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 Subject of our investigation are resonance 

phenomena in optical cavities that are realized as 

defects in 1D grating with piecewise constant 

refractive index distribution. Upon viewing the 

cavity as a passive system with intrinsically leaky 

behaviour due to open boundaries where waves are 

permitted to leave the structure, the cavity can be 

characterized in terms of complex frequencies 

associated with unbounded field profiles (leaky 

modes, or quasi-normal-modes QNMs [1], [2]).  

The imaginary part of the frequency 

represents the energy decay, closely related to the 

Q-factor of the cavity. Our aim is to predict the 

response of the structure to external excitation 

and/or parameter perturbations, based on the 

profiles and eigenfrequencies of the QNMs 

supported by the cavity. Fig. 1 introduces a typical 

structure and shows a QNM field profile with the 

eigenfrequency next to the bandgap resonance (i.e. 

near the single peak of high transmission inside the 

forbidden frequency band of the periodic grating)..  

 

 

Next we apply a time-independent 

perturbation theory for QNMs [1] to obtain a first 

order correction to the complex frequency of the 

major cavity mode. As shown in Fig. 2, a 

modification of the refractive index of the central 

defect layer effects mainly a shift of the real part of 

the QNM eigenfrequency. Finally, the QNM 

eigenfrequency perturbation permits to estimate 

immediately the transmission properties of 

structures with modified defect index. According to 

Fig. 3, the optical transmission as predicted by the 

approximate QNM expansion agrees excellently 

with a direct calculation by a standard transfer-

matrix method (TMM). The agreement, even for a 

quite substantial relative refractive index difference 

of about δ=±5%, confirms that the description 

based on a single QNM constitutes indeed an 

adequate cavity model in the present frequency 

range. All calculations are based only on the single 

QNM and that is a special attractiveness of the 

result. 
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Fig. 2 Complex QNM eigenfrequency versus the defect refractive 

index, direct QNM analysis and perturbation evaluation. 

Fig. 3 Spectral transmission, QNM models (direct, and 

 using a perturbation description) and TMM reference. 

Fig. 1 1-D defect grating; we consider alternatively A) an 

eigenvalue problem with outgoing waves at both ends (QN mode 

analysis) and B) the transmission problem with an incident wave 

at one end of the structure. Field profile associated with the 

major defect resonance. All layers are of the quarter-wavelength 

optical thickness and defect layer of the half-wavelength

normalized to the wavelength λ=1.55 µm. 


