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ABSTRACT

We analyze coupled optical defect cavities realized in finite one-dimensional Photonic Crystals. Viewing these as
open systems where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies
(eigenvalues) and Quasi-Normal-Modes (eigenfunctions).Single defect structures (photonic crystal atoms) can be viewed
as elementary building blocks for multiple-defect structures (photonic crystal molecules) with more complex functional-
ity. The QNM description links the resonant behavior of individual PC atoms to the properties of the PC molecules via
eigenfrequency splitting. A variational principle for QNMs permits to predict the eigenfield and the complex eigenvalues
in PC molecules starting with a field template incorporatingthe relevant QNMs of the PC atoms. Further, both the field
representation and the resonant spectral transmission close to these resonances are obtained from a variational formulation
of the transmittance problem using a template with the most relevant QNMs. The method applies to both symmetric and
nonsymmetric single and multiple cavity structures with weak or strong coupling between the defects.

1. INTRODUCTION

Photonic Crystal (PC) based devices attracted much interest in the past two decades concerning both fundamental and
applied aspects. Plenty of modeling and computational techniques are applied and well established.1–3 We consider 1-D PC
structures that can provide qualitative insight and means for interpreting the physics of higher dimensional structures. More
specifically, we consider planar layered inhomogeneous media with piecewise constant refractive index as the traditional
model of 1-D PCs. Although they belong to the field of multilayer optics,4 an old and well explored field, a novel way of
modeling these devices has certain theoretical and practical interest for itself.

The open and finite nature of realistic structures is accessible by directly characterizing resonance properties via an
investigation of the quasi-normal modes and associated complex frequencies. Quasi-normal modes (QNMs) are eigen-
functions associated with the complex eigenfrequencies arising from the eigenvalue problem for outgoing waves.5 The
real parts of the complex eigenfrequencies are connected with the transmission resonance frequencies (local maxima of
the transmission) and the imaginary parts with the Q-factors (or linewidth) of the resonant transmission profile. Properties
of the QNMs and related PC structures have been addressed for1-D PC structures in,6–8 while for 2-D PC structures the
theory is by far less often addressed and developed, with only partial results.9

We specialize to finite PC structures with suitable defects in otherwise periodic arrangements. These defects are
forming Fabry-Perot cavities enclosed by and separated by leaky mirrors that allow the exchange of energy between
cavities. These Coupled Optical Microcavites (CMC) already attracted research interest as they provide means for the
implementation of optical filters, resonators, delay linesand other devices in both passive and active structures.3,10–13

Reference method for analyzing one-dimensional structures is a Transfer Matrix Method (TMM).4 A description in the
framework of different coupled mode theory approaches has been a traditional way of analysis,14–17 as far as interacting
optical waveguides (i.e., mostly systems with well confinedoptical states) are concerned. However, an analysis of open,
leaky structures directly based on QNMs seems to be missing.This paper considers some possibilities for the direct
characterization of open cavities in 1-D PC structures using only the most relevant QNMs.

Composite CMC structures can be viewed as being formed from simpler single cavity structures or some other ele-
mentary building blocks. This decomposition is usually quite arbitrary and can be done in many different ways for a given
structure. However, when the individual modes are well localized in the vicinity of their respective cavities, a field template
for the composite structure can be based on the superposition of the individual cavity modes. In literature the basic struc-
tures are sometimes called “photonic crystal atoms” which are the elementary building blocks for more complex “photonic
crystal molecules”. The key idea is that by combining PC atoms with known properties more complex PC molecules can
be obtained with engineered properties. Based on QNMs and a variational principle, our procedure enables the derivation



of the properties of the composite structures in a constructive way using the known properties of the building blocks and
certain design rules for the composite structure.

In the context of CMCs, we address the splitting of eigenfrequencies by using a variational principle together with the
related QNMs of the individual cavities. QNMs of the composite structure (super-modes) can be approximated by this
approach. Further, we use the characterization of the CMCs in terms of quasi-normal modes to describe approximately
the resonant response to an external excitation in the frequency domain and the related field profiles. The approximate
frequency domain description follows from a suitable variational formulation18 for the transmission problem, using the
most relevant QNMs in establishing appropriate field templates.19

2. THEORY

We consider 1-D optical structures in the frequency domain under external excitation. The optical fieldE(x) excited
by the external influxEinc = Aince

i(ninω/c)x, with ω ∈ R andAinc given, for vacuum speed of lightc, satisfies the
Helmholtz equation

∂2
xE +

ω2

c2
n2(x)E = 0, (1)

on an intervalx ∈ [L,R], and transparent influx boundary conditions
(

∂xE + i
ω

c
ninE

)

x=L
= 2i

ω

c
ninAinc ,

(

∂xE − i
ω

c
noutE

)

x=R
= 0 (2)

at the boundariesx = L,R. The exterior regionsx < L andx > R are assumed to be homogeneous with refractive indices
nin andnout, respectively. For structures with piecewise constant refractive index an exact solution can be obtained via a
standard and well known transfer matrix method;4 a brief explanation is given in appendix A. This serves as reference for
the approximate models discussed below.

Properties of passive, open optical structures with energyexchange between the constitutive elements and the environ-
ment are captured adequately by a formulation of an eigenvalue problem for complex frequencies. A finite structure can
be viewed as an open system with transparent boundaries which permit the leakage of energy to the exterior, see Figure 1
A). The electric field in the interiorx ∈ (L,R) satisfies the Helmholtz equation:
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This constitutes an eigenvalue problem for the frequencyω as the complex eigenvalue and the field profileQ(x) as eigen-
function (Quasi-Normal Mode).5–7,20 The eigenvalue problem is nonlinear because the eigenvalueappears in the boundary
conditions explicitly.20 QNMs can be used to solve the initial-value problem of energyleakage out of a given open struc-
ture. The applicability of QNMs for solutions of the transmission problems with given influx relies on specific pseudo-
orthogonality and completeness properties of QNMs when used as a basis set for an eigenfunction expansion.6,7

A variational formulation of the QNM eigenvalue problem canbe based on the functional18

Lω(Q) =
1

2

∫ R

L

(

(∂xQ)
2
−

ω2

c2
n2(x)Q2

)
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)
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If Lω becomes stationary, i.e. if the first variation ofLω(Q) vanishes for arbitrary variations ofQ, thenQ satisfies equation
(3) with equations (4) as natural boundary conditions. The value of the functional (5) with the proper eigenfunction/
eigenvalue pair(ω,Q) inserted is zero, i.e.

Lω(Q) = 0. (6)

This property can be shown analytically by computing the partial derivative of the first term in the (5).

We specialize to the analysis of optical defect modes existing in the bandgap of the underlying periodic structure. To
avoid using the full set of QNMs and the completeness properties of QNMs to determine approximations of the optical
transmission and of the related field profiles, we apply a variational principle and a specific field template that consistsof
QNMs associated only with the optical defects. Details of this procedure can be found in19 and in appendix B.



Figure 1. The coupled optical defect structures considered in this paper are finite periodic multilayer structures consisting of two materials
with high indexnH and low indexnL. The layer thicknessesdH , dL are chosen to be quarter-wavelength for the target wavelength
(related to a reference frequencyω0). Optical defects are introduced as changes of the layer thicknesses or refractive indices in the
otherwise periodic sequence. The whole structure is enclosed by two semi-infinite media of indicesnin andnout. A composite multiple
defect structure A) can be decomposed into usually simpler single defect structures B) and C).

2.1 Coupled cavities

We start with the QNMs(ω1, Q1), . . . , (ωN , QN ) for refractive index distributionsn1(x), . . . , nN (x) of simpler (not
necessarily single cavity) structures. Solutions of the eigenvalue problem for the composite structure are assumed tobe
well approximated by linear combinations of the QNMs belonging to the simpler structures. Therefore, we choose the field
template

Q =
N

∑

p=1

apQp (7)

which represents a restrictionLω(Q) → Lω(a1, . . . , aN ) of the solutions of the original problem. Stationarity of the
functional (5) transforms on the restricted set to the conditions

∂Lω

∂ap
(a1, . . . , ap, . . . , aN ) = 0, for p = 1, . . . , N, (8)

that can be written as an algebraic quadratic eigenvalue problem21

(

ω2M + ωN + P
)

a = 0 (9)

for the complex eigenfrequenciesω of the composite system. The eigenvectorsa = [a1, . . . , aN ]T are the unknown
coefficients in the linear superposition (7) of the single cavity QNMs. The elements of the matricesM = [Mlk]N×N ,
N = [Nlk]N×N , P = [Plk]N×N are
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1

c2

∫ R

L
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i

c
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∫ R

L

∂xQl∂xQkdx. (10)

Equation (9) enables the approximate solution of the eigenvalue problem for the composite structure. It directly links
the resonance behavior of the individual constitutive elements (PC atoms) to the resonance properties of more complex
structures (PC molecules), i.e. describes the eigenfrequency splitting. Both resonant frequencies and the related Q-factors
can be estimated. Influences of the external and internal confinement (type, length and strength of the “mirrors” in the
structure) or perturbations of various parameters can be directly analyzed.

Usually the decompositions of the composite structure, i.e. the precise choice of the elementsQp in (7) is to some
degree arbitrary. Supporting arguments can be based on results from direct computations, on physical intuition, but also on
the following observation. For fieldsQl with associated frequencyωl and refractive indexnl that satisfy (3), (4), equation
(9) can be written as

S a = 0, (11)

where

Slk =

∫ R

L

ω2n2(x) − ω2
l n2

l (x)

c2
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c
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If the trial field includes the exact solution for the composite structure with the propertyω = ωl then (11) is satisfied.
Expression (12) suggests that the refractive index distributionsnl of the simpler structures in the decomposition should be
chosen as close as possible to the exact structure (refractive indexn).



2.2 First order perturbation correction for complex eigenfrequencies

We look for corrections of the complex eigenfrequencies fora given structure when small, localized perturbations of
the permittivity are present. A first order perturbation correction for the complex eigenvalue can be obtained by using (5)
and a known QNM eigenpair(ω0, Q0) of the unperturbed problem with refractive index distribution n0(x). It is reasonable
to assume that a small perturbation of the original structure does neither change substantiality the position of the complex
eigenfrequencies in the complex plane nor the shape of the corresponding QNMs. We consider a permittivity perturbation
in the form

n2(x) = n2
0(x) + n2

p(x). (13)

For small (in effect) perturbationsn2
p we look for a first order correctionω1 to the eigenfrequencyω = ω0+ω1. Variational

accuracy guarantees that the eigenfrequency is determinedup to first order if the eigenfunction is known up to zeroth order
(solution of the unperturbed structure). Upon restricting(5) to the zeroth order field approximationLω(aQ0) → L(a), the
stationarity condition on the restricted set

∂L

∂a
(a) = 0 (14)

gives an equation for the eigenfrequency correction. Keeping only the first order terms inω1 and using the property (6)
satisfied by the eigenpair(ω0, Q0) of the unperturbed problem, the correction to the complex eigenfrequency reads
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Obviously this procedure is closely related to the theory of(2.1); it may be viewed as a “coupled mode theory” with only
one mode in the template (7). It is possible to extend this method and to derive both corrections to the eigenvalue and to the
eigenfunction up to arbitrary order using a variational principle. An iterative procedure for higher order corrections will be
reported elsewhere.

3. RESULTS AND DISCUSSION

A series of examples of CMCs serves to validate the describedmethods. First, we apply the variational principle
of Section 2.1 for approximating supermodes in a double-cavity structure using known QNMs of the individual single
cavities. Second, the variational form of first order perturbation theory for QNMs (Section 2.2) is used to analyze shifts
of cavity resonances subjected to local perturbations of the refractive index. Third, the method of appendix B is applied
to estimate the transmission on the basis of a few, most relevant QNMs. Finally, we consider multiple-defect structures
designed to operate in weak and in strong coupling regimes. Also here our variational approximation method links the
resonant transmission to the underlying QNMs.

3.1 Double cavity structure

Consider a layer arrangement coded as(HL)M1D(LH)M1 , whereM1 = 4 is the number of layer pairs in two mirrors
that enclose a single cavity, withnH = 3.42, nL = 1.0, between two semi-infinite media of the same refractive index
nin = nout = 1.0. The defect is introduced as a central layer of thicknessdD = 2dH with high refractive index
nD = nH . A complex QNM eigenfrequency associated with the defect ispresent in the bandgap region of the related
periodic structure. This eigenfrequency has an imaginary part that is several orders of magnitude smaller (absolute value)
than all other eigenfrequencies in the QNM spectrum.19 Usually this is a sign of a strong localization of the field, i.e. for
efficient energy trapping in the vicinity of the defect.

The combination(HL)M1D(LH)M2LD(LH)M1 of two of these single cavity structures constitutes a multilayer ar-
rangement with two defects and three mirrors (two enclosingmirrors of “length” M1, one separating mirror of length
M2). The defects form two Fabry-Perot-like resonant cavitieswith two corresponding QNMs and eigenfrequencies, see
Figure 2 A). These eigenfrequencies correspond to two transmission resonances (Figure 2 B) ). The resonant response of
the double-cavity structure (the PC molecule) can be viewedas being generated through eigenfrequency splitting from the
resonance of the single cavities (the PC atoms). By changingthe numberM2 of pairs in the separating mirror one can



control the interaction strength between the two cavities,where the relative distance of the complex frequencies reflects
weak or strong coupling. If the separation is small, the overlap of the individual QNMs is substantial, which results in a
strong separation of eigenfrequencies. Increasing the separation leads to close eigenfrequencies and results in the formation
of a transmission pass-band. With a field template (7) that consists of a linear superposition of the two QNMs associated
with the individual left and right cavities, the procedure of Section 2.1 permits the estimation of both eigenfrequencies
and QNMs of the PC molecule. According to Figure 2 this is an excellent approximation even for quite moderate cavity
separationsM2 with rather strong interaction.

In contrast to the composite structure, the permittivity profiles that constitute the PC atoms do not show a particular
symmetry (cf. Figure 1). Hence the QNMs associated with the individual cavities do not exhibit a special symmetry. When
the decomposition is performed properly, however, their symmetric and skew-symmetric linear combinations approximate
the symmetric and skew-symmetric supermodes of the composite structure, see Figure 2 C) and D).
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Figure 2. A): complex eigenfrequenciesω
for the double cavity structure, direct com-
putations and CMT approximations for dif-
ferent lengthsM2 of the separation region;
B): transmittance, direct TMM calculation;
C), D): QNMs (supermodes) for the double
cavity structure withM2 = 5, direct com-
putation (continuous) and CMT approxima-
tion (dashed).

Further, the variational method of appendix B allows to characterize the contributions of individual QNMs to the
spectral transmission. Figure 3 compares two different settings: The template (21) for the transmission field can be based
either on the two (exact) supermodes of the PC molecule, or onthe QNMs supported by the PC atoms. In both cases the
resulting approximations for the transmission are indistinguishable (on the scale of the figure) from the TMM reference.
Especially interesting is the weak coupling regime, where the direct computation based on the TMM method can not easily
explain the resonant character of the transmission band. However, examination of the relevant complex eigenvalues, ofthe
QNMs, and of the expansion coefficients describes completely the resonant character of the transmission band.

3.1.1 Perturbation of the double cavity structure

The perturbation theory from Section 2.2 is applied to analyze eigenfrequency shifts due to small local perturbations
of the cavity refractive index. Below we look at both symmetric and asymmetric perturbations of the symmetric original
structure. The perturbative correction for QNMs estimatesreasonably, in first order, both real and imaginary parts of the
complex eigenfrequencies. This can be traced further to changes of the transmission, i.e. to the position of resonance
frequencies and the related Q-factors. Figure 4 introducesthe specific configuration.

First we consider an asymmetric perturbation, where the refractive index of only one of the defects is raised locally.
According to Figure 5, this leads not only to shifts in the positions of the eigenfrequencies ( A) ), but also to dramatic
changes of the transmission response ( B) ). The perturbation corrections (15) are obtained here with the QNMs (super-
modes) of the original composite structure. Figure 5 A) shows the paths of the eigenfrequencies in the complex plane for
varying strengthp of the perturbation, where the influence of the refractive index change has been evaluated by expression
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Figure 3. Transmittance (large axes, A), D); direct TMM computations and CMT model, superimposed curves) and coefficientsap for
approximations (appendix B) to the transmission problem, if the template (21) includes either the two exact supermodes of the composite
structure (left insets B), E) ) or alternatively the QNMs associated with the individual left and right cavities (right insets C), F) ). The
upper plots A), B), C) correspond to a moderate cavity separationM2 = 5, the lower plots D), E), F) to a setting withM2 = 8, i.e. with
weaker interaction.

Figure 4. Perturbation of a CMC by localized refrac-
tive index changes. The double cavity structure is
encoded as(HL)4H(2L)(HL)8H(2L)(HL)4H.
The individual layers with alternately high (H) and
low refractive index (L) are quarter-wavelength with
nH = 1.5, nL = 1, nin = nout = 1. Two low in-
dex layers with larger half-wavelength thicknessdD

form the two defects. Perturbations are introduced
as local changes of the permittivityn2 = n2

L(1+p)
in the middle of the defect layer with a thickness of
dp = dD/5 andp ∈ (0, 0.05).

(15) on the one hand, and, for comparison, by direct TMM calculations on the other hand. As expected, the straight lines
given by the first order perturbational expression are tangential to the reference paths. In this case the range of a reasonable
approximation level is rather limited, because the perturbation destroys the overall symmetry of the structure.

If, in contrast, both cavities are perturbed in a symmetrical way, the results of the perturbational procedure are accu-
rate over a much larger range of perturbation strengths, as seen in Figure 5 C). Now the eigenfunctions of the perturbed
structured retain their symmetry, i.e. the assumption thatthe QNM of the original structure forms an acceptable approxima-



tion to the perturbed configuration is apparently better justified. For both the symmetric and the asymmetric perturbation,
the variational procedure of appendix B, in Figure 5 B) and D)applied with the supermodes of the perturbed composite
structure in the template, gives accurate results for the spectral transmission through the double cavity structure.
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Figure 5. A), C): complex eigenfrequencies for the double cavity structure of Figure 4, direct computations and first order perturbation
theory approximations; B), D): spectral transmittance, QNM approximation (appendix B) based on exact QNM supermodes, and TMM
reference; asymmetric ( A), B) ) and symmetric perturbations ( C), D)).

For the asymmetrically changed double cavity configurationof Figure 5 A) we observed that the perturbational ex-
pression (15) grossly over- or underestimated the QNM eigenvalue correction. This was attributed to the fact that the
underlying field template could not respond to the broken symmetry of the perturbed structure. It is thus intriguing to
try a modified template that combines separate QNMs of the twoindividual cavities, i.e. to apply the theory of Section
2.1. Necessarily with this procedure one encounters a certain error already for the approximation of the QNM supermode
eigenfrequencies of the unperturbed, symmetric structure(observe that this concerns a configuration with relativelylow
refractive index contrast and strong interaction). Still,according to Figure 6 A), the eigenfrequency shifts predicted by the
CMT formalism cover the whole range of perturbation strengths considered here with reasonable accuracy, at least as far
as real parts are concerned. Plots B) and C) of Figure 6 show that the eigenfunctions of the perturbed structure are indeed
not even approximately symmetric.

3.2 Multiple cavity structures

First, we look at the multiple cavity structure (the PC molecule) that is formed by repeating the former single cavity
structure (the PC atom) according to the following design rule. Repetition of the unit cellPCA1 = (HL)M1(2H)(LH)M1 ,
here withM1 = 4, generates the molecule[PCA1, L]J , whereJ is the number of PC atoms. The refractive indices are
the same as given in Figure 4 for the previous example. The plots A) and B) in Figure 7 show the complex frequencies
and the resonant transmission for PC molecules withJ = 2 andJ = 3, respectively. Obviously these PC molecules
operate in the weak coupling regime, as is reflected in the proximity of the eigenfrequencies ( A) ) and in the characteristic
transmission pass-band ( B) ). The transmission, estimatedaccording to the recipes of appendix B with directly computed
QNM supermodes of the molecule, is in the excellent agreement with the TMM reference. The number of relevant QNMs
in the composite structure is equal to the number of PC atoms;modifications of this number permit a constructive tailoring
of the transmission pass-band. For additional tuning of thetransmission that might be of interest, such as ripple suppression



0.996 0.997 0.998 0.999 1 1.001 1.002
−1.885

−1.88

−1.875

−1.87

−1.865

−1.86

−1.855

−1.85

−1.845

x 10
−3

Re(ω/ω
0
)

Im
(ω

/ω
0)

A)

 

 

p=0; direct
p=0; CMT
p=0.0125; direct
p=0.0125; CMT
p=0.025; direct
p=0.025; CMT
p=0.0375; direct
p=0.0375; CMT
p=0.05; direct
p=0.05; CMT 0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

x[µm]

R
e,

Im

B)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

x[µm]

R
e,

Im

C)

Figure 6. A): complex eigenfrequencies for the double cavity structureof Figure 4, direct TMM computations and CMT approximations,
in the case of asymmetric perturbations. B), C), for or a perturbation strengthp = 0.05: QNM profiles obtained with CMT (dashed
lines) and direct computation (continuous).

(to optimize for a flat-top response), one could adjust the strength (number of layer pairs) of the mirrors, or add a certain
degree of asymmetry to the final design.3,19

Second, we consider the molecule formed by repeating the unit cell PCA2 = (HL)M1(2H)(LH)M2L(2H)(LH)M1 ,
with M1 = 4 andM2 = 2 (a strongly coupled double cavity structure), coded as[PCA2, L]J . In Figure 7 the complex
eigenfrequencies ( C) ) and the spectral transmission ( D) ) are shown. This procedure represents the design of a multiple
channeled filter with narrow bandpass transmission. By proper adjustment of the inter cavity separation (i.e. of the coupling
strength), the relative position of the transmission channels can be controlled. Additional unit cells contribute to the
eigenfrequency splitting in such a way that the split eigenfrequencies are close. Therefore, no additional transmission
bands appear but the width of the transmission pass-bands isnarrowed.

Finally, a combination of the PC atomsPCA1 andPCA2 leads to an even more complex composite structure. The
PC molecule is given by the sequencePCM = [PCA1, L, PCA2, L, PCA1]. Figure 8 shows eigenfrequencies ( A) ) and
the corresponding QNMs ( B)-E) ). The individual contributions of each atom to the supermode profiles of the molecule
are clearly visible. The eigenfrequenciesω2 andω3 are the product of a weak coupling between the atomsPCA1 (the
single cavity structures), according to the shape of the corresponding QNMs ( D), E) ). The eigenfrequenciesω1 andω4

originate fromPCA2 and are affected byPCA1 only in the form of an increased confinement (i.e. a lower absolute
value of the imaginary parts of the eigenfrequencies). The transmission for the composite structure exhibits a characteristic
combination of both constitutive atoms. The high transmittance peaks are caused by the resonances associated withPCA2,
while the transmission resonances ofPCA1 are modulated (here they are suppressed) by the presence ofPCA2. In this
case, light can not establish an efficient propagation path from the leftPCA1 to the right one, because the frequencies
supported byPCA1 are inside the attenuation region ofPCA2, see Figure 7.

We like to emphasize here that the QNM analysis can be very useful for an interpretation of results and for an accurate
prediction of the outcome of transmission experiments, as shown in the previous paragraphs. Here, the approach establishes
a sound foundation of the concept of photonic crystal molecules, that cannot be provided easily by direct TMM solutions.
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Figure 7. A), B): complex eigenfrequencies and transmission for weakly coupled multiple cavity structures[PCA1, L]J ; C), D): fre-
quencies and transmission for PC molecules[PCA2, L]J formed by repeating a double cavity unit cell in the strong coupling regime.
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Figure 8. A): complex eigenfrequenciesω1 – ω4 of the PC molecule[PCA1, L, PCA2, L, PCA1] formed by combination of the single
and double cavity atoms of Figure 7. The insets show the corresponding QNMs, whereω1, ω2, ω3, andω4 are related to profiles B), D),
E), and C). F): spectral transmission for the composite structure.

4. CONCLUSIONS

In this paper we consider the open and finite nature of a specific class of PC structures by directly characterizing their
resonance properties via an investigation of the quasi-normal mode spectrum. A variational principle for QNMs allows
to approximate the eigenfrequencies and QNMs of composite multiple cavity structures by eigenfrequencies and QNMs



of simpler structures. Further, a constructive, recently developed way19 of relating a quasi-normal mode description to
transmission properties of optical defect microcavities in 1D PCs is applied. Detailed remarks about alternative existing
methods can be found in.19

We specialize to defect structures that support transmission modes in the bandgap of otherwise periodical structures.
Numerical examples show that the method is applicable for both symmetric and nonsymmetric layer arrangements and
both weak and strong coupling between defects.

A form of coupled mode theory for finite, open 1-D PC structures is proposed, that uses directly the most relevant
QNMs. Closely related, an expression for a first order perturbation correction of the complex eigenfrequencies is derived
by means of variational restriction. In contrast to other methods that use different types of basis fields and rely eitheron
a tight-binding approximation10,13 and/or on supercell methods,11,12 with our approach the finite nature of the individual
building blocks in the composite structure is fully respected.

Further, we analyzed a series of characteristic examples ofmultiple cavity structures and were able to point out charac-
teristic features in the composite structures as originating from simpler structures. The results suggest that the notion of the
photonic crystal molecules can be founded on the QNM analysis as considered here. Together with our variational approx-
imation method, the QNM analysis offers a resourceful method for the interpretation of complex phenomena associated
with the resonance properties in 1-D PC structures.

Provided that suitable QNM basis fields can be made availableby analytical or numerical means, possible general-
izations to 2D and 3D structures could be based on suitable functional representations of the frequency domain Maxwell
equations for higher dimensions.23

APPENDIX A. TRANSFER MATRIX METHOD

For structures with piecewise constant refractive index distribution inside a finite spatial domain a method for solv-
ing both the transmittance and eigenvalue problems is the well known transfer matrix method (TMM).4 Solutions of the
Helmholtz equation are given as combinations of left- and right-traveling waves in thej-th layer

Ej(x) = Aje
ikj(x−lj−1) + Bje

−ikj(x−lj−1) (16)

for x ∈ [lj−1, lj ] in a region of constant indexnj wherekj = njω/c is the wave number in this layer. To connect the fields
inside all layers we impose continuity conditions at the interfaces:

Ej(lj) = Ej+1(lj), and ∂xEj(lj) = ∂xEj+1(lj). (17)

These conditions lead to a system of equations that can be represented in matrix form. Ordered multiplication of the
relevant matrices connects amplitudes in each layer of the structure, as well as the amplitudes in the incidence and output
regions:

(

Ain

Bin

)

=

(

m11(ω) m12(ω)
m21(ω) m22(ω)

)(

Aout

Bout

)

. (18)

The transmittance problem with incoming wave from the left is solved withBout = 0 for specifiedAin (amplitude of the
incoming wave) with given real frequencyω ∈ R. The amplitude transmission and reflection coefficients areexpressed as

t(ω) =
Aout

Ain
, and r(ω) =

Bin

Ain
. (19)

If we choose conditionsAin = Bout = 0, i.e. restrict the exterior solutions to purely outgoing waves, the eigenvalue
problem with outgoing wave boundary conditions is addressed. With these conditions the system of equations can be
nontrivially satisfied if

m11(ω) = 0. (20)

Analytic continuation of the transfer matrix into the complex plane enables us to find solutions of (20) as complex eigen-
valuesω.24 By substituting the eigenvalue into the field representation (16) we obtain the corresponding eigenfunction,
up to a complex constant. To solve (20) we apply a numerical iteration procedure of Newton type.25 In cases when that
method fails to converge due to closely spaced eigenvalues,we use a more powerful technique for determining complex
solutions, based on the argument principle method from complex analysis.26



APPENDIX B. VARIATIONAL QNM MODEL OF THE TRANSMISSION PROBLEM

We specialize to finite periodic structures that possess transmission properties with a bandgap, i.e. with a region of
frequencies of very low transmission. Breaking the periodicity of the structure can give rise to defect resonances inside the
bandgap. Approximation of the spectral transmission and ofthe associated field profiles for these resonances is the aim of
our analysis. Therefore, we choose a field template for the transmittance problem as

E(x, ω) ' Emf (x, ω) +

N
∑

p=1

ap(ω)Qp(x), (21)

wherep is an index countingN relevant QNMs, i.e. those with the real part of their complexfrequency in the given
frequency range. We showed in terms of the successful application of the template (21), that the transmission resonances
associated with the defects are excited by the “mirror” fieldEmf of the periodic structure without defect, which for
frequencies inside the bandgap is an almost completely reflected wave with only a weak tail that extends into the interior
of the structure. Therefore, this template (21) quantifies the notion of a forced resonance response that appears because the
incident wave possesses a real frequency close to the real part of the complex eigenfrequency of a suitable QNM supported
by the defect structure.

This is only an approximate model for the transmittance problem in specific frequency regions, since neitherEmf

nor Q satisfy all of equations (1)-(2). The residuals can be viewed as contributions from other QNMs in the complete
set supported by the defect structure, that are not includedin (21). To find the decomposition coefficientsap, we use
a variational form of the transmittance problem.18 The transmittance problem corresponds to the equation and natural
boundary conditions, arising from the condition of stationarity of the functional

L(E) =
1

2

∫ R

L

(

(∂xE)
2
−

ω2

c2
n2(x)E2

)

dx −
iω

2c

(

ninE2|x=L + noutE
2|x=R

)

+ 2i
ω

c
ninAincE|x=L. (22)

If L becomes stationary, i.e. if the first variation ofL(E) vanishes for arbitrary variations ofE, thenE satisfies (1), and
(2) as natural boundary conditions. Restricting the functional (22) to the field template (21),L becomes a function of the
coefficientsap, for givenEmf andQp. The stationarity conditions then read

∂L

∂aq
(a1, a2, . . . , aN ) = 0, q = 1, . . . , N. (23)

The optimal decomposition coefficients are obtained as solutions of a linear system

A a = −b, (24)

wherea = [a1, a2, . . . , aN ]T is the vector of coefficients to be determined by solving the system of equations (24).A and
b are calculated according to (21, 22, 23); explicit expressions are given in.19 For given frequencyω one thus approximates
the field profile for a transmission problem with a specific incoming wave. Spectral information (transmittance, reflectance)
can be obtained by repeating this procedure for a series of frequencies. The transmittance reads

T (ω) =
1

|Ainc|2
nout

nin

∣

∣

∣

∣

∣

Emf (R,ω) +

N
∑

p=1

ap(ω)Qp(R)

∣

∣

∣

∣

∣

2

. (25)

We showed in19 that the mirror field is necessary for approximating the incoming part of the transmission field on the
whole spatial region occupied by the structure. However, anadditional approximation that is analytical in form can be
obtained without the mirror field when only the spectral transmittance profile is considered. In cases where the underlying
periodic sequence forms a good mirror, i.e. provides a high reflectance over the bandgap region, the mirror field could be
omitted from the field template. This is possible because themirror field contribution in the relevant terms of (24) becomes
negligible for the field at the end of the structure where onlyoutgoing waves are present. Then this approach can be seen
as an alternative projection technique for a QNM expansion.
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