A vectorial solver for the reflection of semi-confined waves at slab waveguide discontinuities for non-perpendicular incidence

Manfred Hammer ${ }^{1,2, *}$
${ }^{1}$ MESA ${ }^{+}$Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
${ }^{2}$ University of Paderborn, Theoretical Electrical Engineering, Paderborn, Germany
*m.hammer@utwente.nl

The non-normal incidence of thin-film guided, in-plane unguided optical waves on straight, possibly composite slab waveguide facets is considered. The quasi-analytical, vectorial solutions permit to inspect polarization properties of reflected and refracted guided waves, radiative losses, and full field details near the facet.

Non-normal light incidence on a slab waveguide discontinuity

The effects of a straight transition between regions with different layering, or of a core facet, on thin-film guided, in-plane unguided light forms the basis for a series of classical integrated optical components. While scalar TE / TM Helmholtz equations apply for perpendicular incidence, for nonnormal incidence one is led to a vectorial problem [1] that is formally identical to that for the modes of 3-D channel waveguides. Here, however, it needs to be solved as a parametrized, inhomogeneous system on a 2-D computational window with transparent-influx boundary conditions.

Vectorial, quasi-analytical solutions by quadridirectional eigenmode propagation (QUEP)

As a step beyond the scalar approximation [1] and an older bidirectional approach [2], we report on a dedicated vectorial solver for - in principle - arbitrary rectangular cross section geometries, based on simultaneous expansions into slab modes along two orthogonal coordinate axes (QUEP, [3]). A review of general aspects (solver specifics, power balance, reciprocity, characteristic angles), will be followed by a discussion of solutions for different configurations, including the example below.

Reflection of semi-guided plane waves at a thin film facet. (a): reflected / outgoing power carried by the $T E_{0}$ $/ T M_{0}$ modes ($R_{\text {TE0 }}, R_{\text {TMO }}$) and by all TE / TM waves ($P_{T E}, P_{T M}$) for $T E_{0}$ - (top) or $T M_{0}$-excitation (bottom), versus incidence angle θ; critical angles $\theta_{c}, \theta_{s}, \theta_{\mathrm{m}}$ for power being carried away by "cover", "substrate", and TM -fields; quasi-Brewster angle $\tan \theta_{B}=n_{c} / n_{\text {eff, TEO }}$. (b): e.m. components (absolute values) for $T E_{0}$-excitation at $\theta=30^{\circ}$. Parameters: $n_{s}: n_{f}: n_{c}=1.5: 2.0: 1.0, d=0.5 \mu \mathrm{~m}$, vacuum wavelength $\lambda=1.55 \mu \mathrm{~m}$.

References

[1] F. Çivitci, M. Hammer, and H. J. W. M. Hoekstra. Optial and Quantum Electronics, 46(3):477-490, 2014.
[2] W. Biehlig and U. Langbein. Optical and Quantum Electronics, 22(4):319-333, 1990.
[3] M. Hammer. Optics Communications, 235(4-6):285-303, 2004.

