height h are 2.0 µm and
0.04 µm and the refractive indices of the substrate and cover are 1.95 and 1, respectively.
The thickness of the bottom layer is chosen to yield a maximum for the nonreciprocal phase
shift |∆β|.

at defects at the end faces and waveguide flanks and by excitation of higher order modes.
Furthermore, we are able to measure the TE/TM modecoupling. For the measurement we
couple light of different linear polarizations into the waveguide and determine the polarization
of the output light. Then we fit the waveguide parameters to the measured changes of
polarization induced by the waveguide. For this purpose we apply the Jones formalism to
the modes of the waveguide.

RESULTS AND DISCUSSION

The calculations displayed in Fig. 3 show that one can enhance ∆β by using double layers.
The waveguides with a positive rotating top layer and a negative rotating bottom layer show
the highest differential nonreciprocal phase shift [18]. However, the positive rotating film
causes a large temperature dependence of ∆β. To reduce this effect, the positive rotating
film is replaced by a paramagnetic one with negligible Faraday-rotation. In Fig. 4 the
temperature dependence of ∆β of two double layer films is displayed. To calculate ∆β(T )
of these samples one can use Eq. 5 in the following form:

∆β(T ) =

∫ ∫

|Hy|
2k0/2n(∂x

Θi(T )
ε2 )dxdy

∫ ∫

ε−1|Hy|2dxdy
mit i = s, F1, F2, c. (6)

The functions ΘF1(T ) and ΘF2(T ) are given from measured temperature dependence of
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Figure 4: Measured temperature dependence of the nonreciprocal phase shift ∆β as com-
pared with calculations. The composition and the material parameters of both samples are
given in Table 1.

Faraday-rotation of the single layers by fitting with a molecular field theory (Fig. 2). The
nonreciprocal phase shift ∆β(T ) of sample 2 is mainly influenced by the top layer with Curie
temperature: TC = 313 K . The small ∆β of sample 1 is caused by the low Faraday-rotation
ΘF2 = – 900 deg/cm. However, the temperature dependence is much better as compared to
that of sample 2.

CONCLUSIONS

Double layer rib waveguides are a good choice to realize nonreciprocal devices. The temper-
ature dependence of the nonreciprocal phase shift ∆β decreases by using double layers with
a paramagnetic film instead of a film with positive Faraday-rotation. The further aim is to
compensate ΘF (T ) of the negative rotating top layer by using a positive rotating bottom
layer with opposite temperature dependence of ΘF in the range between 270 K and 350 K.
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to be published in May 1998, 1998.

[19] G. Winkler, Magnetic garnets, 1981.

[20] T. Mizumoto, O. Kiyoshi, T. Harada, and Y. Naito, Journal of Lightwave Technology,
LT-4, (3), pp. 347–352, 1986.
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