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Analysis of integrated optical cylindrical microresonators involves the coupling between
a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is
based on analytically represented mode profiles. With the bend modes expressed in Carte-
sian coordinates, coupled mode equations can be derived in a classical way and solved
by numerical integration. Proper manipulation of the propagation matrix leads to stable
results even in parameter domains of compact and/or radiative structures, which seemed
unsuitable for a perturbational approach due to oscillations of the matrix elements along
the propagation. Comparisons with FDTD calculations show convincing agreement.

Introduction

Since the trend for photonics integration is toward smaller and more densely-packed com-
ponents, it is necessary to be able to model these small components well. The components
may become so small that the radiation loss from them is no longer negligible, so models
that disregard radiation loss or complex propagation constants in bends are insufficient.

The device that we will attempt to model is the well-known microring resonator (MR)
coupled to straight waveguides [1]. Such a device can be modeled directly by means of
e.g. Finite Difference Time Domain (FDTD) methods [2], but those can be very time-
consuming. It can be better to separate the device into several regions, model those in-
dividually, and combine these models to complete the picture. The MR can be separated
into three parts: The ring itself (modeled by a bent waveguide) and the two couplers
involving a bent and a straight waveguide. This paper will focus on the latter part.
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Figure 1: Schematic coupler in-
volving a bent waveguide and a
straight waveguide. nc, nb and ns

are the refrative index of the back-
ground, bend, and straight; R is the
radius of the bend; d1 and d2 are the
core widths, while d0 is their sepa-
ration.

For the coupler region, it is again possible to do direct FDTD calculations to determine
at least some of the coupling coefficients. While this works for all configurations, even
those that are highly radiative, the calculation time involved is relatively high; especially
in 3D simulations it becomes unacceptable. For good design parameter analysis, a fast
tool is needed to assess the coupling constants. A good candidate is the well-known
Coupled Mode Theory (CMT); see [3, chap. 4] for general theory, [4] for an application



to MR’s, and [5] for a preliminary version of the implementation described in this paper.
This implementation transforms the bend field into Cartesian coordinates and does more
or less standard CMT in a rectangular domain. The theory is as valid in 3D as it is in 2D,
but the implementation that we will show is only 2D, since we have a 2D FDTD program
available for comparison.

Finite Difference Time Domain

The FDTD program we have developed is based on the simple second-order Yee’s mesh
approach. It is capable of TE or TM calculations on arbitrary structures with (currently)
real refractive indices and no dispersion. As start fields, either CW or pulsed fields can
be launched from the edge or from inside the window (using the so-called Total Field /
Scattered Field approach). Analysis of the results can be performed by means of modal
overlaps or other power calculations or field plots.

Coupled Mode Theory

A harmonic time dependence eiωt with frequency ω = 2πc/λ is assumed for all fields.
We use a Cartesian co-ordinate system (x,y,z) as a reference system. In the 2D approach,
the field and materials are assumed to be constant in the y-direction. We assume that all
individual waveguides are mono mode and that back-reflections are negligible.

Consider the coupler setting as shown in Figure 1. Let {Eb,Hb} be the electromagnetic
field associated with the bent waveguide with εb as the relative permittivity distribu-
tion. Correspondingly {Es,Hs} and εs are the field and premisttivity associated with
the straight waveguide. The ansatz for the electric field E and magnetic field H in the
coupled structure is as follows:

E(x,z) = A(z)Eb(x,z)+B(z)Es(x,z) (1)

H(x,z) = A(z)Hb(x,z)+B(z)Hs(x,z) (2)

where A(z) and B(z) are unknown amplitude coupling coefficients.
For any two electromagnetic fields (Ep,Hp,ε0εp) and (Eq,Hq,ε0εq), using Maxwell’s
equations, one can derive the following identity known as Lorentz Reciprocity Theorem:

∫

∇ · (Ep×H∗
q +E∗

q ×Hp) dx = −iωε0

∫

(εp− εq)Ep ·E∗
q dx (3)

Let ε be the permittivity distribution for the composite structure. Using eq. (3) once with
{E,H,ε} and {Eb,Hb,εb}, then with {E,H,ε} and {Es,Hs,εs}, we arrive at the coupled
mode equation:
[〈

Eb,H∗
b|E

∗
b,Hb

〉〈

Es,H∗
b|E

∗
b,Hs

〉

〈Eb,H∗
s |E

∗
s ,Hb〉 〈Es,H∗

s |E
∗
s ,Hs〉

][

dzA
dzB

]

= −iωε0

[
∫

δεbEb ·E∗
bdx

∫

δεsEs ·E∗
bdx

∫

δεbEb ·E∗
s dx

∫

δεsEs ·E∗
s dx

][

A
B

]

(4)

where
〈

Ep,H∗
q|E

∗
qHp

〉

:=
∫

az · (Ep ×H∗
q +E∗

p ×Hq)dx, δεi := ε− εi.

Solving this system of ODEs using the Runge Kutta Method of order 4, we get

A(zout) = T A(zin) where A(z) = [A(z) B(z)]T (5)



zin and zout are initial and final z-level; T = [Ti j] is the propagation matrix of the coupler.
The bend mode field in cylindrical co-ordinate system (r,y,θ) is given by

Eb(r,θ) = E0
b(r,θ)e−iγbRθ Hb(r,θ) = H0

b(r,θ)e−iγbRθ

where γb = βb−iαb is the propagation con-
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Figure 2: Propagation matrix element T22 and total
field projected onto straight waveguide mode. R = 30
µm. d1= d2= 1 µm, nb=nc= 1.6, nc=1.45. λ= 1.55 µm;
d0=0.1 µm.

stant and superscript zero denotes the mode
profile.
These field components are transformed
into Cartesian coordinates, which makes
them suitable for eq. (4). The straight
waveguide mode is already in the proper
coordinate system.

The theory developed above yields the am-
plitudes of the ansatz fields. In order to re-
late the amplitudes of modal fields at the
start and end of the calculation window,
the coefficients Ti j are adjusted to com-
pensate for the phase velocities and de-
cay constants. Due to space constraints we
will not elaborate on this.

If the bend field radiates relatively heavily, it may take a long time for the propagation
matrix coefficients to stabilize; an oscillation may go on even beyond the rim of the ring.
An example of the oscillation is given in Figure 2. This oscillation makes the results seem
untrustworthy; when the ring is sufficiently far away, the power in the straight waveguide
should not vary. However, despite the oscillation, plots of the combined field seem to
indicate that the modal power is actually rather constant already (see Figure 3), and that
the fields are fairly close to those calculated by FDTD.

Figure 3:
Absolute value
field plots of
FDTD (left) and
CMT (right) cal-
culations of the
structure defined
in Figure 2.

This leads to the idea of not just using the scattering matrix elements for the determination
of the power, but to consider the combined field and take the modal overlap with it. In
fact, these modal overlaps are present in the current approach. The matrix on the left-hand
side of eq. (4), contains all the overlap elements needed; 〈Es,H∗

s |E
∗
s ,Hs〉 is the overlap of

the straight waveguide mode with itself, and 〈Eb,H∗
s |E

∗
s ,Hb〉 is the overlap of the straight

waveguide mode with the bent waveguide mode. So, the corrected amplitude of the mode



in the waveguide is extracted as:

Mwg(z) =

(

〈Eb,H∗
s |E

∗
s ,Hb〉

〈Es,H∗
s |E∗

s ,Hs〉
A(z)+B(z)

)

e−iβz (6)

The absolute value of Mwg is plotted in Figure 2 as well, showing a constant line after the
actual coupling region.

Results

In order to compare the CMT to the FDTD
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Figure 4: Amplitude of the straight waveguide
mode at the end of the structure, calculated using
both FDTD and CMT. The structure parameters are as
given above; the radius is 15, 30 and 100 µm, while
the gap is varied between 0.1 and 1.5 µm. In FDTD,
the step size in x and z is 0.05 µm, while the timestep
is 1∗10−16 s.

results, a quantity must be taken that may
be extracted from both methods. In the
coupled mode theory, the amplitude in the
straight and the bend can both be extracted.
In the FDTD method, the amplitude in the
straight waveguide mode is determined by
calculating the overlap integral of the lo-
cal field with the modal field. Defining
the amplitude in the bent waveguide, how-
ever, takes a much larger computation win-
dow because overlaps are taken horizon-
tally or vertically and the bend field ex-
tends far from the ring due to radiation.
So, the only element we will compare here
is the self-coupling of the straight wave-
guide. The structure of Figure 2 was con-
sidered for various radii and gaps. Figure 4
shows the power in the straight guide at
the coupler exit for both methods.

The picture shows a very good agreement for radii down to about 30 µm, even for small
gaps. This shows that, surprisingly, the CMT can be applied even for these radiative,
strongly coupled systems.
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