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Abstract – A general variant of coupled-mode-theory for frequency domain guided wave problems in
integrated optics is discussed. Starting point is a physically reasonable field template, that typically consists
of a few known, most relevant modes of the optical channels inthe structure, superimposed with coefficient
functions of the respective — in principle arbitrary — propagation coordinates. Discretization of these
unknown functions into 1-D finite elements leads to an approximation of the optical field in terms of a linear
superposition of structure-adapted, more or less localized modal elements. By variational restriction of a
functional representation of the full 2-D/3-D vectorial first order frequency domain Maxwell equations (with
transparent influx boundary conditions for inhomogeneous exterior), one can then reduce the problem to a
small- to moderate-sized system of linear equations. 2-D examples for a crossing of dielectric waveguides
and a grating-assisted rectangular resonator illustrate the performance of the approach.

I. I NTRODUCTION

A certain class of photonic devices are distinguished by thefollowing common feature: The optical electromagnetic
field can be described adequately by the propagation and interaction of a few known or conveniently computable
basic fields, typically guided modes supported by the local optical channels. It is usually straightforward to write
a reasonable ansatz for the optical field by superimposing the respective basis fields with coefficient functions that
vary along the associated propagation coordinate. One obtains — necessarily approximate — equations for the
varying amplitudes and their solutions. Approaches of thiskind are usually called “coupled mode theory” (CMT);
overviews of the rich variety of variants can be found in [1, 2], or in the textbooks [3, 4, 5, 6].

The CMT equations typically permit analytical solutions only in special situations, e.g. for longitudinally homo-
geneous systems of few waveguides. For other configurationsone obtains higher dimensional systems of coupled
differential equations, or systems with non-constant coefficients, that require numerical means. In those, by no
means less interesting, cases the solutions are numerical approximations of the CMT coefficient functions, that
still allow to examine the amplitude evolutions. “CMT” as itis used here encompasses explicitly these situations.

Ref. [1] classifies the existing methods for linear structures as codirectional CMT (codirectional propagation of
modes along more or less parallel waveguide cores) and contradirectional CMT (corrugated channels, waveguide
gratings). Light propagation is modeled from a viewpoint ofmode amplitude evolution along a single propagation
coordinate, i.e. through sets of coupled ordinary differential equations. One also frequently comes across purely
phenomenological models, where coupling coefficients are treated as fit-parameters.

This paper briefly reviews a CMT variant that to some degree generalizes the former properties, by variational
means in combination with simple numerics. The method starts from first principles, i.e. with the frequency
domain Maxwell equations for a given optical structure. Beyond the CMT template no further heuristics is required
to arrive at the desired approximations for the optical field. Further details on this Hybrid analytical/numerical
Coupled Mode Theory (HCMT) are given in Ref. [7].

II. H YBRID ANALYTICAL / NUMERICAL COUPLED MODE THEORY

The HCMT approach will be explained along the 2-D example of Figure 1. Nevertheless, we adopt a notation that
applies directly also to three spatial dimensions. The frequency domain equations

∇ ×H − iωǫ0ǫE = 0 , −∇ ×E − iωµ0H = 0 . (1)

are considered for a structure with relative dielectric permittivity ǫ, for vacuum permittivityǫ0 and permeabilityµ0,
where the optical electric and magnetic fieldsE,H vary harmonically in time∼ exp(iωt) with angular frequency
ω = 2πc/λ, always specified by the vacuum wavelengthλ, for vacuum speed of light c.
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Fig. 1: A perpendicular crossing of two waveguide cores. The2-D problem is described in
Cartesian coordinatesx, z. The computational windowx ∈ [x0, xN ], z ∈ [z0, zN ] covers
the region of interest around the waveguide intersection. Directional variants of the guided
modes supported by the two channels serve as basis fields for the HCMT model.

A. Template for the Coupled Mode Field
Starting point for the CMT analysis is a physically plausible and, as far as possible, also convenient template for
the optical electromagnetic field. For the example of Figure1 one expects the following interaction to take place
around the center of the crossing: An incoming guided mode, entering the horizontal channel from the left, is partly
reflected and / or transmitted into other guided modes of the horizontal core, and it transfers part of its power to
modes supported by the vertical waveguide that travel upward or downward. Hence, if we disregard the radiative
power loss to nonguided waves, a reasonable CMT field template could read:
(

E

H

)

(x, z) =
∑

m

fm(z)ψf
m(x, z)+

∑

m

bm(z)ψb
m(x, z)+

∑

m

um(x)ψu
m(x, z)+

∑

m

dm(x)ψd
m(x, z). (2)

Here the symbolsψ·

m with upper indices f,b denote the forward or backward propagating variant of the mode

of orderm of the horizontal core with electric part̃E
f,b
m and magnetic part̃H

f,b
m of the mode profile. These are

functions of the transverse coordinatex, with exponentialz-dependences with propagation constant∓βh
m:

ψf, b
m (x, z) =

(

Ẽ

H̃

)f, b

m

(x) e∓iβh
mz, ψu, d

m (x, z) =

(

Ẽ

H̃

)u, d

m

(z) e∓iβv
mx. (3)

Analogously, indices u, d identify the upward or downward traveling modes of the vertical waveguide, with prop-
agation constants∓βv

m. It remains to determine the modal amplitudesfm, bm, um, dm, which are functions of the
respective horizontal coordinatez (fm, bm) or of the vertical coordinatex (um, dm).

We like to emphasize that the procedure outlined below applies just as well to a variety of other structures,
provided that it is possible to write down a field template in the form of Eq. (2), i.e. a superposition of given fields
with amplitudes that are each a function of some propagationcoordinate. These need not necessarily be Cartesian
coordinates: the waves inside a circular microcavity, for instance, would most conveniently be described by bend
modes, i.e. in terms of polar coordinates [8, 9, 10]. For certain problems, e.g. if one includes resonances (quasi-
normal modes, QNMs) of a high-Q microcavity as basis elementsψ, single coefficients without dependence on a
propagation coordinate could be adequate [11]. In that casethe discretization step (next section) is omitted for the
respective terms in the template and one arrives directly atthe abstract form (5).

B. Discretization of Amplitude Functions
Standard 1-D first order finite elements (FEs) are now used to discretize the unknown functions. As an example,
the amplitudefm(z) of them-th order forward mode of the horizontal channel is expandedas

fm(z) =
N

∑

j=0

fm,j αj(z) . (4)

For j = 1, . . . , N − 1 theαj are standard triangle functions;α0 andαN , with nodes at the boundaries atz0, zN

of the computational interval, are1 in the respective half-infinite exteriors. Observe thatfm,0, the input amplitude
of the mode of orderm at the left boundary, is actually a given quantity, while allother coefficients are so far
unknown. Analogous discretization procedures apply tobm, um, anddm, in the last two cases with respect tox.

This done, the ansatz for the full electromagnetic field assumes the abstract form
(

E

H

)

(x, z) =
∑

k

ak

(

α
·
(·)ψ·

·
(x, z)

)

=:
∑

k

ak

(

Ek

Hk

)

(x, z), (5)



Here the formal indexk distinguishes waveguide channels, propagation directions, mode orders, and element num-
bers, indicated by the wildcards (dots) in the second term. Element functionsα and mode fieldsψ are combined
into modal elements, the quantities(Ek,Hk) in the last term. The unknowns and given values of the previous
separate expansions reappear as expansion coefficientsak ∈ {fm,j, bm,j, um,j, dm,j}

C. Variational Form of the Scattering Problem
Consider the abstract 3-D guided-wave scattering problem as introduced schematically in Figure 2. The frequency
domain equations (1) are to be solved inside the computational domainΩ.
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Fig. 2: An exemplary port planeS constitutes part of the boundary of the domainΩ. Axes
x andy of a local coordinate system spanS, the z-axis is oriented towards the interior
of Ω. Incoming waveguides are parallel to thez-axis, i.e. the exterior isz-homogeneous.
Extension to further input/output ports should be straightforward.

Transparent influx boundary conditions (TIBCs) for the electromagnetic fieldsE, H (transverse components
only) onS can be stated formally as [7]

E =
∑

m

2FmẼm −
∑

m

1

Nm

〈Ẽm,H〉Ẽm , H =
∑

m

2FmH̃m −
∑

m

1

Nm

〈E, H̃m〉H̃m . (6)

Here (Ẽm, H̃m) are the electric and magnetic profiles of the complete set of normal modes [4] onS (partly
continuous and partly discrete indexm, the combination(Ẽm, H̃m) represents a wave that travels towards the
interior of Ω). Orthogonality properties〈Ẽl, H̃k〉 = δlkNk hold, with nonzeroNk, for the product〈A,B〉 =
∫∫

S
(A×B) · ez dxdy. CoefficientsFm specify the external influx, already projected onto the local modal basis.
A variational representation of the former problem is givenby the functional [7]

F(E,H) =

∫∫∫

Ω

{

E · (∇ ×H) +H · (∇ ×E) − iωǫ0ǫE
2 + iωµ0H

2
}

dxdy dz

−
∑

m

2Fm

{

〈Ẽm,H〉 − 〈E, H̃m〉
}

+
∑

m

1

2Nm

{

〈Ẽm,H〉2 − 〈E, H̃m〉2
}

(7)

(an expression from [4], extended by the boundary integrals; cf. the formulation for scalar 1-D and 2-D second
order systems with homogeneous exterior of [12, 13]). IfF becomes stationary, thenE andH satisfy Eqs. (1)
in Ω, they satisfy the TIBCs (6) onS, and the transverse components of bothE andH vanish on all other parts
∂Ω\S of the boundary.

D. Solution by Variational Restriction
Upon insertion of expression (5), the functionalF becomes a function of the coefficientsa = (. . . , ak, . . .) of the
modal elements. The restricted functionFr(a) is quadratic in these unknowns, with an additional linear term,

Fr(a) =
∑

l,k

alakFlk +
∑

l

alRl +
∑

l,k

alakBlk = a · Fa+R · a+ a · Ba , (8)

where the matrices / the vectorF,R andB are formed by integrals of products of modal elements over the interior
(F) or the port plane (R, B); prescribed amplitudes of the input waves are included inR. Note that frequently,
depending on the problem at hand, only a few terms in the formal sums of Eq. (6) are relevant, due to modal
orthogonality properties.

To identify an optimum approximation, given the degrees of freedom in the field template (5), one now requires
the restricted functional (8) to become stationary. The first variation ofFr vanishes

δFr = δa ·
((

M + M
T
)

a+R
)

= 0 , M = F + B , (9)



for arbitrary variationsδa, if the optimum vector of coefficients solves the linear system
(

M + M
T
)

a+R = 0 . (10)

Modal output amplitudes are already included in these unknowns; evaluation of Eqs. (2), (4) permits to assemble
the full HCMT field approximation. The algebraic procedure can be refined by observing that some components
of a are actually given quantities; Eq. (10) then represents an overdetermined system. The least squares solution
[7] turns out to be beneficial for the smoothness of the results.

As an alternative one can apply a Galerkin procedure to assign values to the coefficients in the general FE-CMT
expansion (5). For convenience the formalism then employs aweak form of Eqs. (1) with field products where one
factor appears as a complex conjugate, which has certain practical advantages [4]. That form, however, appears
not to be related to a variational principle. Further comments on both approaches are given in Ref. [7].

III. N UMERICAL RESULTS

Figures 3, 4 summarize HCMT results for the 2-D waveguide crossing, and for a grating assisted resonator from
Ref. [14]. In both cases, reference data has been generated by rigorous, quasi-analytical bidirectional or quadridi-
rectional eigenmode propagation methods (BEP, [15, 16]; QUEP [17]; [18]). The crossing example clearly shows
that a coupled mode approach can be implemented successfully without the concept of field evolution along a
common propagation coordinate. Still, in terms of their FE discretization, the amplitude functions (Figure 3(a))
are available for inspection and a discussion of the mode interaction.
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Fig. 3: Perpendicular waveguide intersection: A vertical core of variable widthv with refractive indicesng = 3.4 (cores)
andnb = 1.45 (background) crosses a horizontal waveguide with thickness h = 0.2 µm. The propagation of TE polarized
light at a vacuum wavelengthλ = 1.55 µm is considered. (a), HCMT simulation,v = 0.45 µm: Amplitude functionsf , b of
the right- and left-traveling fundamental modes in the horizontal channel (first column), and functionsum, dm of the upward
and downward propagating modes of orderm = 0, 1 of the vertical channel (second and third columns). Field plots, for
v = 0.45 µm: physical time snapshots of the principal componentEy of the TE fields as predicted by the present procedure
(HCMT, (b)) and by rigorous mode expansion simulations (QUEP, (d), reference [17]). (b): Guided power transmission versus
the widthv of the vertical core, HCMT results (dots) and QUEP simulations (lines, reference [17]). For unit input in the left
channel,PR, PT, PU,andPD are the relative power fractions carried by guided modes that leave the crossing along the left,
right, upper, and lower channel. The top plot shows also the sum of these quantities. Lower inset: power fractionsPUm = PDm
associated with guided modes of orderm = 0, 1, 2, 3 of the multimode vertical channel.



The standing wave resonator of Figure 4 is intended as (part of [19, 14]) an integrated optical add-drop-
wavelength filter. We have recently investigated a 2-D variant of this concept [14], meant as an alternative to
conventional circular, ring- or disk-shaped microresonators. The device shows the advantages of mainly bidirec-
tional light propagation (opening possibilities for electrooptic tuning by materials with pronounced anisotropy), of
a long interaction length between the cavity and the bus waveguides (fabrication tolerance of the coupler gap), and
of additional design freedom concerning the reflector gratings (realization of a device that supports only a single
resonance [14]), at the price of a relatively large length, and of the necessity of the grating fabrication.
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Fig. 4: Spectral response of a grating assisted rectangularresonator: Two parallel waveguide cores of widthw are coupled
by a cavity of widthW and lengthL, separated by gapsg. Gratings withNp periods of lengthp with a spacings enclose
the cavity. The guiding regions with refractive indexng are embedded in a background medium with indexnb. The set of
example parameters from Ref. [14] leads to a pronounced resonance at the vacuum wavelengthλ = 1.55 µm: ng = 1.6,
nb = 1.45, w = 1.0 µm, g = 1.6 µm, W = 9.955 µm, L = 79.985 µm, p = 1.538 µm, s = 0.281 µm, Np = 40. PA
to PD are the relative power fractions that are reflected or transmitted into ports A to D. Note that the curves related toPA ,
PC, andPD are almost completely superimposed. Bold lines (reference) correspond to rigorous mode expansion computations
[15, 16], the dashed lines indicate the HCMT results. The resonator is excited in port A by the guided mode of the left core.
For most wavelengths, most of the input power is directly transmitted to port B. Resonant states appear as a drop inPB and a
simultaneous increase of the reflected and dropped power fractionsPA , PC, andPD.

Figure 4 compares rigorous and HCMT results [7] for the spectral response of the filter device. The HCMT
model combines bidirectional variants of the single guidedmodes of the separate bus waveguides with the forward
and backward propagating 5th-order mode of the wide centralcore. In contrast to standard 2-D CMT models
[20, 14], where one has to patch up different (co- and contradirectional) variants of CMT formulations, the present
approach covers directly the codirectional coupling for the bidirectional propagation along the inner cavity segment
(z ∈ [0, L]) as well as the co- and contradirectional interaction of waves of all three cores along the reflector
gratings.

Note that these examples and also others in Ref. [7] cover structures with moderate to high refractive index
contrast. The range of applicability of CMT-like approaches need not be restricted to “low contrast” structures.
Rather these techniques, including the one discussed here,are applicable where one can reasonably expect rela-
tively weak or only localized mutual perturbations of the interacting basis modes, such that the optical fields can
well be described by the CMT field templates.

IV. CONCLUDING REMARKS

In contrast to most established variants, coupled modeequationsdo not appear in the version of coupled mode
theory as outlined above. Rather than deriving systems of coupled ordinary differential equations and solving these
numerically (or analytically, at the price of serious additional approximations), the present variational approach
permits to step directly from the CMT field template towards asystem of algebraic equations for the numerical
FE approximation of the coupled mode amplitude functions. This allows for a quite general, straightforward, and
uniform formulation that promises to be applicable to some range of problems in two and prospectively also three
spatial dimensions.



The form of the template (5) covers in principle also rigorous numerical discretizations of the optical fields.
Hence this may be viewed as a numerical finite element technique with highly specialized, structure-adapted ele-
ments (the former modal elements). The method can only converge towards a continuous amplitude approximation
(2), rather than towards the true physical solution. In return one employs 1-D FE discretizations with only quite
few unknowns, when compared to standard 2-D or 3-D FE settings. As much as possible of the physics is already
built into the elements, leading to small or moderate sized algebraic systems.
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waveguides.Optical and Quantum Electronics, 37(1-3):37–61, 2005.

[9] K. R. Hiremath, R. Stoffer, and M. Hammer. Modeling of circular integrated optical microresonators by 2-D frequency-
domain coupled mode theory.Optics Communications, 257(2):277–297, 2006.

[10] R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J.Čtyroký. Cylindrical integrated optical microresonators: Mod-
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