Variational effective index mode solver
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A variational approach for the modal analysis of dielectwaveguides with arbitrary
piecewise constant rectangular 2D cross-section is deeelofi is based on a represen-
tation of a mode profile as a superposition of all modes of tmestituting slab waveguides
times some unknown continuous coefficient functions, dedm#te entire lateral coordi-
nate axis. The propagation constant and the lateral fumstiare found from a variational
principle. It appears that this method, while preserving tdoenputational efficiency of
the standard effective index method, provides more acewstimates for propagation
constants, as well as well-defined continuous approximatmmnsode profiles.

Introduction

The effective index method (EIM) is one of the most populaoagithe many approaches
for the modal analysis of dielectric optical waveguides [\Mhile being rather intuitive
and computationally very efficient, the inherent approxiores limit the range of appli-
cability of the EIM. For example, if all modes of some slabioegare below cut-off,
heuristics have to be applied to provide the necessarytetdandices, and mode profiles
are not defined. As an alternative to other approaches forowements (e.g. [2], [3]),
here we propose a variational effective index method (VEW)ch overcomes these
problems by means of a modified ansatz for the modal field thegevith the use of a
variational principle. The procedure is applicable in piEcfor an arbitrary, piecewise
constant rectangular permittivity distribution.

Problem definition

Figure 1(a) shows the cross-section of a typical waveguidetsire with piecewise con-
stant rectangular refractive index distributios: n(x,y). Given the semi-vectorial TE and
TM mode equations for the dominant electie= Ey(x,y) and magnetiél = Hy(x,y) field
components at vacuum wavelengtk= 211/ko, searching for square integrable solutions
in the form of profiles propagating in tlee direction with propagation constaff leads

to the following eigenvalue problems:

AE+IE=PB’E (TE), O (n—lzDH> +kEH = an—le (TM). 1)

It can be shown that these problems are equivalent to findiegtitical points of the
functionals:

—B? =crit /{|DE|2—k§n2(x,y)E2} dxdy
R2

/ E2dxdy=1% (TE), (2)
R2
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B2 =crit R[{nZ(x,y)|DH| K2H }dxdyunz(w)H dxdy=1% (TM). (3)
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Figure 1: (a) Cross-section of a typical waveguide struct{lmeConstituting slab wave-
guides with corresponding mode profiles; (c) Original wawdg with all slab modes
X1(X), ..., Xn(X) (in this caseN = 3).

Method of Solution

We represent the principal field compon&jtx,y) andHy(x,y) respectively as a super-
position of guided TE and TM modeé§ (x), ..., Xn(x) of the constituting slab waveguides
(Figure 1), times unknown continuous coefficient functidng), ..., Yn(y):

N N
Ey(xy) = ;N )Yiy) (TE),  H(xy)= _ZXi (Yi(y) (TM). 4)

Note, that the function¥;(y) are meant to be continuous and defined on the eptiras
(in contrast to what is common in formulations of the EIM).

Restricting the functionals (2) and (3) to the trial field (4)daequiring this functional
to become stationary leads to a vectorial differential #quaor the unknown function

Y(y) = (YY), -, N(Y)):

Y'(Y)+FIMY)Y(y) =B*Y(y) (TE), (5)
(FOY'(Y) +My)Y () =BFHYY) (TM). (6)
With continuity of
Y(y) (asan essential condition), (7
and
Y'(yy (TE) and F(y)Y'(y) (TM) (as anatural condition) (8)

as interface conditions. Here matridesand M have a dimensioiN x N and consist of
elements

Mon(y) = | (GrP0y)Xg00X0(X) ~ X§0X,00) dx. Fgn= [ Xg0X(x1dx (TE),
R
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ModesX; need to differ sufficiently, i.e. modes of equal slices sbdaé introduced only
once, otherwise matricedd andF become singular.

It can be easily seen that in each constituting slab matiesnd F do not depend on
y and (5), (6) become vectorial mode equations with interfamaditions (7) and (8).
Searching for square integrable solutions of these prablemobtain a resonance con-
dition. By identifying roots of that expression one finds mgation constants and the
unknown coefficient functions, i.e. the field distributiqd$.

Results and comparisons

As examples, we applied this method for the analysis of thevaiveguide and 3D coupler
of Figure 2.
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Effective indicesNesr = B/ko of the former structure in case of TE and TM polarizations
are compared with results obtained by more sophisticatedads in the Figure 3. It can
be seen that in cases where the outer slab region supporideaiguode, including this
mode into expansion (4) leads to a better approximationeoéffective index. Moreover,
according to the principle of eigenvalue comparison theatiffe index of the fundamental
mode will approach its exact value from below.
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Figure 3:Rib waveguide: effective indices of TE - and TM - like modessuss rib deptth; FEMLAB:
semivectorial mode equations, vectorial FEM, WMM: refeenesults [4], EIM: effective index method,
VEIM: the present method. Note that curve VEIM (1 mode) wataimied using in expansion (4) only the
fundamental mode of the central slice, while in expansiorMiaIM (2 modes) the fundamental mode of
the outer slice was used as well (obviously, such an expansipossible only when the outer slices are
above cut-off).



A similar comparison for the latter structure is given in [Ealb. Apparently the VEIM
results agree better with the data from rigorous methods, tite "standard” EIM results.

Boo/k Bo1/k Bio/k B11/k , .
FEM | 1.5075807 15067966 1.5067966 150602600 o micctve ndices of

WMM | 1.5078966 1.5071085 1.5071092 1.506469¢ler; FEM, WMM: reference
EIM | 1.5080433 1.5072134 1.5075570 1.506727i#sults [4], EIM: effective in-

VEIM | 1.5077912 1.5069894 1.5069690 1.506183@¢ex method, VEIM: the pre-
sent method.

Figure 4 illustrates the VEIM mode profiles for the propagatconstants of Table 1.
Note that, in contrast to EIM, field profiles, obtained usingIM, are well-defined and
continuous.

Figure 4: Mode profiles for
the 3D coupler of Figure 2(b):
dominant electric component
of semivectorial TE fields.

Conclusions

In conclusion, while the VEIM approach allows to estimategagation constants with
reasonable accuracy and provides continuous, well-defimate profiles, it largely pre-
serves the simplicity and the computational efficiency ef'standard” EIM. In principle

it should be possible to include into the expansion of thel fiet only the guided, but,
for example, also radiation modes.
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