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As a means to assess the quality of effective index appragimsan simulations of pho-

tonic crystal slabs, we consider a reduction of 2-D Helmhgltoblems for waveguide
Bragg gratings to 1-D wave propagation, and compare witlorayus 2-D reference solu-

tions. Variational procedures permit to establish a reasole effective index profile even
in cases where locally no guided modes exist.

I ntroduction

The propagation of light through slab-like photonic crys{&Cs) is frequently described
in terms of effective indices (effective index method EIM, €.g. Refs.[[1] 2,13]). One
replaces the actual 3-D structure by an effective 2-D peinntyt, given by the propaga-
tion constants of the slab modes of the local vertical réifraendex profiles. Though the
approach is being described usually for the approximatautation of waveguide modes,
it is just as well applicable to propagation problems. Our & to check the approxima-
tion by analogous steps that reduce finite 2-D waveguide @gagtings, which in turn
can be seen as sections through 3-D PC membranes, to 1-2prawhich are tractable
by standard transfer matrix methods. A 2-D Helmholtz so({4}; reference) allows to
solve the 2-D problem rigorously, i.e. to assess the quafithie EIM approximation.
The EIM-viewpoint becomes particularly questionable ddfly the vertical refractive in-
dex profile cannot accommodate any guided mode, as e.g. lrotes of a PC membrane.
We check numerically a recipel [1], 5] to uniquely define anatiife permittivity even for
these cases, based on a variational view on the EIM.

Variational effective index approximation

The 2-D frequency domain propagation of TE-polarized lighh vacuum wavelength
and wavenumbék = 211/ through a dielectric structure with relative permittivéx, z)
is governed by the scalar equation

(02 +02 4+ k%)Ey =0 (1)
for the single electric field componeky that is oriented perpendicular to tke(vertical)
z- (horizontal) plane of interest.

In view of the effective index approximation we select a waltreference permittivity
profile ,(x), for which a guided slab modgx) satisfies the 1-D mode equation

(02 + K2(g, — nZ;)) @ = O with effective mode indexes. What follows is based on the
assumption thap constitutes a reasonable approximation for the vertickl aape on
the entire horizontal axis, i.e. that the optical field isagibyEy (X, z) = Y(z) @(x), with a
yet to be determined functiap.

By employing a functional form]1,16,! 7)) 5] of EJJ(1) and loogifor conditions for
variational stationarity with respect gn one can extract an equation

(02 +Keer) P =0 2)
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for the field dependence on the horizontal coordinate witcéafe permittivity [1.,

can(@) =+ [ (60.2) 8. 0 0 / [0 @)

Note that, depending on the actual local refractive indextrest,o = N2 can well turn
out to be negative. This then implies an imaginary effeatidexNes, along with evanes-
cent wave propagation, in the respective regions. Belowefer ito the computational
approach given by Eqd](1)3(3) as “variational effectivdexmethod” vEIM.

Eq. () governs the 1-D propagation through a dielectrictitayer stack with permittiv-
ity €et(2); one has thus replaced the original 2-D problem by an e¥fedtiD problem.
Analogous expressions can be derived for different pa#ion [&], and based on varia-
tional forms [1,] 4] of the full 3-D Maxwell equations. The exures are analogous to
what has been applied in the context of scalar [8] and veadtj¥j mode solvers.

5]

Results

FigureddLEB summarize results of the former procedure feriasof short, high-contrast
2-D configurations. The parameter set of Figure 1 could smmiea deeply etched, air-
covered SiNg4 film on a SiQ substrate. FigurEl 2 addresses a thin Si membrane with
periodic air holes. FigurEl 3 looks at a resonance in an aa-8i/SiQ grating with a
central defect.
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Figure 1: A deeply etched, vertically nonsymmetric wavedguBragg grating, relative guided
wave (fundamental mode) transmissibnand reflectiorR versus vacuum wavelenghh Both
EIM and vEIM approximations rely on effective indices foetblab segments betwebl§ia? =
1.87 (\ = 0.4pm) andNSi#P= 1.67 (A = 0.9um). The vEIM effective index in the etched regions
varies fromN2/es= 0.82 (\ = 0.4um) toN9%®s=0.71 (A = 0.9um). Darker shading indicates
higher losses (vertical scattering) as predlcted by the Ptéference. The gray patches span the
wavelength range where the slab is multimode.

In all configurations there is (at least) one guided slab mondke non-etched regions;
the corresponding vertical refractive index profile thuswas to compute a reasonable
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Figure 2: High contrast vertically symmetric waveguide @rgrating, modal transmissidnand
reflectionR versus vacuum wavelengi NS € [2.33) _ 2 2ym, 3.09 — ogum] (VEIM and EIM),
ghdlese [—1.30, — 2 2um: —0.41) —osum] (VEIM). Cf. also the caption of Figul& 1.
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Figure 3: Vertically nonsymmetric waveguide grating witntral defect, spectral transmission
T and reflectiorR around a defect resonancBSi2P € [2.75, _ 1 seum, 2.77) — 1.52um] (VEIM and
EIM), eholes ¢ [—0.96, _ 1 seum, —0.9% — 1.52um] (VEIM). Cf. also the caption of Figulf@ 1.

effective index which enters both the “conventional” EIMatdations and the VEIM pro-
cedures. The non-etched slab also provides the referemcetipaty and vertical mode

profile to evaluate Eq[13) for the VEIM approach. All configtions have also in com-
mon that the etched regions (holes) do not support any gambelks. The “conventional”
EIM approach thus requires to guess an effective index ®ihthie regions; results for
different plausible values are compared in the figures. Nwde along with the vertical



mode profiles and with the exception of the former “guessedlies, all effective in-
dices are wavelength dependent. The dependence appears ahwar for the present
configurations; corresponding intervals are given in therégaptions.

A semianalytic Helmholtz solver (quadridirectional eigesde propagation, QUEP
[4, [10]) is applied to generate reference solutions for thesgnt 2-D problems. We
restrict to the simplest case of TE polarization as intreducefore. In contrast to the
EIM and vEIM approximations, the rigorous QUEP calculasia@over vertically prop-
agating waves accurately. This out-of plane scatteringifests through losses in the
guided wave power balance, which can not be taken into atdxyutne EIM and VEIM
approximations. One should thus focus the comparison wetepectral regions without
pronounced losses, i.e. the regions with bright backgranifdguredI1EB.

Concluding remarks

The previous simulations showed clearly that a treatmerat pfopagation problem in-
volving a high contrast PC membrane in terms of effectivécesican hardly be expected
to be more than a mere qualitative, rather crude quangtapproximation. Neverthe-
less, situations may arise where, for various reasonsg trer no options but to restrict
simulations to 2-D. One should then at least invest the sefi@it to determine the cor-
rection term in Eq.[{3), and perform the 2-D calculation fog thus established effective
permittivity profile. At least for the former examples we tbobserve that the resulting
variational effective index approximation comes closaetlity than any “conventional”
EIM with educated guesses of effective indices for regiohen@ no local modes exist.
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