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Abstract — A general variant of coupled-mode-theory for frequency donain guided wave problems in
integrated optics is discussed. Starting point is a physidly reasonable field template, that typically consists
of a few known, most relevant modes of the optical channels ithe structure, superimposed with coefficient
functions of the respective — in principle arbitrary — propagation coordinates. Discretization of these
unknown functions into 1-D finite elements leads to an approxnation of the optical field in terms of a linear
superposition of structure-adapted, more or less localiz& modal elements. By variational restriction of a
functional representation of the full 2-D/3-D vectorial first order frequency domain Maxwell equations (with
transparent influx boundary conditions for inhomogeneous &terior), one can then reduce the problem to a
small- to moderate-sized system of linear equations. 2-D amples for a crossing of dielectric waveguides
and a grating-assisted rectangular resonator illustrate he performance of the approach.

I. INTRODUCTION

A certain class of photonic devices are distinguished byalh@ving common feature: The optical electromagnetic
field can be described adequately by the propagation ancatien of a few known or conveniently computable
basic fields, typically guided modes supported by the lopéital channels. It is usually straightforward to write
a reasonable ansatz for the optical field by superimposmgebpective basis fields with coefficient functions that
vary along the associated propagation coordinate. Onéngbta necessarily approximate — equations for the
varying amplitudes and their solutions. Approaches ofkfrig are usually called “coupled mode theory” (CMT);
overviews of the rich variety of variants can be foundirCl a2 in the textbooks [d,14,15] 6].

The CMT equations typically permit analytical solutiongyoin special situations, e.g. for longitudinally homo-
geneous systems of few waveguides. For other configuratiee®btains higher dimensional systems of coupled
differential equations, or systems with non-constant faziehts, that require numerical means. In those, by no
means less interesting, cases the solutions are numepigadxdmations of the CMT coefficient functions, that
still allow to examine the amplitude evolutions. “CMT” asstused here encompasses explicitly these situations.

Ref. [1] classifies the existing methods for linear struesuas codirectional CMT (codirectional propagation of
modes along more or less parallel waveguide cores) andazbréctional CMT (corrugated channels, waveguide
gratings). Light propagation is modeled from a viewpointafde amplitude evolution along a single propagation
coordinate, i.e. through sets of coupled ordinary difféerequations. One also frequently comes across purely
phenomenological models, where coupling coefficientsraged as fit-parameters.

This paper briefly reviews a CMT variant that to some degrexgsizes the former properties, by variational
means in combination with simple numerics. The method stioim first principles, i.e. with the frequency
domain Maxwell equations for a given optical structure. @&ythe CMT template no further heuristics is required
to arrive at the desired approximations for the optical fidtdirther details on this Hybrid analytical/numerical
Coupled Mode Theory (HCMT) are given in Réfil [7].

II. HYBRID ANALYTICAL / NUMERICAL COUPLED MODE THEORY

The HCMT approach will be explained along the 2-D exampleigéiFe[1. Nevertheless, we adopt a notation that
applies directly also to three spatial dimensions. Theueegy domain equations

V X H —iwege E =0, -V X E —iwugH =0. (1)

are considered for a structure with relative dielectricyétivity e, for vacuum permittivityey and permeability:,
where the optical electric and magnetic fiellsH vary harmonically in time- exp(iwt) with angular frequency
w = 27c/ A, always specified by the vacuum wavelengttior vacuum speed of light c.
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o <\;y; - _‘>:> Fig. 1: A perpendicular crossing of two waveguide cores. ZHieproblem is described in
f J\;//\ [ Cartesian coordinates z. The computational window € [zo, zn], z € [20, 2n] COVeErs
T - } z the region of interest around the waveguide intersectiaredfional variants of the guided
2 WA 2y modes supported by the two channels serve as basis fieldsefsfGMT model.

A. Template for the Coupled Mode Field

Starting point for the CMT analysis is a physically plausighd, as far as possible, also convenient template for
the optical electromagnetic field. For the example of Fiflicme expects the following interaction to take place
around the center of the crossing: Anincoming guided maateyig the horizontal channel from the left, is partly
reflected and / or transmitted into other guided modes of thizdntal core, and it transfers part of its power to
modes supported by the vertical waveguide that travel upwadownward. Hence, if we disregard the radiative
power loss to nonguided waves, a reasonable CMT field temptatld read:

()09 = S ) W+ () B :2) + 5 0 ()00 2) Y ) (). @)

Here the symbolsp,, with upper indices f,b denote the forward or backward pragiag variant of the mode

. . _ ~ b . ~ fb i
of orderm of the horizontal core with electric paf,, and magnetic patH,, of the mode profile. These are
functions of the transverse coordinatewith exponentiak-dependences with propagation constapf. :

- b h - ud .
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Analogously, indices u, d identify the upward or downwaay&ling modes of the vertical waveguide, with prop-
agation constants 3, . It remains to determine the modal amplitudgs b,,, u., d., which are functions of the
respective horizontal coordinatg f,,,, b.,,) or of the vertical coordinate (u,,, d,).

We like to emphasize that the procedure outlined below applist as well to a variety of other structures,
provided that it is possible to write down a field templatetie form of Eq.[[R), i.e. a superposition of given fields
with amplitudes that are each a function of some propagationdinate. These need not necessarily be Cartesian
coordinates: the waves inside a circular microcavity, fistance, would most conveniently be described by bend
modes, i.e. in terms of polar coordinates[IB, 9, 10]. Foraienproblems, e.g. if one includes resonances (quasi-
normal modes, QNMs) of a high-Q microcavity as basis elesgénsingle coefficients without dependence on a
propagation coordinate could be adequaté [11]. In thatttesdiscretization step (next section) is omitted for the
respective terms in the template and one arrives directlyeaabstract fornf{5).

B. Discretization of Amplitude Functions
Standard 1-D first order finite elements (FES) are now usedstweatize the unknown functions. As an example,
the amplitudef,,,(z) of them-th order forward mode of the horizontal channel is exparated

N
Fn(2) =D fmgai(2). 4)
j=0
Forj =1,...,N — 1theq; are standard triangle functionsy anda,y, with nodes at the boundariesat, zx

of the computational interval, afein the respective half-infinite exteriors. Observe tfiaty, the input amplitude

of the mode of ordem at the left boundary, is actually a given quantity, while @her coefficients are so far

unknown. Analogous discretization procedures apphy,tou,,, andd,,, in the last two cases with respectito
This done, the ansatz for the full electromagnetic field mesithe abstract form

(f]) (@,2) = > ar(a.()pi(@,2) = > a (fﬁ) (z,2), )

k k



Here the formal index distinguishes waveguide channels, propagation direstimode orders, and element num-
bers, indicated by the wildcards (dots) in the second terlamEnt functiongy and mode fields) are combined
into modal elements, the quantitieE',, H ) in the last term. The unknowns and given values of the previou
separate expansions reappear as expansion coeffigieats f,.. i, bm.j, Um.j, dm.j }

C. \Variational Form of the Scattering Problem
Consider the abstract 3-D guided-wave scattering probeimteoduced schematically in Figutke 2. The frequency
domain equation§X1) are to be solved inside the computttmmain.

¥ AN
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IS ': Fig. 2: An exemplary port plan& constitutes part of the boundary of the dom@inAxes
S K x andy of a local coordinate system spa&h the z-axis is oriented towards the interior
0] = O .. of Q. Incoming waveguides are parallel to thexis, i.e. the exterior is-homogeneous.
Tmmeeee 7 Extension to further input/output ports should be strdimmtard.

Transparent influx boundary conditions (TIBCs) for the #lemagnetic field&, H (transverse components
only) onS can be stated formally asl[7]

E=) 2F,E, ZN H)E,,, H-= Z2FH ZN H . . (6)

Here (E,,, H,,) are the electric and magnetic profiles of the complete seahal modes[4] onS (partly
continuous and partly discrete index, the comblnatlor(Em, H,,) represents a wave that travels towards the
interior of 2). Orthogonality propert|e$El,Hk> = 4, Ny, hold, with nonzeraVy, for the product{ A, B) =
ffs(A x B) - e, dx dy. CoefficientsF,,, specify the external influx, already projected onto the lowadal basis.

A variational representation of the former problem is gibgrthe functionall[7]

F(E,H) = //SI{E'(VXH)+H'(VXE)*iWEOEEQ‘{’iWMOHQ}dI’dde

T r 1 T 2 r 2
;2Fm{<Em,H> (B, H,)} + X, {(Bu. H?— (B, H.)} (@)
(an expression froni[4], extended by the boundary integrdlghe formulation for scalar 1-D and 2-D second
order systems with homogeneous exteriorfof [12, 13])F Ibecomes stationary, thed and H satisfy Eqgs.[L)
in Q, they satisfy the TIBC{]6) oS, and the transverse components of bBtland H vanish on all other parts
00N\ S of the boundary.

D. Solution by Variational Restriction
Upon insertion of expressioll(5), the functiot@becomes a function of the coefficienis= (..., ag,...) of the
modal elements. The restricted functi®f(a) is quadratic in these unknowns, with an additional lineemte

Fi(a) = ZalakFlk + ZalRl + ZalakBlk =a-Fa+R-a+a-Ba, (8)
Lk 1 Lk

where the matrices / the vectey R andB are formed by integrals of products of modal elements oweirtterior
(F) or the port plane R, B); prescribed amplitudes of the input waves are include®inNote that frequently,
depending on the problem at hand, only a few terms in the foswas of Eq.[(b) are relevant, due to modal
orthogonality properties.

To identify an optimum approximation, given the degrees@éflom in the field templatEl(5), one now requires
the restricted functionall8) to become stationary. The fiasiation of 7, vanishes

5f,=5a-((M+MT)a+R)=o, M=F4+B, 9)



for arbitrary variationga, if the optimum vector of coefficients solves the linear eyst
(M+MT)a+R=o. (10)

Modal output amplitudes are already included in these uwkispevaluation of EqsI2)1(4) permits to assemble
the full HCMT field approximation. The algebraic proceduaa be refined by observing that some components
of a are actually given quantities; Eq_{10) then representsvandetermined system. The least squares solution
[[7] turns out to be beneficial for the smoothness of the result

As an alternative one can apply a Galerkin procedure to mssilgies to the coefficients in the general FE-CMT
expansion[{p). For convenience the formalism then employsak form of Eqs [{]1) with field products where one
factor appears as a complex conjugate, which has certamigabadvantage$]4]. That form, however, appears
not to be related to a variational principle. Further comta@m both approaches are given in REF. [7].

IIl. NUMERICAL RESULTS

Figured{B[# summarize HCMT results for the 2-D waveguidesing, and for a grating assisted resonator from
Ref. [IZ]. In both cases, reference data has been genenatagbbous, quasi-analytical bidirectional or quadridi-
rectional eigenmode propagation methods (BER,[[15, 16 EERLT]; [18]). The crossing example clearly shows
that a coupled mode approach can be implemented succgssitiibut the concept of field evolution along a
common propagation coordinate. Still, in terms of their R&cktization, the amplitude functions (Figlide 3(a))
are available for inspection and a discussion of the modaotion.
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Fig. 3: Perpendicular waveguide intersection: A vertigadecof variable widthv with refractive indiceshg = 3.4 (cores)
andn, = 1.45 (background) crosses a horizontal waveguide with thickihes- 0.2 um. The propagation of TE polarized
light at a vacuum wavelength = 1.55 um is considered. (a), HCMT simulation,= 0.45 pum: Amplitude functionsf, b of
the right- and left-traveling fundamental modes in the ramtal channel (first column), and functions,, d,, of the upward
and downward propagating modes of order= 0, 1 of the vertical channel (second and third columns). Fieldtsplfor

v = 0.45 um: physical time snapshots of the principal compongptof the TE fields as predicted by the present procedure
(HCMT, (b)) and by rigorous mode expansion simulations (@), reference [17]). (b): Guided power transmissiorsusr
the widthv of the vertical core, HCMT results (dots) and QUEP simulatidlines, referencé[17]). For unit input in the left
channel,PR, Pr, Py,and Pp are the relative power fractions carried by guided modesléaae the crossing along the left,
right, upper, and lower channel. The top plot shows alsouheaf these quantities. Lower inset: power fractidtig, = Pom
associated with guided modes of order= 0, 1, 2, 3 of the multimode vertical channel.




The standing wave resonator of Figlile 4 is intended as (#df9) [14]) an integrated optical add-drop-
wavelength filter. We have recently investigated a 2-D vdrad this conceptl[14], meant as an alternative to
conventional circular, ring- or disk-shaped microresorat The device shows the advantages of mainly bidirec-
tional light propagation (opening possibilities for eteaptic tuning by materials with pronounced anisotrop¥), o
a long interaction length between the cavity and the bus gu#des (fabrication tolerance of the coupler gap), and
of additional design freedom concerning the reflector ggei(realization of a device that supports only a single
resonance [14]), at the price of a relatively large lengtit, @f the necessity of the grating fabrication.
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Fig. 4: Spectral response of a grating assisted rectangeganator: Two parallel waveguide cores of widthare coupled
by a cavity of widthiW and lengthL, separated by gaps Gratings with/Np periods of lengthp with a spacings enclose
the cavity. The guiding regions with refractive indey are embedded in a background medium with indgx The set of
example parameters from Ref.[14] leads to a pronouncechagse at the vacuum wavelength= 1.55 um: ng = 1.6,

np = 145, w = 1.0pm, g = 1.6 um, W = 9.955 um, L = 79.985 um, p = 1.538 um, s = 0.281 pm, Np = 40. Pa

to Pp are the relative power fractions that are reflected or trétethinto ports A to D. Note that the curves relatedRg,

Pc, and Py are almost completely superimposed. Bold lines (refefecmeespond to rigorous mode expansion computations
[15,[1€], the dashed lines indicate the HCMT results. Themator is excited in port A by the guided mode of the left core.
For most wavelengths, most of the input power is directipgraitted to port B. Resonant states appear as a drép &nd a
simultaneous increase of the reflected and dropped powetioing Pa, Pc, and Pp.

Figure[3 compares rigorous and HCMT results [7] for the gpécesponse of the filter device. The HCMT
model combines bidirectional variants of the single guinedies of the separate bus waveguides with the forward
and backward propagating 5th-order mode of the wide centna. In contrast to standard 2-D CMT models
[20,[14], where one has to patch up different (co- and coirational) variants of CMT formulations, the present
approach covers directly the codirectional coupling ferltidirectional propagation along the inner cavity segment
(z € [0,L]) as well as the co- and contradirectional interaction of egaef all three cores along the reflector
gratings.

Note that these examples and also others in R&f. [7] covactanes with moderate to high refractive index
contrast. The range of applicability of CMT-like approasimeed not be restricted to “low contrast” structures.
Rather these techniques, including the one discussed drerepplicable where one can reasonably expect rela-
tively weak or only localized mutual perturbations of th&ehacting basis modes, such that the optical fields can
well be described by the CMT field templates.

IV. CONCLUDING REMARKS

In contrast to most established variants, coupled memeationsdo not appear in the version of coupled mode

theory as outlined above. Rather than deriving systemsugfled ordinary differential equations and solving these
numerically (or analytically, at the price of serious aduial approximations), the present variational approach
permits to step directly from the CMT field template towardsyatem of algebraic equations for the numerical

FE approximation of the coupled mode amplitude functiortgs &llows for a quite general, straightforward, and

uniform formulation that promises to be applicable to soaregge of problems in two and prospectively also three
spatial dimensions.



The form of the templatd15) covers in principle also rigarawmerical discretizations of the optical fields.
Hence this may be viewed as a numerical finite element teaknidth highly specialized, structure-adapted ele-
ments (the former modal elements). The method can only cgavewards a continuous amplitude approximation
@), rather than towards the true physical solution. Inmetne employs 1-D FE discretizations with only quite
few unknowns, when compared to standard 2-D or 3-D FE ssttiAg much as possible of the physics is already
built into the elements, leading to small or moderate sizgdlaaic systems.
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