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A frequency domain model of multimode circular microresonators for filter applications in
integrated optics is investigated. Analytical basis modes of 2D bent waveguides or curved
interfaces are combined with modes of straight channels in a spatial coupled mode the-
ory framework. Free of fitting parameters, the model allows to predict quite efficiently the
spectral response of the microresonators. It turns out to be sufficient to take only a few
dominant cavity modes into account. Comparisons of these simulations with computa-
tionally more expensive rigorous numerical calculations show a satisfactory agreement.

Introduction

Nowadays due to their superior selectivity, compactness, and possibility of dense inte-
gration, microresonators (MRs) become attractive for application as wavelength add/drop
filters [1]. A typical microresonator setting, where a ring/disk shaped cavity is placed be-
tween two straight waveguides, is shown in Fig. 1. In this paper, we outline a spatial cou-
pled mode theory (CMT) based model of 2D circular multimode optical microresonators.
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Figure 1: Functional decomposition of 2D micro-
resonators: R is the radius of the cavity with a core
refractive index nc and a width wc (= 0, for disks).
The straight waveguides have a core refractive in-
dex ns and a width ws; g1 and g2 are the separation
distances between the cavity and the straight wave-
guides; nb is the background refractive index; L1
and L2 denote the lengths of the cavity segments
which are not included in the coupler regions. The
letters A,B,C,D and a,b,c,d denote the coupler
port planes.

Abstract resonator model

For modeling purposes, the MR is decomposed into two bent-straight waveguide couplers,
represented by the blocks (I) and (II), which are connected to each other by two segments
of the cavity. The external connections are provided by straight waveguides. Here we
consider only forward propagating modes of uniform polarization. We assume that all
elements are linear and that the back reflections inside the couplers and the cavity are
negligible. Outside the couplers, the interaction between the constituent waveguides is
assumed to vanish. We consider a frequency domain description of the optical field. The
vacuum wavelength λ prescribes the real angular frequency ω. Assume that Ns modes of
the straight waveguides and Nb bend modes of the cavity are taken into account.



Let γp be the complex propagation constant of the p’th cavity mode. The variables
Aq

,Bq
,Cq

,Dq and ap
,bp

,cp
,d p denote the directional amplitudes of these properly nor-

malized modes in the coupler port planes, combined into amplitude vectors A,B,C,D and
a,b,c,d. Let SI and SII be the scattering matrices for coupler I and II respectively, i.e.

[

b
B

]

= SI
[

a
A

]

,

[

d
D

]

= SII
[

c
C

]

. (1)

The amplitudes of the connecting cavity segments are related to each other as

cp = bpe(−iγpL1)
, ap = d pe(−iγpL2)

. (2)

Given input powers Pq
I = |Aq|2 at A and Pq

A = |Cq|2 at C , we are interested in the trans-
mitted powers Pq

T = |Bq|2 at B and the backward dropped powers Pq
D = |Dq|2 at D. This

means solving the linear system of equations (1), (2) for Bq and Dq, for q = 1,2, . . . ,Ns.
When scanned over a wavelength range, resonances appear as maxima of the dropped
power and minima of the transmitted power.

To evaluate the microresonator model described above, one must know the cavity prop-
agation constants γp and the scattering matrices SI, SII. Using an analytic model of bent
waveguides as described in Ref. [2], we obtain the bend modes and their propagation con-
stants. Having access to the bend modes, a model of the bent-straight waveguide couplers
in terms of CMT leads to the scattering matrices. A detailed description of this procedure
for one cavity mode and one straight waveguide mode is presented in Ref. [3]. In the next
sections, we extend it to the case of multimode MRs.

Multimode bent-straight waveguide couplers

Consider the bent-straight waveguide coupler as shown in Fig. 2-(1). Let {Ep
b ,Hp

b ,εb}

and {Eq
s ,H

q
s ,εs} represent the modal electric fields, magnetic fields, and the spatial dis-

tributions of the relative permittivity of the bent waveguide and the straight waveguide
respectively. Here the modal fields include the harmonic dependence on the propagation
coordinate and are expressed in the Cartesian coordinates (x,z). The field {E,H} inside
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Figure 2: CMT setting for bent-straight
waveguide couplers. The coupler is defined in
the region [xl ,xr]× [zi,zo]. The external seg-
ments of the bent waveguide and the straight
waveguide constitute the port connections. It is
assumed that outside the coupler there is negli-
gible interaction between the waveguides.

the coupler is given by a linear combination of the modal fields of the bent waveguide
(Fig. 2-(2)) and the modal fields of the straight waveguide (Fig. 2-(3)):

[

E(x,z)
H(x,z)

]

=
Nb

∑
p=1

Cp
b (z)

[

Ep
b(x,z)

Hp
b(x,z)

]

+
Ns

∑
q=1

Cq
s (z)

[

Eq
s (x,z)

Hq
s (x,z)

]

, (3)

where Cp
b , Cq

s are unknown amplitudes. As shown in Ref. [4], a procedure based on the
Lorentz reciprocity theorem leads to the following coupled mode equations

M(z) ·dzC(z) = F(z) ·C(z), (4)



with Mi j = 〈Ei
m,Hi

m;E j
n,H j

n〉=
∫

az ·(Ei
m×H j∗

n +E j∗
n ×Hm)dx, Fi j =

∫

(ε−εm)Ei
m ·E j∗

n dx,
Ci = Ci

m for i, j = 1,2, · · · ,(Nb + Ns), and m = b if 1 ≤ i ≤ Nb otherwise m = s, n = b if
1 ≤ j ≤ Nb otherwise n = s. Here az is a unit vector in z- direction and ε is the relative
permittivity of the complete coupler. The integrations extend over [xl,xr] for each z level.

Solving Eq. (4) by a Runge Kutta method of order 4, we get a relation C(zo) = T ·C(zi)
between the amplitudes in the output and input coupler ports. For rather radiative bend
modes, it takes a long z- distance to stabilize the elements of matrix T. This difficulty
is overcome by taking the projections of the coupled fields onto the straight waveguide
modes [4]. Then the output amplitudes of the straight waveguide modes are given by

Bq =



Cq
s (zo)+

Nb

∑
p=1

Cp
b (zo)

〈Ep
b ,Hp

b ;Eq
s ,H

q
s 〉

〈Eq
s ,H

q
s ;Eq

s ,H
q
s 〉

∣

∣

∣

∣

∣

zo



e−iβqzo
. (5)

By incorporating these projection corrections into T, we finally obtain the required scat-
tering matrix S.

Simulations and comparison

We consider a cavity in the form of a disk, i.e. wc = 0. Since the modal loss of the bend
modes increases with growing mode order (where the order of the mode is defined as in
Ref. [2]), one can expect that only the lower order bend modes play a dominant role for
the field evolution in the cavity.
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Figure 3: TE power spectrum for a 2D disk microresonator. Left: CMT with only a single (one of TE0,TE1
or TE2) cavity mode. Middle: CMT results for two (dashed line), three (solid line) and four (dash-dotted
line) cavity modes together. Right: Comparison of FDTD results and CMT results with 3 cavity modes.
MR specifications: nc = ns = 1.5, nb = 1.0, wc = 0 µm (disk), ws = 0.4 µm, R = 5 µm, g = 0.2 µm.

The present CMT setting allows to investigate the significance of individual cavity modes
for the spectral response of the MRs. The left plot of Fig. 3 shows the dropped power
and the transmitted power when only a single cavity mode (either TE0, TE1 or TE2) is
included in the CMT model. The extrema corresponding to the fundamental mode (TE0)
are much more pronounced than those related to the first order mode (TE1). If only the
TE2 cavity mode is taken into account, on the present scale hardly any variations of PD and
PT appear. The middle plot of Fig. 3 shows the cumulative effect of the higher order cavity
modes. The extrema corresponding to the fundamental mode remain almost unaffected,
but the shape of the resonances related to the TE1 mode changes. Note that the curves for
three and four cavity modes almost coincide. The right plot of Fig. 3 compares the CMT
results (3 cavity modes) with FDTD simulations [5]. The results agree surprisingly well.



Fig. 4 illustrates the field profiles for the full MR structure as predicted by the CMT.
At the resonance corresponding to the fundamental mode, most of the input power is
coupled to the fundamental cavity mode and appears at the drop port. For the resonance
corresponding to the higher order modes, the circular nodal line in the field pattern in the
cavity indicates that a significant part of the input power is coupled to the TE1 mode. For
an off resonance wavelength, most of the input power appears at the through port.
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Figure 4: Absolute value of the y component of TE fields of the MR. The gray scales (black = zero) are
comparable among the plots. From left to right: MR field at a resonance corresponding to the fundamental
mode (λ = 1.043µm), a resonance corresponding to the higher modes (λ = 1.04833µm) and off resonance
(λ = 1.055µm). CMT simulations ( 3 cavity modes) for a MR with the parameters as for Fig. 3.

Conclusions

The CMT based model of 2D microresonators yields quite accurate results even if few
cavity modes are taken into account. These results agree well with the rigorous FDTD re-
sults and can be obtained with much lower computational effort. The role of the individual
cavity modes can be clearly identified in this CMT model.
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