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Abstract—Semi-guided waves confined in dielectric slab wave-
guides are being considered for oblique angles of propagation. If
the waves encounter a linear discontinuity of (mostly) arbitrary
shape and extension, a variant of Snell’s law applies, separately
for each pair of incoming and outgoing modes. Depending on the
effective indices involved, and on the angle of incidence, power
transfer to specific outgoing waves can be allowed or forbidden.
In particular, critical angles of incidence can be identified, beyond
which any power transfer to non-guided waves is forbidden, i.e.
all radiative losses are suppressed. In that case the input power is
carried away from the discontinuity exclusively by reflected semi-
guided waves in the input slab, or by semi-guided waves that
are transmitted into other outgoing slab waveguides. Vectorial
equations on a 2-D cross sectional domain apply. These are
formally identical to the equations that govern the eigenmodes of
3-D channel waveguides. Here, however, these need to be solved
not as an eigenvalue problem, but as an inhomogeneous problem
with a right-hand-side that is given by the incoming semi-
guided wave, and subject to transparent boundary conditions.
The equations resemble a standard 2-D Helmholtz problem, with
an effective permittivity in place of the actual relative permittivity.
Depending on the properties of the incoming wave, including the
angle of incidence, this effective permittivity can become locally
negative, causing the suppression of propagating outgoing waves.
A series of high-contrast example configurations are discussed,
where these effects lead to — in some respects — quite surprising
transmission characteristics.

I. INTRODUCTION

In a context of theoretical integrated optics/photonics, spatially
two-dimensional models of scattering problems usually refer
to a situation, where both the structure under study as well as
the solutions sought for the optical electromagnetic fields are
constant along one Cartesian coordinate axis. One then obtains
the familiar decoupled, TE- and TM-polarized solutions, each
governed by a scalar wave- or Helmholtz-type equation. Re-
ferring to the setting of Fig. 1, this corresponds to an angle
of incidence θ = 0◦, i.e. to normal wave incidence. These
incoming waves are confined by the slab core in the direction
(here x) normal to the slab, but show the functional dependence
of a standard harmonic plane wave in the coordinate plane
(here y-z) of the slab. Hence we shall use the term “semi-
guided waves” to characterize these types of fields.

For this overview paper we will consider a situation,
where, for the same structure, the semi-guided waves come
in towards the “discontinuity”, the central region of interest
(darker shading in Fig. 1), at oblique angles of propagation.
Fairly general considerations based on the modal properties
of the connecting slab waveguides lead to relations between
the effective indices and propagation angles of the pairs of
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Fig. 1. Schematic illustration of a general “discontinuity” of slab waveguides
as discussed in this paper. We use Cartesian coordinates x, y, z; the entire
structure is assumed to be homogeneous and infinitely extended along the
y-axis. The inner region of interest, the central irregular cylinder (darker
shading) is connected to one or more slab waveguides, with in principle
arbitrary orientation and position in the x-z-plane. The structure is excited
by a semi-guided wave, given by the guided mode supported by one of these
connecting slabs, here with x-dependent profile, and with the functional shape
of a plane wave, propagating in the y-z plane at an angle θ with respect to
the cross section of the central cylinder.

modes that participate in the scattering process. These can
be given in the form of Snell’s law [1], [2]. In particular,
critical angles of incidence can be identified, above which
power transfer to specific outgoing waves is suppressed. We
review that theory in Section II. A brief look to the formal
vectorial equations in Section II-A shows that these effects can
be viewed as originating from an effective, angle-dependent
permittivity which can become negative.

Our list of illustrating examples in Section III covers a
recipe for the quasi-lossless excitation of a thin silicon slab
[3], corner- and step-like structures for the transfer of optical
power between guiding layers at different levels in a context of
silicon photonics [4], [5], and the oblique resonant excitation
of a dielectric strip, which might be viewed as a way to realize
what is currently discussed as “bound states in a continuum”
(BICs) [6]. Further configurations that belong in this context
are step-shaped optical folds based on air-clad slab waveguides
[7], the spiral modes supported by bent slab waveguides [8],
which also play a role in corner- and step-structures with
rounded edges [9], and differentiators and integrators for semi-
guided beams [10]. Note that with the present theory we take
up early concepts of integrated optics [11], [12], where also the
propagation of semi-guided waves in dielectric slabs has been
considered, applying models of free-space optics to the in-
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plane propagation. Here, however, we focus on examples with
substantial refractive index contrast, where the effects related
to the oblique propagation (loss suppression, critical angles,
and intervals between them) are much more pronounced.

II. SLAB WAVEGUIDE DISCONTINUITIES AT OBLIQUE

INCIDENCE

Following largely the arguments of Ref. [2], [5], we start
with the general “discontinuity” of Fig. 1, introduced in some
more detail in Fig. 2. One discerns the slab that supports
the incoming and potential reflected waves, further slabs that
support outgoing waves, and a central region of interest. In
case of the examples of Section III, that region covers the
waveguide interfaces, and the intermediate segment (Fig. 3), a
cylinder including the corner- and step-discontinuities (Fig. 4),
and the strip and an adjoining slab segment (Fig. 5). Cartesian
coordinates are oriented such that the entire structure is con-
stant along the y-axis with the z-coordinate along the axis of
the incoming waveguide.
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Fig. 2. Cross section view (a) of the slab waveguide discontinuity of Fig. 1.
Further panels show top views of the input waveguide (b), and generic “top
views” of any of the output slabs (c). The incoming wave propagates with
effective mode index Nin at an angle θ in the y-z-plane, with an x-dependent
mode profile. Outgoing waves with effective mode indices Nout propagate at
angles θout in the y-ξ-planes, where ξ is some suitable local coordinate along
the slab core in the x-z-cross-sectional plane.

We consider time harmonic fields ∼ exp(iωt) with angular
frequency ω = kc = 2πc/λ, for vacuum wavelength λ,
wavenumber k and speed of light c. As shown schematically
by Fig. 2(b), the incoming field is a polarized guided mode
supported by the input slab, with vectorial profile Ψin(ky;x)
and effective mode index Nin (cf. Refs. [2], [13]), propagating
at angle θ in the y-z-plane. This relates to a functional
dependence

∼ Ψin(ky , x) exp(−i(kyy + kzz)), (1)

with

ky = kNin sin θ, (2)

kz = kNin cos θ, and k2y + k2z = k2N2

in. The entire problem
is homogeneous along y. Therefore the global solution can
be restricted to the single spatial Fourier component ky of
the incident wave: The harmonic y-dependence of Eq. (1) is
imposed on all optical electromagnetic fields, at all positions.
According to Eq. (2), for a specific incident mode with given
Nin, the wavenumber ky can be specified by the angle of
incidence θ.

Next we select one outgoing mode with profile Ψout and
effective index Nout. According to Fig. 2(a), this can be a
guided mode supported by one of the slabs with coordinates

ξ1 or ξ3 = −z. What follows, however, applies just as well to
some non-guided, radiated wave propagating in the y-ξ2-plane
(in a homogeneous half-space). Analogously to Eq. (1), the
outgoing field (cf. Fig. 2(c)) can be written

∼ Ψout(ky, . ) exp(−i(kyy + kξξ)), (3)

where the wave equation [2] requires that

k2N2

out = k2y + k2ξ (4)

holds for the cross-sectional wavenumber kξ , still with the
common wavenumber (2) given by the incoming field. Eq. (4)
determines the propagation character of that particular outgo-
ing mode, i.e. decides whether, for a real wavenumber kξ , the
wave is propagating along ξ, or, for imaginary kξ, the mode
becomes evanescent in direction ξ.

Depending on the angle of incidence one thus has to
distinguish two cases. For a sufficiently large effective mode
index Nout with k2N2

out > k2y , the outgoing field propagates
at an angle θout with wavenumber kξ = kNout cos θout. The
effective indices of the incoming and outgoing modes, and the
angles of incidence and refraction, satisfy a relation that can
be given the form of Snell’s law:

Nout sin θout = Nin sin θ. (5)

Hence, depending on the properties of the slab waveguides
involved, different outgoing waves are thus observed each at
its own specific angle.

An outgoing mode with smaller effective mode index Nout,
however, with k2N2

out < k2y , becomes evanescent with an

imaginary wavenumber kξ = −i
√

k2y − k2N2
out. These waves

decay with growing distance ξ in the cross section plane. While
they may well contribute significantly to the overall field in a
region close to the discontinuity, these evanescent outgoing
fields do not carry optical power [14] away from this central
inner region.

When increasing the angle of incidence θ, starting from
normal incidence θ = 0, a mode’s type can thus change
from ξ-propagating to ξ-evanescent. This occurs, for an out-
going mode with effective index Nout < Nin, if k2N2

out =
k2N2

in sin
2 θ. Hence, for each pair of input and output modes,

one can define a characteristic angle θcr with

sin θcr = Nout/Nin (6)

such that the outgoing mode does not carry power, if the input
wave arrives at an angle of incidence θ > θcr beyond that
critical angle.

The example configurations in Section III are based on
symmetric slab waveguides with core- and cladding-refractive
indices ng (guiding regions) and nb (background). The struc-
tures are excited by the fundamental TE mode of the input
slab. Its effective mode index Nin = NTE0 exceeds that of the
fundamental TM mode NTM0. Both values are between the
core and cladding refractive indices ng > NTE0 > NTM0 > nb.
Following the former arguments one can then conclude [5]:

• All modes of the connecting waveguides (also of those
“without core”, cf. coordinate ξ2 in Fig. 2(a)) that
relate to radiative waves, with oscillatory behavior in



the cladding regions (“cladding modes”), have effec-
tive indices below the upper limit nb of the radiation
continuum. Their characteristic angles (6) are smaller
than the critical angle θb, defined by sin θb = nb/NTE0,
associated with the background refractive index. Con-
sequently all radiation losses vanish for incidence at
angles θ > θb.

• All TM polarized modes supported by these wave-
guides have effective mode indices below NTM0 (as-
suming the input slab to be the one with the largest
thickness, which is the case for all our examples).
Their characteristic angles (6) are thus smaller than
the critical angle θm, defined by sin θm = NTM0/NTE0,
associated with the fundamental TM wave. Conse-
quently, for incidence at angles θ > θm, all incoming
optical power is carried away by outgoing guided TE
waves.

Note that these arguments rely solely on the modal properties
(1), (3) of the access waveguides, irrespectively of their orien-
tation and positioning. The reasoning applies to configurations
with — in principle — arbitrary interior and arbitrary extension
of the region that connects the slab waveguide outlets.

Similar rationales have been applied to problems of plane-
wave scattering from cylinders at oblique incidence [15], [16],
to slab waveguides with straight discontinuities (end facets),
for oblique incidence of guided modes [1], [13], [17], [18],
and to periodically corrugated slab waveguides [19], [20].

A. Formal problem

To complement these general considerations, we comment
briefly on the rigorous differential equations that govern the
problems at hand [1], [2]. The Maxwell curl equations in the

frequency domain apply, for the electric field Ẽ and magnetic
field H̃ , for uncharged dielectric, nonmagnetic linear media
with relative permittivity ǫ = n2, for vacuum permittivity ǫ0
and permeability µ0:

curl Ẽ = −iωµ0H̃, curl H̃ = iωǫǫ0Ẽ. (7)

The structures under consideration are y-homogeneous,
∂yǫ = 0. Correspondingly, the electromagnetic fields exhibit
a harmonic y-dependence

(

Ẽ

H̃

)

(x, y, z) =

(

E

H

)

(x, z) exp(−ikyy) (8)

with the wavenumber (2) given by the incident wave.

These prerequisites lead to a system of vectorial equations
on the x-z-cross section plane, parameterized by ky . These
are formally identical to the equations that govern the hybrid
eigenmodes of 3-D dielectric channel waveguides (with 2-
D cross sections) [21]; the given wavenumber ky takes the
place of the propagation constant (eigenvalue) of the channel
mode. In the present case, however, these equations need to
be solved as a nonhomogeneous problem with the incoming
wave as a right-hand side, with boundary conditions that can
accommodate the given influx, and that are transparent for
outgoing guided and nonguided waves.

In regions with locally constant permittivity ∂xǫ = ∂zǫ =
0, the vectorial equations shrink to the scalar Helmholtz
equation

(

∂2

x + ∂2

z

)

φ+ k2ǫeffφ = 0, (9)

valid separately for all components φ = Ej , Hj of the optical
electromagnetic fields, with the angle-dependent effective per-
mittivity

ǫeff(x, z) = ǫ(x, z)−N2

in sin
2 θ. (10)

Oblique excitation at an angle θ beyond the critical angle θb

then leads to a negative local effective permittivity (10), and
consequently to evanescent wave propagation, in the cladding
regions with refractive index nb. Hence the suppression of
radiative losses can be understood just as well in terms of
this negative effective permittivity [1].

Apart from these limiting arguments, in general numerical
methods are required to obtain actual quantitative solutions for
the 2-D vectorial problem of Eqs. (7), (8).

III. COMPUTATIONAL EXAMPLES

The results of Sections III-A–III-C are generated with two
types of numerical techniques. A quasi-analytical solver, based
on a rigorous vectorial expansion into 1-D eigenmodes along
both of the cross section coordinates (vectorial quadridirec-
tional eigenmode expansion, vQUEP, [2], [22], [23]) appears
to be robust, accurate, and comparably efficient for these
type of problems. It is however limited to strictly rectangular
configurations.

Alternatively, the finite-element solvers included in the
COMSOL multiphysics suite [24] cover these parameterized
2-D problems as well. Arbitrary permittivity profiles can be
represented adequately, in principle; some issues related to the
performance of transparent boundary conditions in cases of
inhomogeneous exterior were observed (high-contrast wave-
guides cross the boundaries), in particular in cases where the
waves leave the computational domain at shallow angles. The
results on structures with rounded edges in Refs. [8], [9]
are based on those solvers; for the following examples, the
COMSOL suite has been used for a (partial) corroboration of
the vQUEP results.

A. Quasi-lossless excitation of a thin silicon slab waveguide

In a traditional 2-D setting, guided waves traversing an
abrupt interface between different slab waveguides typically
generate more or less pronounced reflections and scattering
losses. High-contrast silicon slabs are considered, as intro-
duced Fig. 3(a), for the parameters given in the caption. The
field of Fig. 3(b) relates to the standard setting, with normal
incidence of the guided TE wave on the abrupt interface
between the slabs with thicknesses d and r. One observes a
reflectance of R = 9% and about 15% of radiation losses.

We now investigate what happens if the fundamental TE
mode of the thicker segment comes in at the junction at
oblique angles. Mode analysis of the two slab regions [25]
shows that both slabs support a fundamental TE- and TM-
mode each. The reasoning of Section II then predicts critical
angles of incidence θb = 30.9◦ for outgoing radiation in the
cladding, θT,TM = 31.2◦, θT,TE = 37.7◦ for the guided TM
and TE modes of the thin slab, and θR,TM = 46.3◦ for the
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Fig. 3. Artists impression and cross section view (a) of the waveguide interface. Single-mode Si/SiO2-waveguides of thicknesses d = 0.22µm and r = 0.05µm
are considered, with refractive indices ng = 3.45 and nb = 1.45, at a wavelength of 1.55µm. Transmittances T and reflectances R are given for semi-guided
TE excitation at angle θ. Results for abrupt interfaces at normal (b) and oblique incidence (c), and for a “coated” interface (d), with a segment of height
h = 0.16µm and width w = 0.4µm, are shown. The plots relate to the absolute magnetic field |H| in the x-z cross section plane, with contours at 2%, 5%,
and 10% of the maximum levels. [3]

reflection into the guided TM mode of the input slab. Aiming
at a high transmission to the TE wave of the thin slab, we
thus switch to an angle of incidence between θb and θT,TE,
such that radiation losses are suppressed, while the thin slab
still supports a propagating guided TE mode. For a somewhat
arbitrarily chosen angle of θ = 33◦, it turns out that the TE
transmittance of 95% actually exceeds the level for normal
incidence. The waves, however, are still partly reflected, mainly
into the backwards TM mode. Fig. 3(c) gives an impression
of the corresponding field.

Motivated by the traditional technique of reflection sup-
pression, we introduce a short waveguide segment of interme-
diate thickness at the former interface, emulating a “layer” of
a certain thickness with intermediate (here effective) refractive
index. Optimization of the transmittance through varying the
height and width of that segment (not shown) leads to the
configuration of Fig. 3(d) with a guided-wave TE-to-TE trans-
mittance above 99.5%. We have thus realized what one might
call an “anti-reflection-coating” in an integrated optics setting.

B. Corner- and step-like folds in planar dielectric slabs

Concepts for the 3-D integration of optical devices [26], [27]
are at present discussed in particular in the field of silicon
photonics [28], [29]. We look at the task to enable an optical
connection, a “via”, between guiding layers at different vertical
levels of an integrated optical chip, in this context of high-
contrast waveguides.

To that end, we first consider a structure of corner shape,
as in Fig. 4(a), that might be expected to redirect some of
the guided input from the horizontal to the vertical layer. As
to be expected, in a conventional 2-D setting with normal
incidence of the guided TE slab mode, our solvers predict
a moderate performance with a TE-reflectance of RTE = 13%
and transmittance of TTE = 14%, i.e. with substantial losses.
Fig. 4(b) shows the related field.

Applying the reasoning of Section II, we now consider
oblique wave incidence at varying angles θ. The symmetric
slab waveguides (horizontal and vertical slabs are of the same
thickness) with the parameters as given in the caption of Fig. 4
support fundamental TE- and TM waves only [25]. One obtains
the critical angles θb = 31◦ for outgoing non-guided waves,

and θTM = 46.3◦ for the scattering to reflected or upwards
transmitted guided TM waves.

With the aim of avoiding radiation losses, we thus select the
range of angles of incidence beyond θb. Fig. 4(c) illustrates the
optical field at an angle of θ = 36.5◦. Here the solvers predict
large, almost purely TE-polarized reflection RTE = 26%,
RTM = 1%, and a substantial level of polarization conversion
with transmittances TTE = 10%, and TTM = 63%. The TM
transmittance reaches a maximum at this angle [4]. Increasing
the angle of incidence further beyond θTM, the conversion
to TM polarized waves is suppressed. At θ = 64◦ the TE
transmittance TTE = 32% is at maximum, with the remainder
of the incident power carried by the reflected fundamental TE
mode.

After having passed the first corner, the waves need to
be channelled into the horizontal direction again. By adding
another, identical corner fold, we arrive at the step structure
of Fig. 4(e). We adopt the configuration of Fig. 4(d) with
maximum TE transmittance, at θ = 64◦. Radiation losses are
suppressed, and guided TM wave become evanescent for this
angle. This holds for the separate corners, but just as well
for the entire step. Assuming a sufficient step height such
that evanescent waves don’t play a role, only the upward
and downward propagating guided TE waves contribute to the
power transfer in the vertical waveguide segment between both
corners.

The step system can thus be viewed as a configuration
akin to a Fabry-Perot-interferometer, where the corners work
as partial reflectors. By varying the height of the vertical
waveguide segment [4], one identifies step-like configurations
that transmit the semi-guided plane waves without radiation
losses, and virtually without reflections, at specific angles of
incidence, where the transmission resonances of the Fabry-
Perot system are realized.

The panels of Fig. 4(f, g) show exemplary fields for the
step structure, with a vertical separation between the horizontal
layers optimized for θ = 64◦. At normal incidence θ = 0◦

(Fig. 4(f)), for the standard 2-D TE setting, our simulations
predict levels of transmittance T = 3% and reflectance
R = 11%, with the entire remainder of the incident power
lost to radiation. Within the numerical error margins, this
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Fig. 4. Oblique incidence of semi-guided waves on corner- and step-shaped folds of slab waveguides, schematic (a, e), and cross-section views of the optical
electric field (absolute value |E|, contour at 10% of the field maximum). Parameters: refractive indices 3.45 (slab cores) : 1.45 (cladding), thickness of
horizontal and vertical slabs 220 nm, vertical distance between the upper and lower interfaces of the lower and upper layers 1.868 µm, incidence of semi-guided
TE polarized waves at λ = 1.55 µm. [4]

changes to perfect performance T > 99%, R < 1% with full
transmission at θ = 64◦. Accordingly, the field in Fig. 4(g)
exhibits the purely forward wave in the horizontal input- and
output waveguides, and a resonant pattern of partly standing
waves in the vertical segment.

C. An open dielectric cavity with infinite Q

Dielectric optical cavities, if based on internal reflection (as
opposed to periodically corrugated regions, i.e. photonic crys-
tals), are always deemed to be inherently lossy. Among many
other concepts, we here look at dielectric cavities of rectangu-
lar shape. In a standard 2-D setting, specific dimensioning is
required to obtain a small resonator cavity with even moderate
quality factor [30]–[32]. The structures discussed there are
very similar to the configuration introduced in Fig. 5(a,b). A
dielectric strip of — within limits — arbitrary width and height
is placed at some distance on top of a slab waveguide. The
strip constitutes the cavity that is excited, here potentially at
oblique angles, by semi-guided waves in the slab, which thus
works as our bus waveguide.

Similar configurations have been investigated in the lit-
erature, for other purposes. Among the related proposals are
devices for the differentiation and integration of semi-guided
beams [10] (the structure of Fig. 5(a,b) with a strip/rib that rests
directly on the substrate), a setting for the observation of lateral
whispering gallery resonances at angled crossings of optical
fibers [33], or interferometer concepts based on semi-guided
waves passing a multimode rib segment at normal incidence,
for application as polarizers [14] or isolators [34].

The analysis starts with computing the guided mode of
the dielectric strip. At a vacuum wavelength of λ = 1.55µm,
COMSOL predicts a fundamental guided TE-like hybrid mode

with effective index Nm = 2.4192 (further modes are sup-
ported). In line with the discussion of Section II, this can
be translated to an angle of incidence θm with kNm =
kNTE0 sin θm of θm = 58.99◦. We can thus expect to find
a resonance, if the strip is excited at an angle of incidence
close to θm. A respective sweep over θ shows that this is
indeed the case; the panels of Fig. 5(c–e) illustrate some
corresponding fields. In an off resonance state (c), the wave just
passes by underneath the strip, with hardly any disturbance. At
half resonance (b), determined by a reflectance R = 50%, a
stronger field is observed in the strip. At resonance, the field
in the strip reaches a maximum, and the strip generates a
reflectance of R = 100%. All these angles of incidence are
beyond the critical angle for radiation into the cladding areas;
radiation losses are thus fully suppressed.

Since the cavity itself does not show any radiation losses,
the resonance characteristics are determined solely by the
strength of the interaction with the bus waveguide, i.e. by
the gap distance g. For increasing gap, we observe that the
resonance angle tends to the value θm as given by the rib
mode. This is accompanied by a narrowing angular width of
the resonance, and correspondingly a growing field strength in
the rib. At the same time the “height” of the resonance peak,
the maximum reflectance at the resonance angle, remains at
unity. Simulations carried out so far, and the extremal values
observed, are merely limited by the accuracies of the solvers
available.

Similar features can be observed when varying the vacuum
wavelength, if the angle of incidence is fixed at the level θm.
The resonance then appears at the vacuum wavelength λ =
1.55µm. Also in that case, for increasing g, the resonance
wavelength tends to the value of 1.55µm as given by the rib
mode. One finds a narrowing spectral width of the resonance,
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Fig. 5. Oblique evanescent excitation of a dielectric strip, schematic (a), and cross section view (b). Panels (c–e) show the absolute electric field |E| on
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gap g = 0.2µm, TE excitation at vacuum wavelength λ = 1.55µm.

with exponentially increasing Q-factor, and correspondingly a
growing field enhancement in the rib. Also here the maximum
reflectance at the resonance wavelength, remains at unity.

Accepting that setting with fixed angle of incidence and
variable vacuum wavelength / frequency, for a configuration
with large distance g, this would be a way to realize a
system with a nonradiating bound state (the rib mode) and
a wave continuum (the waves supported by the slab) in a
range of frequencies that cover the (real) eigenfrequency of
the bound state, i.e. an explicitly simple way to realize what
might be termed a “bound state in a continuum” [6], [35]–
[37]. Note that, in a context of photonics, these BICs are most
frequently discussed in a framework of specifically tailored
periodic structures / of photonic crystals. Perhaps, due to the
spatial separation of the localized strip mode and continuum
of waves in the slab waveguide, here the notion of a “bound
state coupled to a continuum” might be more adequate.

IV. CONCLUDING REMARKS

With the “2-D problems with oblique incidence” we reconsider
older concepts of integrated optics that appear to have largely
been neglected over the more recent past. It turns out that,
if transferred to present high contrast platforms (typically
silicon photonics), the related phenomena can be observed at
rather moderate angles of incidence (i.e. not only at grazing
incidence). This offers options for the realization of a series
of partly astonishing functionalities, in exceptionally simple
configurations. Some examples have been shown in this paper;
more is expected to come.

For the present paper, we restricted the discussion to
solutions generated by incoming semi-guided plane waves
with a single, well-defined angle of incidence. As shown in
Refs. [5], [9], [10], suitable superpositions of these solutions
can be prepared that relate to the oblique incidence of still
semi-guided, but now laterally confined “beams”. Gaussian

superpositions have been considered [5], [10], as well as wave
bundles excited by incoming rib waveguides with shallow
etching [9]. The incoming wave-packets then cover a range of
angles of incidence, where a narrow angular range corresponds
to an incoming bundle of large (y-) extension. For those of
the former examples that do not rely critically on resonance
effects (such as the reflection-coated transition, Section III-A,
or the 90◦-edges, Section III-B), transmission properties close
to the results as shown here are obtained. The configurations
where narrow resonances play a role (the step structure, Sec-
tion III-B, and the strip-resonator of Section III-C), however,
require wide, spectrally narrow incoming bundles to exhibit
the transmission characteristics as discussed.
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