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As a means to assess the quality of effective index approximations in simulations of pho-
tonic crystal slabs, we consider a reduction of 2-D Helmholtz problems for waveguide
Bragg gratings to 1-D wave propagation, and compare with rigorous 2-D reference solu-
tions. Variational procedures permit to establish a reasonable effective index profile even
in cases where locally no guided modes exist.

Introduction
The propagation of light through slab-like photonic crystals (PCs) is frequently described
in terms of effective indices (effective index method EIM, cf. e.g. Refs. [1, 2, 3]). One
replaces the actual 3-D structure by an effective 2-D permittivity, given by the propaga-
tion constants of the slab modes of the local vertical refractive index profiles. Though the
approach is being described usually for the approximate calculation of waveguide modes,
it is just as well applicable to propagation problems. Our aim is to check the approxima-
tion by analogous steps that reduce finite 2-D waveguide Bragg-gratings, which in turn
can be seen as sections through 3-D PC membranes, to 1-D problems, which are tractable
by standard transfer matrix methods. A 2-D Helmholtz solver([4], reference) allows to
solve the 2-D problem rigorously, i.e. to assess the qualityof the EIM approximation.
The EIM-viewpoint becomes particularly questionable if locally the vertical refractive in-
dex profile cannot accommodate any guided mode, as e.g. in theholes of a PC membrane.
We check numerically a recipe [1, 5] to uniquely define an effective permittivity even for
these cases, based on a variational view on the EIM.

Variational effective index approximation
The 2-D frequency domain propagation of TE-polarized lightwith vacuum wavelengthλ
and wavenumberk = 2π/λ through a dielectric structure with relative permittivityε(x,z)
is governed by the scalar equation

(∂2
x +∂2

z +k2ε)Ey = 0 (1)
for the single electric field componentEy that is oriented perpendicular to thex- (vertical)
z- (horizontal) plane of interest.
In view of the effective index approximation we select a vertical reference permittivity
profile εr(x), for which a guided slab modeφ(x) satisfies the 1-D mode equation
(∂2

x + k2(εr −n2
eff))φ = 0 with effective mode indexneff. What follows is based on the

assumption thatφ constitutes a reasonable approximation for the vertical field shape on
the entire horizontal axis, i.e. that the optical field is given byEy(x,z) = ψ(z)φ(x), with a
yet to be determined functionψ.
By employing a functional form [1, 6, 7, 5] of Eq. (1) and looking for conditions for
variational stationarity with respect toψ, one can extract an equation

(∂2
z +k2εeff)ψ = 0 (2)
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for the field dependence on the horizontal coordinate with effective permittivity [1, 5]

εeff(z) = n2
eff +

∫

(ε(x,z)− εr(x))φ2(x)dx

/
∫

φ2(x)dx. (3)

Note that, depending on the actual local refractive index contrast,εeff = N2
eff can well turn

out to be negative. This then implies an imaginary effectiveindexNeff, along with evanes-
cent wave propagation, in the respective regions. Below we refer to the computational
approach given by Eqs. (1)–(3) as “variational effective index method” vEIM.
Eq. (2) governs the 1-D propagation through a dielectric multilayer stack with permittiv-
ity εeff(z); one has thus replaced the original 2-D problem by an effective 1-D problem.
Analogous expressions can be derived for different polarization [8], and based on varia-
tional forms [1, 4] of the full 3-D Maxwell equations. The procedures are analogous to
what has been applied in the context of scalar [8] and vectorial [9] mode solvers.

Results
Figures 1–3 summarize results of the former procedure for a series of short, high-contrast
2-D configurations. The parameter set of Figure 1 could represent a deeply etched, air-
covered Si3N4 film on a SiO2 substrate. Figure 2 addresses a thin Si membrane with
periodic air holes. Figure 3 looks at a resonance in an air-clad Si/SiO2 grating with a
central defect.
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Figure 1: A deeply etched, vertically nonsymmetric waveguide Bragg grating, relative guided
wave (fundamental mode) transmissionT and reflectionR versus vacuum wavelengthλ. Both
EIM and vEIM approximations rely on effective indices for the slab segments betweenNslab

eff =
1.87 (λ = 0.4µm) andNslab

eff = 1.67 (λ = 0.9µm). The vEIM effective index in the etched regions
varies fromNholes

eff = 0.82 (λ = 0.4µm) to Nholes
eff = 0.71 (λ = 0.9µm). Darker shading indicates

higher losses (vertical scattering) as predicted by the QUEP reference. The gray patches span the
wavelength range where the slab is multimode.

In all configurations there is (at least) one guided slab modein the non-etched regions;
the corresponding vertical refractive index profile thus allows to compute a reasonable
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Figure 2: High contrast vertically symmetric waveguide Bragg grating, modal transmissionT and
reflectionR versus vacuum wavelengthλ. Nslab

eff ∈ [2.33λ = 2.2µm,3.09λ = 0.8µm] (vEIM and EIM),
εholes

eff ∈ [−1.30λ = 2.2µm,−0.41λ = 0.8µm] (vEIM). Cf. also the caption of Figure 1.
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Figure 3: Vertically nonsymmetric waveguide grating with central defect, spectral transmission
T and reflectionR around a defect resonance.Nslab

eff ∈ [2.75λ = 1.56µm,2.77λ = 1.52µm] (vEIM and
EIM), εholes

eff ∈ [−0.96λ = 1.56µm,−0.94λ = 1.52µm] (vEIM). Cf. also the caption of Figure 1.

effective index which enters both the “conventional” EIM calculations and the vEIM pro-
cedures. The non-etched slab also provides the reference permittivity and vertical mode
profile to evaluate Eq. (3) for the vEIM approach. All configurations have also in com-
mon that the etched regions (holes) do not support any guidedmodes. The “conventional”
EIM approach thus requires to guess an effective index for the hole regions; results for
different plausible values are compared in the figures. Notethat, along with the vertical



mode profiles and with the exception of the former “guessed” values, all effective in-
dices are wavelength dependent. The dependence appears almost linear for the present
configurations; corresponding intervals are given in the figure captions.
A semianalytic Helmholtz solver (quadridirectional eigenmode propagation, QUEP
[4, 10]) is applied to generate reference solutions for the present 2-D problems. We
restrict to the simplest case of TE polarization as introduced before. In contrast to the
EIM and vEIM approximations, the rigorous QUEP calculations cover vertically prop-
agating waves accurately. This out-of plane scattering manifests through losses in the
guided wave power balance, which can not be taken into account by the EIM and vEIM
approximations. One should thus focus the comparison to those spectral regions without
pronounced losses, i.e. the regions with bright backgroundin Figures 1–3.

Concluding remarks
The previous simulations showed clearly that a treatment ofa propagation problem in-
volving a high contrast PC membrane in terms of effective indices can hardly be expected
to be more than a mere qualitative, rather crude quantitative approximation. Neverthe-
less, situations may arise where, for various reasons, there are no options but to restrict
simulations to 2-D. One should then at least invest the smalleffort to determine the cor-
rection term in Eq. (3), and perform the 2-D calculation for the thus established effective
permittivity profile. At least for the former examples we could observe that the resulting
variational effective index approximation comes closer toreality than any “conventional”
EIM with educated guesses of effective indices for regions where no local modes exist.
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