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A variational approach for the modal analysis of dielectricwaveguides with arbitrary
piecewise constant rectangular 2D cross-section is developed. It is based on a represen-
tation of a mode profile as a superposition of all modes of the constituting slab waveguides
times some unknown continuous coefficient functions, definedon the entire lateral coordi-
nate axis. The propagation constant and the lateral functions are found from a variational
principle. It appears that this method, while preserving thecomputational efficiency of
the standard effective index method, provides more accurate estimates for propagation
constants, as well as well-defined continuous approximationsfor mode profiles.

Introduction

The effective index method (EIM) is one of the most popular among the many approaches
for the modal analysis of dielectric optical waveguides [1]. While being rather intuitive
and computationally very efficient, the inherent approximations limit the range of appli-
cability of the EIM. For example, if all modes of some slab region are below cut-off,
heuristics have to be applied to provide the necessary effective indices, and mode profiles
are not defined. As an alternative to other approaches for improvements (e.g. [2], [3]),
here we propose a variational effective index method (VEIM)which overcomes these
problems by means of a modified ansatz for the modal field, together with the use of a
variational principle. The procedure is applicable in practice for an arbitrary, piecewise
constant rectangular permittivity distribution.

Problem definition

Figure 1(a) shows the cross-section of a typical waveguide structure with piecewise con-
stant rectangular refractive index distributionn= n(x,y). Given the semi-vectorial TE and
TM mode equations for the dominant electricE = Ey(x,y) and magneticH = Hy(x,y) field
components at vacuum wavelengthλ = 2π/k0, searching for square integrable solutions
in the form of profiles propagating in thez - direction with propagation constantβ, leads
to the following eigenvalue problems:
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It can be shown that these problems are equivalent to finding the critical points of the
functionals:
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Figure 1: (a) Cross-section of a typical waveguide structure; (b) Constituting slab wave-
guides with corresponding mode profiles; (c) Original waveguide with all slab modes
X1(x), ...,XN(x) (in this caseN = 3).

Method of Solution

We represent the principal field componentEy(x,y) andHy(x,y) respectively as a super-
position of guided TE and TM modesX1(x), ...,XN(x) of the constituting slab waveguides
(Figure 1), times unknown continuous coefficient functionsY1(y), ...,YN(y):
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N

∑
i=1

Xi(x)Yi(y) (TE), H(x,y) =
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Note, that the functionsYi(y) are meant to be continuous and defined on the entirey axis
(in contrast to what is common in formulations of the EIM).
Restricting the functionals (2) and (3) to the trial field (4) and requiring this functional
to become stationary leads to a vectorial differential equation for the unknown function
Y (y) = (Y1(y), ...,YN(y)):

Y ′′(y)+F−1M (y)Y (y) = β2Y (y) (TE), (5)
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With continuity of
Y (y) ( as an essential condition), (7)
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Y ′(y) (TE) and F(y)Y ′(y) (TM) ( as a natural condition) (8)

as interface conditions. Here matricesF andM have a dimensionN×N and consist of
elements
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ModesXi need to differ sufficiently, i.e. modes of equal slices should be introduced only
once, otherwise matricesM andF become singular.
It can be easily seen that in each constituting slab matricesM andF do not depend on
y and (5), (6) become vectorial mode equations with interfaceconditions (7) and (8).
Searching for square integrable solutions of these problems we obtain a resonance con-
dition. By identifying roots of that expression one finds propagation constants and the
unknown coefficient functions, i.e. the field distributions(4).

Results and comparisons

As examples, we applied this method for the analysis of the rib waveguide and 3D coupler
of Figure 2.
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Figure 2: (a) Rib wave-
guide; (b) 3D coupler struc-
ture.

Effective indicesNeff = β/k0 of the former structure in case of TE and TM polarizations
are compared with results obtained by more sophisticated methods in the Figure 3. It can
be seen that in cases where the outer slab region supports a guided mode, including this
mode into expansion (4) leads to a better approximation of the effective index. Moreover,
according to the principle of eigenvalue comparison the effective index of the fundamental
mode will approach its exact value from below.
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Figure 3:Rib waveguide: effective indices of TE - and TM - like modes versus rib depthh; FEMLAB:
semivectorial mode equations, vectorial FEM, WMM: reference results [4], EIM: effective index method,
VEIM: the present method. Note that curve VEIM (1 mode) was obtained using in expansion (4) only the
fundamental mode of the central slice, while in expansion for VEIM (2 modes) the fundamental mode of
the outer slice was used as well (obviously, such an expansion is possible only when the outer slices are
above cut-off).



A similar comparison for the latter structure is given in Table 1. Apparently the VEIM
results agree better with the data from rigorous methods, than the ”standard” EIM results.

β00/k β01/k β10/k β11/k
FEM 1.5075807 1.5067966 1.5067966 1.5060260

WMM 1.5078966 1.5071085 1.5071092 1.5064697
EIM 1.5080433 1.5072134 1.5075570 1.5067277

VEIM 1.5077912 1.5069894 1.5069690 1.5061836

Table 1:Effective indices of
the TE modes of the 3D cou-
pler; FEM, WMM: reference
results [4], EIM: effective in-
dex method, VEIM: the pre-
sent method.

Figure 4 illustrates the VEIM mode profiles for the propagation constants of Table 1.
Note that, in contrast to EIM, field profiles, obtained using VEIM, are well-defined and
continuous.

Figure 4: Mode profiles for
the 3D coupler of Figure 2(b):
dominant electric component
of semivectorial TE fields.

Conclusions

In conclusion, while the VEIM approach allows to estimate propagation constants with
reasonable accuracy and provides continuous, well-definedmode profiles, it largely pre-
serves the simplicity and the computational efficiency of the ”standard” EIM. In principle
it should be possible to include into the expansion of the field not only the guided, but,
for example, also radiation modes.
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